Skip to main content

Regulatory T Cells in MS

  • Chapter
  • First Online:

Abstract

Multiple sclerosis (MS) is a multifocal demyelinating disease of the central nervous system (CNS), caused by an autoimmune response to self-antigens in a genetically susceptible individual. It is characterized by progressive neurodegeneration and by CNS lesions containing a high number of infiltrating autoreactive B and T cells. In healthy individuals, regulatory T (Treg) cells can control potentially pathogenic autoreactive T cells, while Treg cells in MS patients show insufficient regulatory abilities. The fact that autoreactive T cells can be found in the peripheral blood of healthy individuals without causing any autoimmune diseases underlies the importance of an efficient control of immune responses. Treg cells are key regulators of immune homeostasis and self-tolerance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andres C de, Aristimuno C, Las HV de, Martinez-Gines ML, Bartolome M, Arroyo R et al (2007) Interferon beta-1a therapy enhances CD4+ regulatory T-cell function: an ex vivo and in vitro longitudinal study in relapsing-remitting multiple sclerosis. J Neuroimmunol 182(1–2):204–211. doi:10.1016/j.jneuroim.2006.09.012 (PubMed PMID: 17157927)

    Article  PubMed  CAS  Google Scholar 

  • Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Barbosa TC, Cumano A, Bandeira A (2001) CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol 166(5):3008–3018 (PubMed PMID: 11207250)

    PubMed  CAS  Google Scholar 

  • Apostolou I, Boehmer H von (2004) In vivo instruction of suppressor commitment in naive T cells. J Exp Med 199(10):1401–1408. doi:10.1084/jem.20040249 (PubMed PMID: 15148338; PubMed Central PMCID: PMC2211808)

    Article  PubMed  CAS  Google Scholar 

  • Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190(7):995–1004 (PubMed PMID: 10510089; PubMed Central PMCID: PMC2195650)

    Article  PubMed  CAS  Google Scholar 

  • Astier AL, Meiffren G, Freeman S, Hafler DA (2006) Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J Clin Invest 116(12):3252–3257. doi:10.1172/JCI29251 (PubMed PMID: 17099776; PubMed Central PMCID: PMC1635165)

    Article  PubMed  CAS  Google Scholar 

  • Ayyoub M, Deknuydt F, Raimbaud I, Dousset C, Leveque L, Bioley G et al (2009) Human memory FOXP3+ Tregs secrete IL-17 ex vivo and constitutively express the T(H)17 lineage-specific transcription factor RORgamma t. Proc Natl Acad Sci U S A 106(21):8635–8640. doi:10.1073/pnas.0900621106 (PubMed PMID: 19439651; PubMed Central PMCID: PMC2688993)

    Article  PubMed  CAS  Google Scholar 

  • Azuma T, Takahashi T, Kunisato A, Kitamura T, Hirai H (2003) Human CD4+ CD25+ regulatory T cells suppress NKT cell functions. Cancer Res 63(15):4516–4520 (PubMed PMID: 12907625)

    PubMed  CAS  Google Scholar 

  • Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA (2001) CD4+CD25high regulatory cells in human peripheral blood. J Immunol 167(3):1245–1253 (PubMed PMID: 11466340)

    PubMed  CAS  Google Scholar 

  • Baecher-Allan C, Viglietta V, Hafler DA (2002) Inhibition of human CD4(+)CD25(+ high) regulatory T cell function. J Immunol 169(11):6210–6217 (PubMed PMID: 12444126)

    PubMed  CAS  Google Scholar 

  • Baecher-Allan C, Hafler DA (2004) Suppressor T cells in human diseases. J Exp Med 200(3):273–276. doi:10.1084/jem.20040812 (PubMed PMID: 15280423; PubMed Central PMCID: PMC2211973)

    Article  PubMed  CAS  Google Scholar 

  • Baecher-Allan C, Wolf E, Hafler DA (2006) MHC class II expression identifies functionally distinct human regulatory T cells. J Immunol 176(8):4622–4631 (PubMed PMID: 16585553)

    PubMed  CAS  Google Scholar 

  • Barthlott T, Moncrieffe H, Veldhoen M, Atkins CJ, Christensen J, O’Garra A et al (2005) CD25+CD4+ T cells compete with naive CD4+ T cells for IL-2 and exploit it for the induction of IL-10 production. Int Immunol 17(3):279–288. doi:dxh207[pii]10.1093/intimm/dxh207 (PubMed PMID: 15684039)

    Article  PubMed  CAS  Google Scholar 

  • Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L et al (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27(1):20–21. doi:10.1038/83713 (PubMed PMID: 11137993)

    Article  PubMed  CAS  Google Scholar 

  • Beriou G, Costantino CM, Ashley CW, Yang L, Kuchroo VK, Baecher-Allan C et al (2009) IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113(18):4240–4249. doi:10.1182/blood-2008-10-183251 (PubMed PMID: 19171879; PubMed Central PMCID: PMC2676084)

    Article  PubMed  CAS  Google Scholar 

  • Blair PJ, Bultman SJ, Haas JC, Rouse BT, Wilkinson JE, Godfrey VL (1994) CD4+CD8− T cells are the effector cells in disease pathogenesis in the scurfy (sf) mouse. J Immunol 153(8):3764–74 (PubMed PMID: 7930593)

    PubMed  CAS  Google Scholar 

  • Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA et al (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27(1):68–73. doi:10.1038/83784 (PubMed PMID: 11138001)

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR et al (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27(4):635–646. doi:S1074-7613(07)00444-X[pii]10.1016/j.immuni.2007.08.014 (PubMed PMID: 17919943)

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N et al (2003) Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198(12):1875–1886. doi:10.1084/jem.20030152 (PubMed PMID: 14676299; PubMed Central PMCID: PMC2194145)

    Article  PubMed  CAS  Google Scholar 

  • Curotto de Lafaille MA, Lafaille JJ (2009) Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30(5):626–635. doi:10.1016/j.immuni.2009.05.002 (PubMed PMID: 19464985)

    Article  PubMed  CAS  Google Scholar 

  • Curotto de Lafaille MA, Lino AC, Kutchukhidze N, Lafaille JJ. (2004) CD25- T cells generate CD25+ Foxp3+ regulatory T cells by peripheral expansion. J Immunol 173(12):7259–7268 (PubMed PMID: 15585848)

    PubMed  CAS  Google Scholar 

  • de la Rosa M, Rutz S, Dorninger H, Scheffold A (2004) Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur J Immunol 34(9):2480–2488. doi:10.1002/eji.200425274c (PubMed PMID: 15307180)

    Article  CAS  Google Scholar 

  • Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G (2001) Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 193(11):1303–1310 (PubMed PMID: 11390437; PubMed Central PMCID: PMC2193384)

    Article  PubMed  CAS  Google Scholar 

  • Dominguez-Villar M, Baecher-Allan CM, Hafler DA (2011) Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nature Med 17(6):673–675. doi:10.1038/nm.2389 (PubMed PMID: 21540856)

    Article  PubMed  CAS  Google Scholar 

  • Fahlen L, Read S, Gorelik L, Hurst SD, Coffman RL, Flavell RA et al (2005) T cells that cannot respond to TGF-beta escape control by CD4(+)CD25(+) regulatory T cells. J Exp Med 201(5):737–746. doi:jem.20040685[pii]10.1084/jem.20040685 (PubMed PMID: 15753207; PubMed Central PMCID: PMC2212836)

    Article  PubMed  CAS  Google Scholar 

  • Feger U, Luther C, Poeschel S, Melms A, Tolosa E, Wiendl H (2007) Increased frequency of CD4+ CD25+ regulatory T cells in the cerebrospinal fluid but not in the blood of multiple sclerosis patients. Clin Exp Immunol 147(3):412–418. doi:10.1111/j.1365-2249.2006.03271.x (PubMed PMID: 17302889; PubMed Central PMCID: PMC1810482)

    Article  PubMed  CAS  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336. doi:10.1038/ni904 (PubMed PMID: 12612578)

    Article  PubMed  CAS  Google Scholar 

  • Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6(11):1142–1151. doi:ni1263[pii]10.1038/ni1263 (PubMed PMID: 16227984)

    Article  PubMed  CAS  Google Scholar 

  • Fritzsching B, Oberle N, Pauly E, Geffers R, Buer J, Poschl J et al (2006) Naive regulatory T cells: a novel subpopulation defined by resistance toward CD95 L-mediated cell death. Blood 108(10):3371–3378 doi:10.1182/blood-2006-02-005660 (PubMed PMID: 16868256)

    Article  PubMed  CAS  Google Scholar 

  • Fritzsching B, Haas J, Konig F, Kunz P, Fritzsching E, Poschl J et al (2011) Intracerebral human regulatory T cells: analysis of CD4+ CD25+ FOXP3+ T cells in brain lesions and cerebrospinal fluid of multiple sclerosis patients. PloS one 6(3):e17988. doi:10.1371/journal.pone.0017988 (PubMed PMID: 21437244; PubMed Central PMCID: PMC3060879)

    Article  PubMed  CAS  Google Scholar 

  • Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, Vries JEdeetal (1997) A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389(6652):737–742 doi:10.1038/39614 (PubMed PMID: 9338786)

    Article  PubMed  CAS  Google Scholar 

  • Haas J, Hug A, Viehover A, Fritzsching B, Falk CS, Filser A et al (2005) Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol 35(11):3343–3352. doi:10.1002/eji.200526065 (PubMed PMID: 16206232)

    Article  PubMed  CAS  Google Scholar 

  • Haas J, Fritzsching B, Trubswetter P, Korporal M, Milkova L, Fritz B et al (2007) Prevalence of newly generated naive regulatory T cells (Treg) is critical for Treg suppressive function and determines Treg dysfunction in multiple sclerosis. J Immunol 179(2):1322–1330 (PubMed PMID: 17617625)

    PubMed  CAS  Google Scholar 

  • Haas J, Korporal M, Balint B, Fritzsching B, Schwarz A, Wildemann B (2009) Glatiramer acetate improves regulatory T-cell function by expansion of naive CD4(+)CD25(+)FOXP3(+)CD31(+) T-cells in patients with multiple sclerosis. J Neuroimmunol 16(1–2):113–117. doi:10.1016/j.jneuroim.2009.06.011 (PubMed PMID: 19646767)

    Article  CAS  Google Scholar 

  • Hamann A, Klugewitz K, Austrup F, Jablonski-Westrich D (2000) Activation induces rapid and profound alterations in the trafficking of T cells. Eur J Immunol 30(11):3207–3218. doi:10.1002/1521-4141(200011)30:11<3207::AID-IMMU3207>3.0.CO;2-L (PubMed PMID: 11093136)

    Article  PubMed  CAS  Google Scholar 

  • Hong J, Li N, Zhang X, Zheng B, Zhang JZ (2005) Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci U S A 102(18):6449–6454. doi:10.1073/pnas.0502187102 (PubMed PMID: 15851684; PubMed Central PMCID: PMC1088385)

    Article  PubMed  CAS  Google Scholar 

  • Hori S, Haury M, Coutinho A, Demengeot J. (2002) Specificity requirements for selection and effector functions of CD25+4+ regulatory T cells in anti-myelin basic protein T cell receptor transgenic mice. Proc Natl Acad Sci U S A 99(12):8213–8218. doi:10.1073/pnas.122224799 (PubMed PMID: 12034883; PubMed Central PMCID: PMC123047)

    Article  PubMed  CAS  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S. (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061. doi:10.1126/science.1079490 (PubMed PMID: 12522256)

    Article  PubMed  CAS  Google Scholar 

  • Huan J, Culbertson N, Spencer L, Bartholomew R, Burrows GG, Chou YK et al (2005) Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res 81(1):45–52. doi:10.1002/jnr.20522 (PubMed PMID: 15952173)

    Article  PubMed  CAS  Google Scholar 

  • Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G et al (2004) Role of LAG-3 in regulatory T cells. Immunity 21(4):503–513. doi:S1074761304002468[pii]10.1016/j.immuni.2004.08.010 (PubMed PMID: 15485628)

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Hanabuchi S, Wang YH, Park WR, Arima K, Bover L et al (2008) Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity 28(6):870–880. doi:10.1016/j.immuni.2008.03.018 (PubMed PMID: 18513999; PubMed Central PMCID: PMC2709453)

    Article  PubMed  CAS  Google Scholar 

  • Jager PL De, Jia X, Wang J, de Bakker PI, Ottoboni L, Aggarwal NT, et al (2009) Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat genet 41(7):776–82. doi:10.1038/ng.401 (PubMed PMID: 19525953; PubMed Central PMCID: PMC2757648)

    Article  PubMed  CAS  Google Scholar 

  • Janssens W, Carlier V, Wu B, VanderElst L, Jacquemin MG, Saint-Remy JM (2003) CD4+CD25+ T cells lyse antigen-presenting B cells by Fas–Fas ligand interaction in an epitope-specific manner. J Immunol 171(9):4604–4612 (PubMed PMID: 14568934)

    PubMed  CAS  Google Scholar 

  • Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH (2001) Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 193(11):1285–1294 (PubMed PMID: 11390435; PubMed Central PMCID: PMC2193380)

    Article  PubMed  CAS  Google Scholar 

  • Kanangat S, Blair P, Reddy R, Daheshia M, Godfrey V, Rouse BT et al (1996) Disease in the scurfy (sf) mouse is associated with overexpression of cytokine genes. Eur J Immunol 26(1):161–165. doi:10.1002/eji.1830260125 (PubMed PMID: 8566060)

    Article  PubMed  CAS  Google Scholar 

  • Karandikar NJ, Crawford MP, Yan X, Ratts RB, Brenchley JM, Ambrozak DR et al (2002) Glatiramer acetate (Copaxone) therapy induces CD8(+) T cell responses in patients with multiple sclerosis. J Clin Invest 109(5):641–649. doi:10.1172/JCI14380 (PubMed PMID: 11877472; PubMed Central PMCID: PMC150895)

    PubMed  CAS  Google Scholar 

  • Khattri R, Cox T, Yasayko SA, Ramsdell F. (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nature Immunol 4(4):337–342. doi:10.1038/ni909 (PubMed PMID: 12612581)

    Article  CAS  Google Scholar 

  • Kimmig S, Przybylski GK, Schmidt CA, Laurisch K, Mowes B, Radbruch A et al (2002) Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J Exp Med 195(6):789–794 (PubMed PMID: 11901204; PubMed Central PMCID: PMC2193736)

    Article  PubMed  CAS  Google Scholar 

  • Koenen HJ, Smeets RL, Vink PM, Rijssen E van, Boots AM, Joosten I (2008) Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112(6):2340–2352. doi:10.1182/blood-2008-01-133967 (PubMed PMID: 18617638)

    Article  PubMed  CAS  Google Scholar 

  • Kohm AP, Carpentier PA, Anger HA, Miller SD. (2002) Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 169(9):4712–6 (PubMed PMID: 12391178)

    PubMed  CAS  Google Scholar 

  • Korn T, Reddy J, Gao W, Bettelli E, Awasthi A, Petersen TR et al (2007) Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nature Med 13(4):423–431. doi:10.1038/nm1564 (PubMed PMID: 17384649)

    Article  PubMed  CAS  Google Scholar 

  • Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, Boehmer H von (2005) Inducing and expanding regulatory T cell populations by foreign antigen. Nature Immunol 6(12):1219–1227. doi:10.1038/ni1265 (PubMed PMID: 16244650)

    Article  CAS  Google Scholar 

  • Kullberg MC, Hay V, Cheever AW, Mamura M, Sher A, Letterio JJ et al (2005) TGF-beta1 production by CD4+CD25+ regulatory T cells is not essential for suppression of intestinal inflammation. Eur J Immunol;35(10):2886–2895. doi:10.1002/eji.200526106 (PubMed PMID: 16180248)

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Putzki N, Limmroth V, Remus R, Lindemann M, Knop D et al (2006) CD4+CD25+FoxP3+ T lymphocytes fail to suppress myelin basic protein-induced proliferation in patients with multiple sclerosis. J Neuroimmunol 180(1–2):178–84. doi:10.1016/j.jneuroim.2006.08.003 (PubMed PMID: 17011048)

    Article  PubMed  CAS  Google Scholar 

  • Lafaille JJ, Nagashima K, Katsuki M, Tonegawa S. (1994) High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell 78(3):399–408 (PubMed PMID: 7520367)

    Article  PubMed  CAS  Google Scholar 

  • Levings MK, Sangregorio R, Roncarolo MG (2001) Human CD25(+)CD4(+) T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 193(11):1295–302 (PubMed PMID: 11390436; PubMed Central PMCID: PMC2193376)

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203(7):1701–1711. doi:10.1084/jem.20060772 (PubMed PMID: 16818678; PubMed Central PMCID: PMC2118339)

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF, Peters J, Glenister PH, Ball S, Wright E (1990) The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome. Proc Natl Acad Sci U S A 87(7):2433–2437 (PubMed PMID: 2320565; PubMed Central PMCID: PMC53703)

    Article  PubMed  CAS  Google Scholar 

  • Marie JC, Astier AL, Rivailler P, Rabourdin-Combe C, Wild TF, Horvat B (2002) Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell induced inflammation. Nat Immunol 3(7):659–666. doi:10.1038/ni810 (PubMed PMID: 12055630)

    PubMed  CAS  Google Scholar 

  • Mazzucchelli R, Durum SK (2007) Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol 7(2):144–154. doi:10.1038/nri2023 (PubMed PMID: 17259970)

    Article  PubMed  CAS  Google Scholar 

  • McClymont SA, Putnam AL, Lee MR, Esensten JH, Liu W, Hulme MA et al (2011) Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol 186(7):3918–3926. doi:10.4049/jimmunol.1003099 (PubMed PMID: 21368230; PubMed Central PMCID: PMC3091943)

    Article  PubMed  CAS  Google Scholar 

  • McGeachy MJ, Stephens LA, Anderton SM (2005) Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol 175(5):3025–3032 (PubMed PMID: 16116190)

    PubMed  CAS  Google Scholar 

  • Misra N, Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV (2004) Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol 172(8):4676–4680 (PubMed PMID: 15067041)

    PubMed  CAS  Google Scholar 

  • Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A et al (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30(6):899–911. doi:10.1016/j.immuni.2009.03.019 (PubMed PMID: 19464196)

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Kitani A, Strober W (2001) Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194(5):629–644 (PubMed PMID: 11535631; PubMed Central PMCID: PMC2195935)

    Article  PubMed  CAS  Google Scholar 

  • Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G, Edwards AD et al (2001) Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood 98(9):2736–2744 (PubMed PMID: 11675346)

    Article  PubMed  CAS  Google Scholar 

  • Nylander A, Hafler DA (2012) Multiple sclerosis. J Clin Invest 122(4):1180–1188. doi:10.1172/JCI58649 (Reproduced with permission of the J Clin Invest)

    Article  PubMed  CAS  Google Scholar 

  • O’Connor RA, Floess S, Huehn J, Jones SA, Anderton SM (2012) Foxp3(+) Treg cells in the inflamed CNS are insensitive to IL-6-driven IL-17 production. Eur J Immunol 42(5):1174–1179. doi:10.1002/eji.201142216 (PubMed PMID: 22539291)

    Article  CAS  Google Scholar 

  • O’Connor RA, Malpass KH, Anderton SM (2007) The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+ regulatory T cells. J Immunol 179(2):958–966 (PubMed PMID: 17617587)

    Google Scholar 

  • Olivares-Villagomez D, Wang Y, Lafaille JJ (1998) Regulatory CD4(+) T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J Exp Med 188(10):1883–1894 (PubMed PMID: 9815266; PubMed Central PMCID: PMC2212402)

    Article  PubMed  CAS  Google Scholar 

  • Pan F, Yu H, Dang EV, Barbi J, Pan X, Grosso JF et al (2009) Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325(5944):1142–1146. doi:10.1126/science.1176077 (PubMed PMID: 19696312; PubMed Central PMCID: PMC2859703)

    Article  PubMed  CAS  Google Scholar 

  • Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL (1996) A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 83(6):2669–2674 (PubMed PMID: 8676088; PubMed Central PMCID: PMC2192626)

    Article  Google Scholar 

  • Putheti P, Pettersson A, Soderstrom M, Link H, Huang YM (2004) Circulating CD4+CD25+ T regulatory cells are not altered in multiple sclerosis and unaffected by disease-modulating drugs. J Clin Immunol 24(2):155–161. doi:10.1023/B:JOCI.0000019780.93817.82 (PubMed PMID: 15024182)

    Article  PubMed  CAS  Google Scholar 

  • Ralainirina N, Poli A, Michel T, Poos L, Andres E, Hentges F et al (2007) Control of NK cell functions by CD4+CD25+ regulatory T cells. J Leukoc Biol 81(1):144–153. doi:10.1189/jlb.0606409 (PubMed PMID: 16959895)

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Cejudo J, Oreja-Guevara C, Stark Aroeira L, Rodriguez de Antonio L, Chamorro B, Diez-Tejedor E (2011) Treatment with natalizumab in relapsing-remitting multiple sclerosis patients induces changes in inflammatory mechanism. J Clin Immunol 31(4):623–631. doi:10.1007/s10875-011-9522-x (PubMed PMID: 21491095; PubMed Central PMCID: PMC3155864)

    Article  PubMed  CAS  Google Scholar 

  • Read S, Malmstrom V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192(2):295–302 (PubMed PMID: 10899916; PubMed Central PMCID: PMC2193261)

    Article  PubMed  CAS  Google Scholar 

  • Reddy J, Illes Z, Zhang X, Encinas J, Pyrdol J, Nicholson L et al (2004) Myelin proteolipid protein-specific CD4+CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 101(43):15434–15439. doi:10.1073/pnas.0404444101 (PubMed PMID: 15492218; PubMed Central PMCID: PMC524444)

    Article  PubMed  CAS  Google Scholar 

  • Reddy J, Waldner H, Zhang X, Illes Z, Wucherpfennig KW, Sobel RA et al (2005) Cutting edge: CD4+CD25+ regulatory T cells contribute to gender differences in susceptibility to experimental autoimmune encephalomyelitis. J Immunol 175(9):5591–5595 (PubMed PMID: 16237044)

    PubMed  CAS  Google Scholar 

  • Roncador G, Brown PJ, Maestre L, Hue S, Martinez-Torrecuadrada JL, Ling KL et al (2001) Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol 35(6):1681–91. doi:10.1002/eji.200526189 (PubMed PMID: 15902688)

    Article  PubMed  CAS  Google Scholar 

  • Roncarolo MG, Bacchetta R, Bordignon C, Narula S Levings MK (2001) Type 1 T regulatory cells. Immunol Rev 182:68–79 (PubMed PMID: 11722624)

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164 (PubMed PMID: 7636184)

    PubMed  CAS  Google Scholar 

  • Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nature Rev Immunol 10(7):490–500. doi:10.1038/nri2785 (PubMed PMID: 20559327)

    Article  CAS  Google Scholar 

  • Sawcer S, Ban M, Maranian M, Yeo TW, Compston A, Kirby A et al (2005) A high-density screen for linkage in multiple sclerosis. Am J Human Genet 77(3):454–467. doi:10.1086/444547 (PubMed PMID: 16080120; PubMed Central PMCID: PMC1226210)

    Article  Google Scholar 

  • Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476(7359):214–219. doi:10.1038/nature10251 (PubMed PMID: 21833088; PubMed Central PMCID: PMC3182531)

    Article  PubMed  CAS  Google Scholar 

  • Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A et al (2006a) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203(7):1693–1700. doi:10.1084/jem.20060468 (PubMed PMID: 16818676; PubMed Central PMCID: PMC2118333)

    Article  CAS  Google Scholar 

  • Seddiki N, Santner-Nanan B, Tangye SG, Alexander SI, Solomon M, Lee S et al (2006b) Persistence of naive CD45RA+ regulatory T cells in adult life. Blood 107(7):2830–2838. doi:10.1182/blood-2005-06-2403 (PubMed PMID: 16332974)

    Article  CAS  Google Scholar 

  • Shevach EM (2009) Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30(5):636–45. doi:S1074-7613(09)00197-6[pii]10.1016/j.immuni.2009.04.010 (PubMed PMID: 19464986)

    Article  PubMed  CAS  Google Scholar 

  • Stenner MP, Waschbisch A, Buck D, Doerck S, Einsele H, Toyka KV et al (2008) Effects of natalizumab treatment on Foxp3+ T regulatory cells. PloS one 3(10):e3319. doi:10.1371/journal.pone.0003319 (PubMed PMID: 18836525; PubMed Central PMCID: PMC2553177)

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T et al (2006) Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int Immunol 18(8):1197–1209. doi:10.1093/intimm/dxl060 (PubMed PMID: 16772372)

    Article  PubMed  CAS  Google Scholar 

  • Taams LS, Vukmanovic-Stejic M, Smith J, Dunne PJ, Fletcher JM, Plunkett FJ et al (2002) Antigen-specific T cell suppression by human CD4+ CD25+ regulatory T cells. European J Immunol 32(6):1621–1630. doi:10.1002/1521-4141(200206)32:6<1621::AID-IMMU1621>3.0.CO;2-Q (PubMed PMID: 12115645)

    Article  CAS  Google Scholar 

  • Taams LS, Amelsfort JM van, Tiemessen MM, Jacobs KM, Jong EC de, Akbar AN et al (2005) Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells. Human Immunol 66(3):222–230. doi:10.1016/j.humimm.2004.12.006 (PubMed PMID: 15784460)

    Article  CAS  Google Scholar 

  • Tennakoon DK, Mehta RS, Ortega SB, Bhoj V, Racke MK, Karandikar NJ (2006) Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J Immunol 176(11):7119–7129 (PubMed PMID: 16709875)

    PubMed  CAS  Google Scholar 

  • Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y et al (2010) Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol;184(7):3433–3441. doi:10.4049/jimmunol.0904028 (PubMed PMID: 20181882)

    Article  PubMed  CAS  Google Scholar 

  • Valmori D, Merlo A, Souleimanian NE, Hesdorffer CS, Ayyoub M (2005) A peripheral circulating compartment of natural naive CD4 Tregs. J Clin Invest 115(7):1953–1962. doi:10.1172/JCI23963 (PubMed PMID: 16007258; PubMed Central PMCID: PMC1159133)

    Article  PubMed  CAS  Google Scholar 

  • Vandenbark AA, Huan J, Agotsch M, La Tocha D, Goelz S, Offner H et al (2009) Interferon-beta-1a treatment increases CD56bright natural killer cells and CD4+CD25+Foxp3 expression in subjects with multiple sclerosis. J Neuroimmunol 215(1–2):125–128. doi:10.1016/j.jneuroim.2009.08.007 (PubMed PMID: 19758707)

    Article  PubMed  CAS  Google Scholar 

  • Venken K, Hellings N, Hensen K, Rummens JL, Medaer R, D’Hooghe MB et al (2006) Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and FOXP3 expression. J Neurosci Res 83(8):1432–1446. doi:10.1002/jnr.20852 (PubMed PMID: 16583400)

    Article  PubMed  CAS  Google Scholar 

  • Venken K, Hellings N, Thewissen M, Somers V, Hensen K, Rummens JL et al (2008a) Compromised CD4+ CD25(high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology 123(1):79–89. doi:10.1111/j.1365-2567.2007.02690.x (PubMed PMID: 17897326; PubMed Central PMCID: PMC2433271)

    Article  CAS  Google Scholar 

  • Venken K, Hellings N, Broekmans T, Hensen K, Rummens JL, Stinissen P (2008b) Natural naive CD4+CD25+CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J Immunol 180(9):6411–6420 (PubMed PMID: 18424765)

    CAS  Google Scholar 

  • Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199(7):971–979. doi:10.1084/jem.20031579 (PubMed PMID: 15067033; PubMed Central PMCID: PMC2211881)

    Article  PubMed  CAS  Google Scholar 

  • Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE et al (2006) Human CD4+CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 116(9):2423–2433. doi:10.1172/JCI28941 (PubMed PMID: 16955142; PubMed Central PMCID: PMC1555646)

    Article  PubMed  CAS  Google Scholar 

  • Weiner HL (2001) Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 182:207–214 (PubMed PMID: 11722636)

    Article  PubMed  CAS  Google Scholar 

  • Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N et al (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nature Genet 27(1):18–20 doi:10.1038/83707 (PubMed PMID: 11137992)

    Article  PubMed  CAS  Google Scholar 

  • Wildin RS, Smyk-Pearson S, Filipovich AH (2002) Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 39(8):537–545 (PubMed PMID: 12161590; PubMed Central PMCID: PMC1735203)

    Google Scholar 

  • Zhang X, Koldzic DN, Izikson L, Reddy J, Nazareno RF, Sakaguchi S et al (2004) IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+ regulatory T cells. Int Immunol 16(2):249–256 (PubMed PMID: 14734610)

    Article  PubMed  CAS  Google Scholar 

  • Zhao DM, Thornton AM, DiPaolo RJ, Shevach EM (2006) Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood 107(10):3925–3932. doi:10.1182/blood-2005-11-4502 (PubMed PMID: 16418326; PubMed Central PMCID: PMC1895290)

    Article  PubMed  CAS  Google Scholar 

  • Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA (2007) IL-2 is essential for TGF-beta to convert naive CD4+CD25− cells to CD25+ Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 178(4):2018–2027 (PubMed PMID: 17277105)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara B. Gawlik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gawlik, B., Hafler, D. (2013). Regulatory T Cells in MS. In: Yamamura, T., Gran, B. (eds) Multiple Sclerosis Immunology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7953-6_2

Download citation

Publish with us

Policies and ethics