Skip to main content

GM-CSF in Autoimmune Inflammation of the Central Nervous System

  • Chapter
  • First Online:
Multiple Sclerosis Immunology

Abstract

Cytokines play a fundamental role in the development of both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Recent studies on cytokines involved in autoimmune inflammation of the central nervous system (CNS) have highlighted the crucial role of granulocyte–macrophage colony-stimulating factor (GM-CSF) produced by both Th1 and Th17 cells. It is noteworthy that GM-CSF is thus far the only known cytokine produced by T helper (Th) cells that is essential for EAE development. Here, we describe the biological functions of GM-CSF and its role as an effector Th cytokine during CNS inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aloisi F, De Simone R, Columba-Cabezas S, Penna G, Adorini L (2000) Functional maturation of adult mouse resting microglia into an APC is promoted by granulocyte-macrophage colony-stimulating factor and interaction with Th1 cells. J Immunol 164:1705–1712

    PubMed  CAS  Google Scholar 

  • Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE (1989) Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol 124:132–143

    Article  PubMed  CAS  Google Scholar 

  • Armitage JO (1998) Emerging applications of recombinant human granulocyte-macrophage colony-stimulating factor. Blood 92:4491–4508

    PubMed  CAS  Google Scholar 

  • Bagby GC Jr, Dinarello CA, Wallace P, Wagner C, Hefeneider S, McCall E (1986) Interleukin 1 stimulates granulocyte macrophage colony-stimulating activity release by vascular endothelial cells. J Clin Invest 78:1316–1323

    Article  PubMed  CAS  Google Scholar 

  • Baldwin GC, Gasson JC, Kaufman SE, Quan SG, Williams RE, Avalos BR, Gazdar AF, Golde DW, DiPersio JF (1989) Nonhematopoietic tumor cells express functional GM-CSF receptors. Blood 73:1033–1037

    PubMed  CAS  Google Scholar 

  • Becher B, Segal BM (2011) T(H)17 cytokines in autoimmune neuro-inflammation. Curr Opin Immunol 23:707–712

    Article  PubMed  CAS  Google Scholar 

  • Becher B, Durell BG, Noelle RJ (2003) IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J Clin Invest 112:1186–1191

    PubMed  CAS  Google Scholar 

  • Bender A, Amann U, Jager R, Nain M, Gemsa D (1993) Effect of granulocyte/macrophage colony-stimulating factor on human monocytes infected with influenza A virus. Enhancement of virus replication, cytokine release, and cytotoxicity. J Immunol 151:5416–5424

    PubMed  CAS  Google Scholar 

  • Bending D, De la Pena H, Veldhoen M, Phillips JM, Uyttenhove C, Stockinger B, Cooke A (2009) Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J Clin Invest 119:565–572

    Article  PubMed  CAS  Google Scholar 

  • Bettelli E, Sullivan B, Szabo SJ, Sobel RA, Glimcher LH, Kuchroo VK (2004) Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med 200:79–87

    Article  PubMed  CAS  Google Scholar 

  • Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  PubMed  CAS  Google Scholar 

  • Bozinovski S, Jones JE, Vlahos R, Hamilton JA, Anderson GP (2002) Granulocyte/macrophage-colony-stimulating factor (GM-CSF) regulates lung innate immunity to lipopolysaccharide through Akt/Erk activation of NFkappa B and AP-1 in vivo. Journal Biol Chem 277:42808–42814

    Article  CAS  Google Scholar 

  • Bozinovski S, Jones J, Beavitt SJ, Cook AD, Hamilton JA, Anderson GP (2004) Innate immune responses to LPS in mouse lung are suppressed and reversed by neutralization of GM-CSF via repression of TLR-4. Am J Physiol Lung Cell Mol Physiol 286:L877–885

    Article  PubMed  CAS  Google Scholar 

  • Burgess AW, Metcalf D (1980) The nature and action of granulocyte-macrophage colony stimulating factors. Blood 56:947–958

    PubMed  CAS  Google Scholar 

  • Bussolino F, Wang JM, Defilippi P, Turrini F, Sanavio F, Edgell CJ, Aglietta M, Arese P, Mantovani A (1989) Granulocyte- and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337:471–473

    Article  PubMed  CAS  Google Scholar 

  • Bussolino F, Ziche M, Wang JM, Alessi D, Morbidelli L, Cremona O, Bosia A, Marchisio PC, Mantovani A (1991) In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest 87:986–995

    Article  PubMed  CAS  Google Scholar 

  • Campbell IK, Novak U, Cebon J, Layton JE, Hamilton JA (1991) Human articular cartilage and chondrocytes produce hemopoietic colony-stimulating factors in culture in response to IL-1. J Immunol 147:1238–1246

    PubMed  CAS  Google Scholar 

  • Campbell IK, Rich MJ, Bischof RJ, Dunn AR, Grail D, Hamilton JA (1998) Protection from collagen-induced arthritis in granulocyte-macrophage colony-stimulating factor-deficient mice. J Immunol 161:3639–3644

    PubMed  CAS  Google Scholar 

  • Cantrell MA, Anderson D, Cerretti DP, Price V, McKereghan K, Tushinski RJ, Mochizuki DY, Larsen A, Grabstein K, Gillis S et al (1985) Cloning, sequence, and expression of a human granulocyte/macrophage colony-stimulating factor. Proc Natl Acad Sci U S A 82:6250–6254

    Article  PubMed  CAS  Google Scholar 

  • Carrieri PB, Provitera V, De Rosa T, Tartaglia G, Gorga F, Perrella O (1998) Profile of cerebrospinal fluid and serum cytokines in patients with relapsing-remitting multiple sclerosis: a correlation with clinical activity. Immunopharmacol Immunotoxicol 20:373–382

    Article  PubMed  CAS  Google Scholar 

  • Cates EC, Fattouh R, Wattie J, Inman MD, Goncharova S, Coyle AJ, Gutierrez-Ramos JC, Jordana M (2004) Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism. J Immunol 173:6384–6392

    PubMed  CAS  Google Scholar 

  • Chitnis T, Najafian N, Benou C, Salama AD, Grusby MJ, Sayegh MH, Khoury SJ (2001) Effect of targeted disruption of STAT4 and STAT6 on the induction of experimental autoimmune encephalomyelitis. J Clin Invest 108:739–747

    PubMed  CAS  Google Scholar 

  • Choi JK, Choi BH, Ha Y, Park H, Yoon SH, Park HC, Park SR (2007) Signal transduction pathways of GM-CSF in neural cell lines. Neurosci Lett 420:217–222

    Article  PubMed  CAS  Google Scholar 

  • Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L, Suter T, Becher B (2011) RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 12:560–567

    Article  PubMed  CAS  Google Scholar 

  • Collison LW, Chaturvedi V, Henderson AL, Giacomin PR, Guy C, Bankoti J, Finkelstein D, Forbes K, Workman CJ, Brown SA et al (2010) IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol 11:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Cook AD, Braine EL, Campbell IK, Rich MJ, Hamilton JA (2001) Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): requirement for GM-CSF in the effector phase of disease. Arthritis Res 3:293–298

    Article  PubMed  CAS  Google Scholar 

  • Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    Article  PubMed  CAS  Google Scholar 

  • Dame JB, Christensen RD, Juul SE (1999) The distribution of granulocyte-macrophage colony-stimulating factor and its receptor in the developing human fetus. Pediatr Res 46:358–366

    Article  PubMed  CAS  Google Scholar 

  • Dedhar S, Gaboury L, Galloway P, Eaves C (1988) Human granulocyte-macrophage colony-stimulating factor is a growth factor active on a variety of cell types of nonhemopoietic origin. Proc Natl Acad Sci U S A 85:9253–9257

    Article  PubMed  CAS  Google Scholar 

  • Dijkers PF, van Dijk TB, de Groot RP, Raaijmakers JA, Lammers JW, Koenderman L, Coffer PJ (1999) Regulation and function of protein kinase B and MAP kinase activation by the IL-5/GM-CSF/IL-3 receptor. Oncogene 18:3334–3342

    Article  PubMed  CAS  Google Scholar 

  • Disis ML, Bernhard H, Shiota FM, Hand SL, Gralow JR, Huseby ES, Gillis S, Cheever MA (1996) Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood 88:202–210

    PubMed  CAS  Google Scholar 

  • Ditiatkovski M, Toh BH, Bobik A (2006) GM-CSF deficiency reduces macrophage PPAR-gamma expression and aggravates atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 26:2337–2344

    Article  PubMed  CAS  Google Scholar 

  • Diveu C, McGeachy MJ, Boniface K, Stumhofer JS, Sathe M, Joyce-Shaikh B, Chen Y, Tato CM, McClanahan TK, de Waal MR et al (2009) IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells. J Immunol 182:5748–5756

    Article  PubMed  CAS  Google Scholar 

  • Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 90:3539–3543

    Article  PubMed  CAS  Google Scholar 

  • El-Behi M, Ciric B, Yu S, Zhang GX, Fitzgerald DC, Rostami A (2009) Differential effect of IL-27 on developing versus committed Th17 cells. J Immunol 183:4957–4967

    Article  PubMed  CAS  Google Scholar 

  • El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, Zhang GX, Dittel BN, Rostami A (2011) The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 12:568–575

    Article  PubMed  CAS  Google Scholar 

  • Filonzi EL, Zoellner H, Stanton H, Hamilton JA (1993) Cytokine regulation of granulocyte-macrophage colony stimulating factor and macrophage colony-stimulating factor production in human arterial smooth muscle cells. Atherosclerosis 99:241–252

    Article  PubMed  CAS  Google Scholar 

  • Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW, O’Garra A (1991) IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol 146:3444–3451

    PubMed  CAS  Google Scholar 

  • Fleetwood AJ, Cook AD, Hamilton JA (2005) Functions of granulocyte-macrophage colony-stimulating factor. Crit Rev Immunol 25:405–428

    Article  PubMed  CAS  Google Scholar 

  • Franzen R, Bouhy D, Schoenen J (2004) Nervous system injury: focus on the inflammatory cytokine ‘granulocyte-macrophage colony stimulating factor’. Neurosci Lett 361:76–78

    Article  PubMed  CAS  Google Scholar 

  • Gaudreau S, Guindi C, Menard M, Besin G, Dupuis G, Amrani A (2007) Granulocyte-macrophage colony-stimulating factor prevents diabetes development in NOD mice by inducing tolerogenic dendritic cells that sustain the suppressive function of CD4 + CD25 + regulatory T cells. J Immunol 179:3638–3647

    PubMed  CAS  Google Scholar 

  • Gearing DP, King JA, Gough NM, Nicola NA (1989) Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor. EMBO J 8:3667–3676

    PubMed  CAS  Google Scholar 

  • Gough NM, Metcalf D, Gough J, Grail D, Dunn AR (1985) Structure and expression of the mRNA for murine granulocyte-macrophage colony stimulating factor. EMBO J 4:645–653

    PubMed  CAS  Google Scholar 

  • Gran B, Zhang GX, Yu S, Li J, Chen XH, Ventura ES, Kamoun M, Rostami A (2002) IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol 169:7104–7110

    PubMed  CAS  Google Scholar 

  • Gutcher I, Donkor MK, Ma Q, Rudensky AY, Flavell RA, Li MO (2011) Autocrine transforming growth factor-beta1 promotes in vivo Th17 cell differentiation. Immunity 34:396–408

    Article  PubMed  CAS  Google Scholar 

  • Haak S, Croxford AL, Kreymborg K, Heppner FL, Pouly S, Becher B, Waisman A (2009) IL-17 A and IL-17 F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 119:61–69

    PubMed  CAS  Google Scholar 

  • Hamilton JA (1994) Coordinate and noncoordinate colony stimulating factor formation by human monocytes. J Leukoc Biol 55:355–361

    PubMed  CAS  Google Scholar 

  • Hamilton JA, Anderson GP (2004) GM-CSF Biology. Growth Factors 22:225–231

    Article  PubMed  CAS  Google Scholar 

  • Hancock GE, Kaplan G, Cohn ZA (1988) Keratinocyte growth regulation by the products of immune cells. J Exp Med 168:1395–1402

    Article  PubMed  CAS  Google Scholar 

  • Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4 + effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    Article  PubMed  CAS  Google Scholar 

  • Hart PH, Whitty GA, Piccoli DS, Hamilton JA (1988) Synergistic activation of human monocytes by granulocyte-macrophage colony-stimulating factor and IFN-gamma. Increased TNF-alpha but not IL-1 activity. J Immunol 141:1516–1521

    PubMed  CAS  Google Scholar 

  • Hercus TR, Thomas D, Guthridge MA, Ekert PG, King-Scott J, Parker MW, Lopez AF (2009) The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood 114:1289–1298

    Article  PubMed  CAS  Google Scholar 

  • Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, Ahlfors H, Wilhelm C, Tolaini M, Menzel U et al (2011) Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 12:255–263

    Article  PubMed  CAS  Google Scholar 

  • Hofstetter HH, Ibrahim SM, Koczan D, Kruse N, Weishaupt A, Toyka KV, Gold R (2005) Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell Immunol 237:123–130

    Article  PubMed  CAS  Google Scholar 

  • Horwood NJ, Udagawa N, Elliott J, Grail D, Okamura H, Kurimoto M, Dunn AR, Martin T, Gillespie MT (1998) Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor. J Clin Invest 101:595–603

    Article  PubMed  CAS  Google Scholar 

  • Infante-Duarte C, Horton HF, Byrne MC, Kamradt T (2000) Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol 165:6107–6115

    PubMed  CAS  Google Scholar 

  • Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, Fujikado N, Tanahashi Y, Akitsu A, Kotaki H et al (2009) Differential roles of interleukin-17 A and -17 F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30:108–119

    Article  PubMed  CAS  Google Scholar 

  • Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17 + T helper cells. Cell 126:1121–1133

    Article  PubMed  CAS  Google Scholar 

  • Jenkins BJ, Blake TJ, Gonda TJ (1998) Saturation mutagenesis of the beta subunit of the human granulocyte-macrophage colony-stimulating factor receptor shows clustering of constitutive mutations, activation of ERK MAP kinase and STAT pathways, and differential beta subunit tyrosine phosphorylation. Blood 92:1989–2002

    PubMed  CAS  Google Scholar 

  • Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175

    Article  PubMed  CAS  Google Scholar 

  • King IL, Dickendesher TL, Segal BM (2009) Circulating Ly-6 C + myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113:3190–3197

    Article  PubMed  CAS  Google Scholar 

  • King IL, Kroenke MA, Segal BM (2010) GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization. J Exp Med 207:953–961

    Article  PubMed  CAS  Google Scholar 

  • Kitamura T, Sato N, Arai K, Miyajima A (1991) Expression cloning of the human IL-3 receptor cDNA reveals a shared beta subunit for the human IL-3 and GM-CSF receptors. Cell 66:1165–1174

    Article  PubMed  CAS  Google Scholar 

  • Kitching AR, Ru Huang X, Turner AL, Tipping PG, Dunn AR, Holdsworth SR (2002) The requirement for granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in leukocyte-mediated immune glomerular injury. J Am Soc Nephrol 13:350–358

    PubMed  CAS  Google Scholar 

  • Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, Oukka M, Kuchroo VK (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448:484–487

    Article  PubMed  CAS  Google Scholar 

  • Krakowski M, Owens T (1996) Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur J Immunol 26:1641–1646

    Article  PubMed  CAS  Google Scholar 

  • Kreymborg K, Etzensperger R, Dumoutier L, Haak S, Rebollo A, Buch T, Heppner FL, Renauld JC, Becher B (2007) IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J Immunol 179:8098–8104

    PubMed  CAS  Google Scholar 

  • Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM (2008) IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 205:1535–1541

    Article  PubMed  CAS  Google Scholar 

  • Kroenke MA, Chensue SW, Segal BM (2010) EAE mediated by a non-IFN-gamma/non-IL-17 pathway. Eur J Immunol 40:2340–2348

    Article  PubMed  CAS  Google Scholar 

  • Kuchroo VK, Anderson AC, Waldner H, Munder M, Bettelli E, Nicholson LB (2002) T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu Rev Immunol 20:101–123

    Article  PubMed  CAS  Google Scholar 

  • Lang RA, Metcalf D, Cuthbertson RA, Lyons I, Stanley E, Kelso A, Kannourakis G, Williamson DJ, Klintworth GK, Gonda TJ et al (1987) Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell 51:675–686

    Article  PubMed  CAS  Google Scholar 

  • Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  PubMed  CAS  Google Scholar 

  • Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, Weaver CT (2009) Late developmental plasticity in the T helper 17 lineage. Immunity 30:92–107

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, Wu C, Kleinewietfeld M, Kunder S, Hafler DA et al (2012) Induction and molecular signature of pathogenic T(H)17 cells. Nat Immunol 13:991–999

    Article  PubMed  CAS  Google Scholar 

  • Leizer T, Cebon J, Layton JE, Hamilton JA (1990) Cytokine regulation of colony-stimulating factor production in cultured human synovial fibroblasts: I. Induction of GM-CSF and G-CSF production by interleukin-1 and tumor necrosis factor. Blood 76:1989–1996

    PubMed  CAS  Google Scholar 

  • Leppkes M, Becker C, Ivanov II, Hirth S, Wirtz S, Neufert C, Pouly S, Murphy AJ, Valenzuela DM, Yancopoulos GD et al (2009) RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17 A and IL-17 F. Gastroenterology 136:257–267

    Article  PubMed  CAS  Google Scholar 

  • LeVine AM, Reed JA, Kurak KE, Cianciolo E, Whitsett JA (1999) GM-CSF-deficient mice are susceptible to pulmonary group B streptococcal infection. J Clin Invest 103:563–569

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Chu N, Hu A, Gran B, Rostami A, Zhang GX (2008) Inducible IL-23p19 expression in human microglia via p38 MAPK and NF-kappaB signal pathways. Exp Mol Pathol 84:1–8

    Article  PubMed  CAS  Google Scholar 

  • Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8:500–508

    Article  PubMed  CAS  Google Scholar 

  • Lukens JR, Barr MJ, Chaplin DD, Chi H, Kanneganti TD (2012) Inflammasome-derived IL-1beta regulates the production of GM-CSF by CD4+ T cells and gammadelta T Cells. J Immunol 188:3107–3115

    Article  PubMed  CAS  Google Scholar 

  • Malipiero UV, Frei K, Fontana A (1990) Production of hemopoietic colony-stimulating factors by astrocytes. J Immunol 144:3816–3821

    PubMed  CAS  Google Scholar 

  • Marti RM, Wasik MA, Kadin ME (1996) Constitutive secretion of GM-CSF by three different cell lines derived from a single patient with a progressive cutaneous lymphoproliferative disorder. Cytokine 8:323–329

    Article  PubMed  CAS  Google Scholar 

  • Martin-Orozco N, Chung Y, Chang SH, Wang YH, Dong C (2009) Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur J Immunol 39:216–224

    Article  PubMed  CAS  Google Scholar 

  • Marusic S, Miyashiro JS, Douhan J 3rd, Konz RF, Xuan D, Pelker JW, Ling V, Leonard JP, Jacobs KA (2002) Local delivery of granulocyte macrophage colony-stimulating factor by retrovirally transduced antigen-specific T cells leads to severe, chronic experimental autoimmune encephalomyelitis in mice. Neurosci Lett 332:185–189

    Article  PubMed  CAS  Google Scholar 

  • Matusevicius D, Kivisakk P, He B, Kostulas N, Ozenci V, Fredrikson S, Link H (1999) Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 5:101–104

    PubMed  CAS  Google Scholar 

  • McGeachy MJ (2011) GM-CSF: the secret weapon in the T(H)17 arsenal. Nat Immunol 12:521–522

    Article  PubMed  CAS  Google Scholar 

  • McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, Cua DJ (2007) TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 8:1390–1397

    Article  PubMed  CAS  Google Scholar 

  • McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, McClanahan TK, O’Shea JJ, Cua DJ (2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 10:314–324

    Article  PubMed  CAS  Google Scholar 

  • McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11:335–339

    Article  PubMed  CAS  Google Scholar 

  • McQualter JL, Darwiche R, Ewing C, Onuki M, Kay TW, Hamilton JA, Reid HH, Bernard CC (2001) Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J Exp Med 194:873–882

    Article  PubMed  CAS  Google Scholar 

  • McRae BL, Vanderlugt CL, Dal Canto MC, Miller SD (1995) Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med 182:75–85

    Article  PubMed  CAS  Google Scholar 

  • Metcalf D (1993) The cellular basis for enhancement interactions between stem cell factor and the colony stimulating factors. Stem Cells 11(Suppl 2):1–11

    PubMed  CAS  Google Scholar 

  • Min L, Mohammad Isa SA, Shuai W, Piang CB, Nih FW, Kotaka M, Ruedl C (2010) Cutting edge: granulocyte-macrophage colony-stimulating factor is the major CD8 + T cell-derived licensing factor for dendritic cell activation. J Immunol 184:4625–4629

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto T, Iwasaki H, Reizis B, Ye M, Graf T, Weissman IL, Akashi K (2002) Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev Cell 3:137–147

    Article  PubMed  CAS  Google Scholar 

  • Nakae S, Nambu A, Sudo K, Iwakura Y (2003) Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 171:6173–6177

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Christodoulopoulos P, Cameron L, Wright E, Lavigne F, Toda M, Muro S, Ray A, Eidelman DH, Minshall E et al (2000) Upregulation of the transcription factor GATA-3 in upper airway mucosa after in vivo and in vitro allergen challenge. J Allergy Clin Immunol 105:1146–1152

    Article  PubMed  CAS  Google Scholar 

  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952

    Article  PubMed  CAS  Google Scholar 

  • Nurieva R, Yang XO, Chung Y, Dong C (2009) Cutting edge: in vitro generated Th17 cells maintain their cytokine expression program in normal but not lymphopenic hosts. J Immunol 182:2565–2568

    Article  PubMed  CAS  Google Scholar 

  • Panitch HS, Hirsch RL, Schindler J, Johnson KP (1987) Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37:1097–1102

    Article  PubMed  CAS  Google Scholar 

  • Park LS, Friend D, Gillis S, Urdal DL (1986) Characterization of the cell surface receptor for human granulocyte/macrophage colony-stimulating factor. J Exp Med 164:251–262

    Article  PubMed  CAS  Google Scholar 

  • Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    Article  PubMed  CAS  Google Scholar 

  • Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D, Dittel BN (2007) GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J Immunol 178:39–48

    PubMed  CAS  Google Scholar 

  • Quill H, Gaur A, Phipps RP (1989) Prostaglandin E2-dependent induction of granulocyte-macrophage colony-stimulating factor secretion by cloned murine helper T cells. J Immunol 142:813–818

    PubMed  CAS  Google Scholar 

  • Re F, Belyanskaya SL, Riese RJ, Cipriani B, Fischer FR, Granucci F, Ricciardi-Castagnoli P, Brosnan C, Stern LJ, Strominger JL et al (2002) Granulocyte-macrophage colony-stimulating factor induces an expression program in neonatal microglia that primes them for antigen presentation. J Immunol 169:2264–2273

    PubMed  CAS  Google Scholar 

  • Reed JA, Clegg DJ, Smith KB, Tolod-Richer EG, Matter EK, Picard LS, Seeley RJ (2005) GM-CSF action in the CNS decreases food intake and body weight. J Clin Invest 115:3035–3044

    Article  PubMed  CAS  Google Scholar 

  • Riopel J, Tam M, Mohan K, Marino MW, Stevenson MM (2001) Granulocyte-macrophage colony-stimulating factor-deficient mice have impaired resistance to blood-stage malaria. Infect Immun 69:129–136

    Article  PubMed  CAS  Google Scholar 

  • Rivas CI, Vera JC, Delgado-Lopez F, Heaney ML, Guaiquil VH, Zhang RH, Scher HI, Concha II, Nualart F, Cordon-Cardo C et al (1998) Expression of granulocyte-macrophage colony-stimulating factor receptors in human prostate cancer. Blood 91:1037–1043

    PubMed  CAS  Google Scholar 

  • Robb L, Drinkwater CC, Metcalf D, Li R, Kontgen F, Nicola NA, Begley CG (1995) Hematopoietic and lung abnormalities in mice with a null mutation of the common beta subunit of the receptors for granulocyte-macrophage colony-stimulating factor and interleukins 3 and 5. Proc Natl Acad Sci U S A 92:9565–9569

    Article  PubMed  CAS  Google Scholar 

  • Sagawa K, Mochizuki M, Sugita S, Nagai K, Sudo T, Itoh K (1996) Suppression by IL-10 and IL-4 of cytokine production induced by two-way autologous mixed lymphocyte reaction. Cytokine 8:501–506

    Article  PubMed  CAS  Google Scholar 

  • Sawada M, Itoh Y, Suzumura A, Marunouchi T (1993) Expression of cytokine receptors in cultured neuronal and glial cells. Neurosci Lett 160:131–134

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki T, Katayama N, Ohishi K, Fujieda A, Monma F, Nishi K, Masuya M, Shiku H (2007) IL-3 cannot replace GM-CSF in inducing human monocytes to differentiate into Langerhans cells. Int J Oncol 30:549–555

    PubMed  CAS  Google Scholar 

  • Shindo J, Ishibashi T, Yokoyama K, Nakazato K, Ohwada T, Shiomi M, Maruyama Y (1999) Granulocyte-macrophage colony-stimulating factor prevents the progression of atherosclerosis via changes in the cellular and extracellular composition of atherosclerotic lesions in watanabe heritable hyperlipidemic rabbits. Circulation 99:2150–2156

    Article  PubMed  CAS  Google Scholar 

  • Shortman K, Naik SH (2007) Steady-state and inflammatory dendritic-cell development. Nature reviews. Immunology 7:19–30

    PubMed  CAS  Google Scholar 

  • Soldi R, Primo L, Brizzi MF, Sanavio F, Aglietta M, Polentarutti N, Pegoraro L, Mantovani A, Bussolino F (1997) Activation of JAK2 in human vascular endothelial cells by granulocyte-macrophage colony-stimulating factor. Blood 89:863–872

    PubMed  CAS  Google Scholar 

  • Sonderegger I, Iezzi G, Maier R, Schmitz N, Kurrer M, Kopf M (2008) GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. J Exp Med 205:2281–2294

    Article  PubMed  CAS  Google Scholar 

  • Stanley IJ, Burgess AW (1983) Granulocyte macrophage-colony stimulating factor stimulates the synthesis of membrane and nuclear proteins in murine neutrophils. J Cell Biochem 23:241–258

    Article  PubMed  CAS  Google Scholar 

  • Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JA, Maher DW, Cebon J, Sinickas V, Dunn AR (1994) Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci U S A 91:5592–5596

    Article  PubMed  CAS  Google Scholar 

  • Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM (2008) Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 14:337–342

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Article  PubMed  CAS  Google Scholar 

  • Tavernier J, Devos R, Cornelis S, Tuypens T, Van der Heyden J, Fiers W, Plaetinck G (1991) A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific alpha chain and a beta chain shared with the receptor for GM-CSF. Cell 66:1175–1184

    Article  PubMed  CAS  Google Scholar 

  • Timoshanko JR, Kitching AR, Semple TJ, Holdsworth SR, Tipping PG (2005) Granulocyte macrophage colony-stimulating factor expression by both renal parenchymal and immune cells mediates murine crescentic glomerulonephritis. J Am Soc Nephrol 16:2646–2656

    Article  PubMed  CAS  Google Scholar 

  • Tran EH, Prince EN, Owens T (2000) IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines. J Immunol 164:2759–2768

    PubMed  CAS  Google Scholar 

  • Traugott U, Lebon P (1988) Multiple sclerosis: involvement of interferons in lesion pathogenesis. Ann Neurol 24:243–251

    Article  PubMed  CAS  Google Scholar 

  • Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–189

    Article  PubMed  CAS  Google Scholar 

  • Vlahos R, Bozinovski S, Hamilton JA, Anderson GP (2006) Therapeutic potential of treating chronic obstructive pulmonary disease (COPD) by neutralising granulocyte macrophage-colony stimulating factor (GM-CSF). Pharmacol Ther 112:106–115

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Noguchi Y, Marino MW, Dunn AR, Old LJ (1997) T cell functions in granulocyte/macrophage colony-stimulating factor deficient mice. Proc Natl Acad Sci U S A 94:12557–12561

    Article  PubMed  CAS  Google Scholar 

  • Whetton AD, Dexter TM (1989) Myeloid haemopoietic growth factors. Biochim Biophys Acta 989:111–132

    PubMed  CAS  Google Scholar 

  • Williams KC, Ulvestad E, Hickey WF (1994) Immunology of multiple sclerosis. Clin Neurosci 2:229–245

    PubMed  CAS  Google Scholar 

  • Yamashita N, Tashimo H, Ishida H, Kaneko F, Nakano J, Kato H, Hirai K, Horiuchi T, Ohta K (2002) Attenuation of airway hyperresponsiveness in a murine asthma model by neutralization of granulocyte-macrophage colony-stimulating factor (GM-CSF). Cell Immunol 219:92–97

    Article  PubMed  CAS  Google Scholar 

  • Young A, Linehan E, Hams E, O’Hara Hall AC, McClurg A, Johnston JA, Hunter CA, Fallon PG, Fitzgerald DC (2012) Cutting edge: suppression of GM-CSF expression in murine and human T Cells by IL-27. J Immunol 189:2079–2083

    Article  PubMed  CAS  Google Scholar 

  • Zhan Y, Lieschke GJ, Grail D, Dunn AR, Cheers C (1998) Essential roles for granulocyte-macrophage colony-stimulating factor (GM-CSF) and G-CSF in the sustained hematopoietic response of Listeria monocytogenes-infected mice. Blood 91:863–869

    PubMed  CAS  Google Scholar 

  • Zhang GX, Gran B, Yu S, Li J, Siglienti I, Chen X, Kamoun M, Rostami A (2003) Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol 170:2153–2160

    PubMed  CAS  Google Scholar 

  • Zhou L, Chong MM, Littman DR (2009) Plasticity of CD4 + T cell lineage differentiation. Immunity 30:646–655

    Article  PubMed  CAS  Google Scholar 

  • Zucali JR, Dinarello CA, Oblon DJ, Gross MA, Anderson L, Weiner RS (1986) Interleukin 1 stimulates fibroblasts to produce granulocyte-macrophage colony-stimulating activity and prostaglandin E2. J Clin Invest 77:1857–1863

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank K. Regan for editorial assistance. This work was supported in part by the grants from National Institutes of Health (5R01NS046782 and 1U19A1082726), and the M.E. Groff Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El-Behi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

El-Behi, M., Ciric, B., Rostami, A. (2013). GM-CSF in Autoimmune Inflammation of the Central Nervous System. In: Yamamura, T., Gran, B. (eds) Multiple Sclerosis Immunology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7953-6_7

Download citation

Publish with us

Policies and ethics