Skip to main content

Physiological Functions and Regulation of C. elegans Stearoyl-CoA Desaturases

  • Chapter
  • First Online:
Stearoyl-CoA Desaturase Genes in Lipid Metabolism

Abstract

The nematode Caenorhabditis elegans synthesizes a complex array of unsaturated fatty acids. The stearoyl-CoA desaturases (SCDs), which introduce the first double bond into a saturated fatty acid chain, are encoded by three genes. Two of these genes, fat-6 and fat-7, encode SCDs that introduce a double bond into stearic acid (18:0), generating oleic acid (18:1n-9). The third gene, fat-5, is a palmitoyl-CoA desaturase, which introduces a double bond into palmitic acid (16:0). Powerful molecular and genetic tools in C. elegans, combined with a relatively simple anatomy, make this an ideal model to study the roles and regulation of unsaturated fatty acids. This review summarizes the physiological roles of SCDs in C. elegans that have been determined by the analysis of SCD mutants. Studies examining the regulation of C. elegans SCDs by SREBP, nuclear hormone receptors, and other transcription factors are also highlighted in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarnio V, Storvik M, Lehtonen M, Asikainen S, Reisner K, Callaway J et al (2010) Fatty acid composition and gene expression profiles are altered in aryl hydrocarbon receptor-1 mutant Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 151:318–324

    Article  PubMed  Google Scholar 

  • Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C (2002) Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295:502–505

    Article  PubMed  CAS  Google Scholar 

  • Arda HE, Taubert S, MacNeil LT, Conine CC, Tsuda B, Van Gilst M et al (2010) Functional modularity of nuclear hormone receptors in a Caenorhabditis elegans metabolic gene regulatory network. Mol Syst Biol 6:367

    Article  PubMed  Google Scholar 

  • Barr MM (2003) Super models. Physiol Genomics 13:15–24

    PubMed  CAS  Google Scholar 

  • Blazek E, Mittler G, Meisterernst M (2005) The mediator of RNA polymerase II. Chromosoma 113:399–408

    Article  PubMed  CAS  Google Scholar 

  • Brock TJ, Browse J, Watts JL (2006) Genetic regulation of unsaturated fatty acid composition in C. elegans. PLoS Genet 2:e108

    Article  PubMed  Google Scholar 

  • Brock TJ, Browse J, Watts JL (2007) Fatty acid desaturation and the regulation of adiposity in Caenorhabditis elegans. Genetics 176:865–875

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340

    Article  PubMed  CAS  Google Scholar 

  • Browse J, Xin Z (2001) Temperature sensing and cold acclimation. Curr Opin Plant Biol 4:241–246

    Article  PubMed  CAS  Google Scholar 

  • Castro C, Sar F, Shaw WR, Mishima M, Miska EA, Griffin JL (2012) A metabolomic strategy defines the regulation of lipid content and global metabolism by Delta9 desaturases in Caenorhabditis elegans. BMC Genomics 13:36

    Article  PubMed  CAS  Google Scholar 

  • Chirala SS, Wakil SJ (2004) Structure and function of animal fatty acid synthase. Lipids 39:1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Dobrzyn A, Ntambi JM (2005) Stearoyl-CoA desaturase as a new drug target for obesity treatment. Obes Rev 6:169–174

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Goudeau J, Bellemin S, Toselli-Mollereau E, Shamalnasab M, Chen Y, Aguilaniu H (2011) Fatty acid desaturation links germ cell loss to longevity through NHR-80/HNF4 in C. elegans. PLoS Biol 9:e1000599

    Article  PubMed  CAS  Google Scholar 

  • Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G et al (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19:1544–1555

    Article  PubMed  CAS  Google Scholar 

  • Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11:1975–1980

    Article  PubMed  CAS  Google Scholar 

  • Horikawa M, Sakamoto K (2009) Fatty-acid metabolism is involved in stress-resistance mechanisms of Caenorhabditis elegans. Biochem Biophys Res Commun 390:1402–1407

    Article  PubMed  CAS  Google Scholar 

  • Horton JD, Bashmakov Y, Shimomura I, Shimano H (1998) Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci U S A 95:5987–5992

    Article  PubMed  CAS  Google Scholar 

  • Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399:362–366

    Article  PubMed  CAS  Google Scholar 

  • Jeon TI, Osborne TF (2012) SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab 23:65–72

    Article  PubMed  CAS  Google Scholar 

  • Kniazeva M, Crawford QT, Seiber M, Wang CY, Han M (2004) Monomethyl branched-chain fatty acids play an essential role in Caenorhabditis elegans development. PLoS Biol 2:E257

    Article  PubMed  Google Scholar 

  • Kniazeva M, Shen H, Euler T, Wang C, Han M (2012) Regulation of maternal phospholipid composition and IP(3)-dependent embryonic membrane dynamics by a specific fatty acid metabolic event in C. elegans. Genes Dev 26:554–566

    Article  PubMed  CAS  Google Scholar 

  • Lapierre LR, Gelino S, Melendez A, Hansen M (2011) Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 21:1507–1514

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Na K, Lee HJ, Lee EY, Paik YK (2011) Contribution of sams-1 and pmt-1 to lipid homoeostasis in adult Caenorhabditis elegans. J Biochem 149:529–538

    Article  PubMed  CAS  Google Scholar 

  • Liang B, Ferguson K, Kadyk L, Watts JL (2010) The role of nuclear receptor NHR-64 in fat storage regulation in Caenorhabditis elegans. PLoS One 5:e9869

    Article  PubMed  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322

    Article  PubMed  CAS  Google Scholar 

  • Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28:139–145

    Article  PubMed  CAS  Google Scholar 

  • McElwee J, Bubb K, Thomas JH (2003) Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2:111–121

    Article  PubMed  CAS  Google Scholar 

  • Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J et al (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–283

    Article  PubMed  CAS  Google Scholar 

  • Murray P, Hayward SA, Govan GG, Gracey AY, Cossins AR (2007) An explicit test of the phospholipid saturation hypothesis of acquired cold tolerance in Caenorhabditis elegans. Proc Natl Acad Sci U S A 104:5489–5494

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke EJ, Soukas AA, Carr CE, Ruvkun G (2009) C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab 10:430–435

    Article  PubMed  Google Scholar 

  • Osborne TF, Espenshade PJ (2009) Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it’s been. Genes Dev 23:2578–2591

    Article  PubMed  CAS  Google Scholar 

  • Palgunow D, Klapper M, Doring F (2012) Dietary restriction during development enlarges intestinal and hypodermal lipid droplets in Caenorhabditis elegans. PLoS One 7:e46198

    Article  PubMed  CAS  Google Scholar 

  • Pathare PP, Lin A, Bornfeldt KE, Taubert S, Van Gilst MR (2012) Coordinate regulation of lipid metabolism by novel nuclear receptor partnerships. PLoS Genet 8:e1002645

    Article  PubMed  CAS  Google Scholar 

  • Perez CL, Van Gilst MR (2008) A 13C isotope labeling strategy reveals the influence of insulin signaling on lipogenesis in C. elegans. Cell Metab 8:266–274

    Article  PubMed  CAS  Google Scholar 

  • Poole RJ, Bashllari E, Cochella L, Flowers EB, Hobert O (2011) A genome-wide RNAi screen for factors involved in neuronal specification in Caenorhabditis elegans. PLoS Genet 7:e1002109

    Article  PubMed  CAS  Google Scholar 

  • Rappleye CA, Tagawa A, Le Bot N, Ahringer J, Aroian RV (2003) Involvement of fatty acid pathways and cortical interaction of the pronuclear complex in Caenorhabditis elegans embryonic polarity. BMC Dev Biol 3:8

    Article  PubMed  Google Scholar 

  • Riddle DL, Blumenthal T, Meyer BJ, Priess JR (1997) Introduction to C. elegans. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans, vol II. Cold Spring Harbor Laboratory Press, Plainview, pp 1–22

    Google Scholar 

  • Robinson-Rechavi M, Maina CV, Gissendanner CR, Laudet V, Sluder A (2005) Explosive lineage-specific expansion of the orphan nuclear receptor HNF4 in nematodes. J Mol Evol 60:577–586

    Article  PubMed  CAS  Google Scholar 

  • Savory FR, Sait SM, Hope IA (2011) DAF-16 and Delta9 desaturase genes promote cold tolerance in long-lived Caenorhabditis elegans age-1 mutants. PLoS One 6:e24550

    Article  PubMed  CAS  Google Scholar 

  • Schuster E, McElwee JJ, Tullet JM, Doonan R, Matthijssens F, Reece-Hoyes JS et al (2010) DamID in C. elegans reveals longevity-associated targets of DAF-16/FoxO. Mol Syst Biol 6:399

    Article  PubMed  Google Scholar 

  • Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M et al (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434:462–469

    Article  PubMed  CAS  Google Scholar 

  • Sun LP, Seemann J, Goldstein JL, Brown MS (2007) Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins. Proc Natl Acad Sci U S A 104:6519–6526

    Article  PubMed  CAS  Google Scholar 

  • Taubert S, Van Gilst MR, Hansen M, Yamamoto KR (2006) A mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev 20:1137–1149

    Article  PubMed  CAS  Google Scholar 

  • Taubert S, Hansen M, Van Gilst MR, Cooper SB, Yamamoto KR (2008) The Mediator subunit MDT-15 confers metabolic adaptation to ingested material. PLoS Genet 4:e1000021

    Article  PubMed  Google Scholar 

  • Taubert S, Ward JD, Yamamoto KR (2011) Nuclear hormone receptors in nematodes: evolution and function. Mol Cell Endocrinol 334:49–55

    Article  PubMed  CAS  Google Scholar 

  • Tiku PE, Gracey AY, Macartney AI, Beynon RJ, Cossins AR (1996) Cold-induced expression of delta 9-desaturase in carp by transcriptional and posttranslational mechanisms. Science 271:815–818

    Article  PubMed  CAS  Google Scholar 

  • Timmons L, Fire A (1998) Specific Interference by ingested dsRNA. Nature 395:854

    Article  PubMed  CAS  Google Scholar 

  • Van Gilst MR, Hadjivassiliou H, Jolly A, Yamamoto KR (2005a) Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLoS Biol 3:e53

    Article  PubMed  Google Scholar 

  • Van Gilst MR, Hadjivassiliou H, Yamamoto KR (2005b) A Caenorhabditis elegans nutrient response system partially dependent on nuclear receptor NHR-49. Proc Natl Acad Sci U S A 102:13496–13501

    Article  PubMed  Google Scholar 

  • Vrablik TL, Watts JL (2012) Emerging roles for specific fatty acids in developmental processes. Genes Dev 26:631–637

    Article  PubMed  CAS  Google Scholar 

  • Wakil SJ (1989) Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28:4523–4530

    Article  PubMed  CAS  Google Scholar 

  • Wakil SJ, Abu-Elheiga LA (2008) Fatty acid metabolism: target for metabolic syndrome. J Lipid Res 50(Suppl):S138–S143

    Article  PubMed  Google Scholar 

  • Walker AK, Yang F, Jiang K, Ji JY, Watts JL, Purushotham A et al (2010) Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev 24:1403–1417

    Article  PubMed  CAS  Google Scholar 

  • Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K, Finnegan DM et al (2011) A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 147:840–852

    Article  PubMed  CAS  Google Scholar 

  • Wallis JG, Watts JL, Browse J (2002) Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biochem Sci 27:467

    Article  PubMed  CAS  Google Scholar 

  • Wang MC, O’Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322:957–960

    Article  PubMed  CAS  Google Scholar 

  • Watts JL (2009) Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends Endocrinol Metab 20:58–65

    Article  PubMed  CAS  Google Scholar 

  • Watts JL, Browse J (2000) A palmitoyl-CoA-specific delta9 fatty acid desaturase from Caenorhabditis elegans. Biochem Biophys Res Commun 272:263–269

    Article  PubMed  CAS  Google Scholar 

  • Watts JL, Browse J (2002) Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99:5854–5859

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R et al (2002) Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110:489–500

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Vought BW, Satterlee JS, Walker AK, Jim Sun ZY, Watts JL et al (2006) An ARC/mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442:700–704

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Bakheet R, Parhar RS, Huang CH, Hussain MM, Pan X et al (2011) Regulation of fat storage and reproduction by Kruppel-like transcription factor KLF3 and fat-associated genes in Caenorhabditis elegans. J Mol Biol 411:537–553

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the National Institutes of Health (R01-DK074114) for research support and Dr. Tracy Vrablik and Dr. Amy Walker for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Watts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Watts, J.L. (2013). Physiological Functions and Regulation of C. elegans Stearoyl-CoA Desaturases. In: Ntambi, Ph.D., J. (eds) Stearoyl-CoA Desaturase Genes in Lipid Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7969-7_14

Download citation

Publish with us

Policies and ethics