Modeling MS in Nonhuman Primates

  • Bert A. ’t Hart
  • S. Anwar Jagessar
  • Krista Haanstra
  • Yolanda S. Kap
  • Jon D. Laman
Chapter

Abstract

The classical role of the immune system is to detect and eliminate foreign organisms, such as microbial infection, while at the same time the system should not respond against the body itself (Mills, Immunology 11:807–822, 2011). This implies that the antigen-sensing and antigen-presenting cells (APC) should have the capacity to detect a few foreign antigens within a sea of self-antigens. For this vital task, APC are equipped with conserved pattern-recognition receptor families (PRR), such as Toll-like receptors (TLR). TLR detect conserved molecular structures on pathogens, named pathogen-associated molecular patterns (PAMPS), and tissue-damage signals associated with self-antigens, named danger-associated molecular patterns (DAMPS, or alarmins). Nonresponsiveness is at least, in part, regulated by the interaction of C-type lectin receptors (CLR) with carbohydrates expressed on self-antigens.

Keywords

Migration Arthritis Ischemia Carbohydrate Integrin 

Notes

Acknowledgments

The authors like to thank Mr. Henk van Westbroek for the artwork.

References

  1. Abbott DH, Barnett DK, Colman RJ, Yamamoto ME, Schultz-Darken NJ (2003) Aspects of common marmoset basic biology and life history important for biomedical research. Comp Med 53:339–350PubMedGoogle Scholar
  2. Alvord EC Jr (1984) Species-restricted encephalitogenic determinants. Prog Clin Biol Res 146:523–537PubMedGoogle Scholar
  3. Antunes SG, Groot NG de, Brok H, Doxiadis G, Menezes AA, Otting N, Bontrop RE (1998) The common marmoset: a new world primate species with limited Mhc class II variability. Proc Natl Acad Sci U S A 95:11745–11750PubMedCrossRefGoogle Scholar
  4. Averdam A, Seelke S, Grutzner I, Rosner C, Roos C, Westphal N, Stahl-Hennig C, Muppala V, Schrod A, Sauermann U, Dressel R, Walter L (2007) Genotyping and segregation analyses indicate the presence of only two functional MIC genes in rhesus macaques. Immunogenetics 59:247–251PubMedCrossRefGoogle Scholar
  5. Axtell RC, Jong BA de, Boniface K, Voort LF van der, Bhat R, De Sarno P, Naves R, Han M, Zhong F, Castellanos JG, Mair R, Christakos A, Kolkowitz I, Katz L, Killestein J, Polman CH, Waal Malefyt R de, Steinman L, Raman C (2010) T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med 16:406–412PubMedCrossRefGoogle Scholar
  6. Axthelm MK, Bourdette DN, Marracci GH, Su W, Mullaney ET, Manoharan M, Kohama SG, Pollaro J, Witkowski E, Wang P, Rooney WD, Sherman LS, Wong SW (2011) Japanese macaque encephalomyelitis: a spontaneous multiple sclerosis-like disease in a nonhuman primate. Ann Neurol 70(3):362–373PubMedCrossRefGoogle Scholar
  7. Bajramovic JJ, Brok HP, Ouwerling B, Jagessar SA, Straalen L van, Kondova I, Bauer J, Amor S, Hart BA, Ben-Nun A (2008) Oligodendrocyte-specific protein is encephalitogenic in rhesus macaques and induces specific demyelination of the optic nerve. Eur J Immunol 38:1452–1464PubMedCrossRefGoogle Scholar
  8. Barnett MH, Sutton I (2006) The pathology of multiple sclerosis: a paradigm shift. Curr Opin Neurol 19:242–247PubMedCrossRefGoogle Scholar
  9. Bartzokis G (2004) Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 25:5–18; author reply 49–62PubMedCrossRefGoogle Scholar
  10. Barun B, Bar-Or A (2012) Treatment of multiple sclerosis with Anti-CD20 antibodies. Clin Immunol 142:31–37PubMedCrossRefGoogle Scholar
  11. Bielekova B, Sung MH, Kadom N, Simon R, McFarland H, Martin R (2004) Expansion and functional relevance of high-avidity myelin-specific CD4 + T cells in multiple sclerosis. J Immunol 172:3893–3904PubMedGoogle Scholar
  12. Brok HP, Uccelli A, Kerlero De Rosbo N, Bontrop RE, Roccatagliata L, Groot NG de, Capello E, Laman JD, Nicolay K, Mancardi GL, Ben-Nun A, ’t Hart BA (2000) Myelin/oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis in common marmosets: the encephalitogenic T cell epitope pMOG24–36 is presented by a monomorphic MHC class II molecule. J Immunol 165:1093–1101PubMedGoogle Scholar
  13. Brok HP, Bauer J, Jonker M, Blezer E, Amor S, Bontrop RE, Laman JD, ’t Hart BA (2001a) Non-human primate models of multiple sclerosis. Immunol Rev 183:173–185CrossRefGoogle Scholar
  14. Brok HP, Hornby RJ, Griffiths GD, Scott LA, ’t Hart BA (2001b) An extensive monoclonal antibody panel for the phenotyping of leukocyte subsets in the common marmoset and the cotton-top tamarin. Cytometry 45:294–303CrossRefGoogle Scholar
  15. Brok HP, Van Meurs M, Blezer E, Schantz A, Peritt D, Treacy G, Laman JD, Bauer J, ’t Hart BA (2002) Prevention of experimental autoimmune encephalomyelitis in common marmosets using an anti-IL-12p40 monoclonal antibody. J Immunol 169:6554–6563PubMedGoogle Scholar
  16. Brok HP, Boven L, Meurs M van, Kerlero de Rosbo N, Celebi-Paul L, Kap YS, Jagessar A, Hintzen RQ, Keir G, Bajramovic J, Ben-Nun A, Bauer J, Laman JD, Amor S, ’t Hart BA (2007) The human CMV-UL86 peptide 981–1003 shares a crossreactive T-cell epitope with the encephalitogenic MOG peptide 34–56, but lacks the capacity to induce EAE in rhesus monkeys. J Neuroimmunol 182:135–152PubMedCrossRefGoogle Scholar
  17. Cadavid LF, Shufflebotham C, Ruiz FJ, Yeager M, Hughes AL, Watkins DI (1997) Evolutionary instability of the major histocompatibility complex class I loci in New World primates. Proc Natl Acad Sci U S A 94:14536–14541PubMedCrossRefGoogle Scholar
  18. De Jager PL, Simon KC, Munger KL, Rioux JD, Hafler DA, Ascherio A (2008) Integrating risk factors: HLA-DRB1*1501 and Epstein-Barr virus in multiple sclerosis. Neurology 70:1113–1118PubMedCrossRefGoogle Scholar
  19. de Vos AF, Meurs M van, Brok HP, Boven LA, Hintzen RQ, Valk P van der, Ravid R, Rensing S, Boon L, ’t Hart BA, Laman JD (2002) Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 169:5415–5423PubMedGoogle Scholar
  20. Doxiadis GG, Wiel MK van der, Brok HP, Groot NG de, Otting N, ’t Hart BA, Rood JJ van, Bontrop RE (2006) Reactivation by exon shuffling of a conserved HLA-DR3-like pseudogene segment in a New World primate species. Proc Natl Acad Sci U S A 103:5864–5868PubMedCrossRefGoogle Scholar
  21. Fujinami RS, Herrath MG von, Christen U, Whitton JL (2006) Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev 19:80–94PubMedCrossRefGoogle Scholar
  22. Geijtenbeek TB, Van Vliet SJ, Engering A, ’t Hart BA, Van Kooyk Y (2004) Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol 22:33–54PubMedCrossRefGoogle Scholar
  23. Genain CP, Lee-Parritz D, Nguyen MH, Massacesi L, Joshi N, Ferrante R, Hoffman K, Moseley M, Letvin NL, Hauser SL (1994) In healthy primates, circulating autoreactive T cells mediate autoimmune disease. J Clin Invest 94:1339–1345PubMedCrossRefGoogle Scholar
  24. Genain CP, Nguyen MH, Letvin NL, Pearl R, Davis RL, Adelman M, Lees MB, Linington C, Hauser SL (1995) Antibody facilitation of multiple sclerosis-like lesions in a nonhuman primate. J Clin Invest 96:2966–2974PubMedCrossRefGoogle Scholar
  25. Genain CP, Cannella B, Hauser SL, Raine CS (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5:170–175PubMedCrossRefGoogle Scholar
  26. Haanstra KG, Jagessar SA, Bauchet AL, Doussau M, Fovet CM, Heijmans N, Hofman SO, van Lubeek–Veth J, Bajramovic JJ, Kap YS, Laman JD, Touin H,Watroba L, Bauer J, Lachapelle F, Serguera C, ’t Hart BA (2013) Induction of experimental autoimmune encephalomyelitis with recombinant human myelin oligodendrocyte glycoprotein in incomplete Freund’s adjuvant in three non–human primate species. J Neuroimmune Pharmacol (in press)Google Scholar
  27. Haig D (1999) What is a marmoset? Am J Primatol 49:285–296PubMedCrossRefGoogle Scholar
  28. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, and C. Smith H (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358:676–688PubMedCrossRefGoogle Scholar
  29. Jagessar SA, Smith PA, Blezer E, Delarasse C, Pham-Dinh D, Laman JD, Bauer J, Amor S, ’t Hart BA (2008) Autoimmunity against myelin oligodendrocyte glycoprotein is dispensable for the initiation although essential for the progression of chronic encephalomyelitis in common marmosets. J Neuropathol Exp Neurol 67:326–340PubMedCrossRefGoogle Scholar
  30. Jagessar SA, Kap YS, Heijmans N, Driel N van, Brok HPM, Blezer ELA, Laman JD, Bauer J, ’t Hart BA (2010) Induction of progressive demyelinating autoimmune encephalomyelitis in common marmoset monkeys using MOG34–56 peptide in incomplete Freund’s adjuvant. J Neuropathol Exp Neurol 69:372–385PubMedCrossRefGoogle Scholar
  31. Jagessar SA, Gran B, Heijmans N, Bauer J, Laman JD, ’t Hart BA, Constantinescu CS (2012a) Discrepant effects of human interferon-gamma on clinical and immunological disease parameters in a novel marmoset model for multiple sclerosis. J Neuroimmune Pharmacol 7(1):253–265CrossRefGoogle Scholar
  32. Jagessar SA, Heijmans N, Blezer EL, Bauer J, Blokhuis JH, Wubben JA, Drijfhout JW, den Elsen PJ van, Laman JD, Hart BA (2012b) Unravelling the T-cell-mediated autoimmune attack on CNS myelin in a new primate EAE model induced with MOG(34–56) peptide in incomplete adjuvant. Eur J Immunol 42:217–227CrossRefGoogle Scholar
  33. Jagessar SA, Heijmans N, Bauer J, Blezer ELA, Laman JD, Hellings N, ’t Hart BA (2012c) B-cell depletion abrogates antibody nondependent CNS demyelination in the marmoset EAE model. J Immunol (resubmitted)Google Scholar
  34. Jensen PE, Sullivan BA, Reed-Loisel LM, Weber DA (2004) Qa-1, a nonclassical class I histocompatibility molecule with roles in innate and adaptive immunity. Immunol Res 29:81–92PubMedCrossRefGoogle Scholar
  35. Kabat EA, Wolf A, Bezer AE (1947) The rapid production of acute disseminated encephalomyelitis in rhesus monkeys by injection of heterologous and homologous brain tissue with adjuvants. J Exp Med 85:117–130PubMedCrossRefGoogle Scholar
  36. Kap YS, Smith P, Jagessar SA, Remarque E, Blezer E, Strijkers GJ, Laman JD, Hintzen RQ, Bauer J, Brok HP, ’t Hart BA (2008) Fast progression of recombinant human myelin/oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis in marmosets is associated with the activation of MOG34–56-specific cytotoxic T cells. J Immunol 180:1326–1337PubMedGoogle Scholar
  37. Kap YS, Laman JD, ’t Hart BA (2010) Experimental autoimmune encephalomyelitis in the common marmoset, a bridge between rodent EAE and multiple sclerosis for immunotherapy development. J Neuroimmune Pharmacol 5:220–230PubMedCrossRefGoogle Scholar
  38. Kap YS, Bauer J, Driel NV, Bleeker WK, Parren PW, Kooi EJ, Geurts JJ, Laman JD, Craigen JL, Blezer E, ’t Hart BA (2011) B-Cell Depletion Attenuates White and Gray Matter Pathology in Marmoset Experimental Autoimmune Encephalomyelitis. J Neuropathol Exp Neurol 70:992–1005PubMedCrossRefGoogle Scholar
  39. Kerlero de Rosbo N, Brok HP, Bauer J, Kaye JF, ’t Hart BA, Ben-Nun A (2000) Rhesus monkeys are highly susceptible to experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein: characterisation of immunodominant T- and B-cell epitopes. J Neuroimmunol 110:83–96PubMedCrossRefGoogle Scholar
  40. Lopez-Diego RS, Weiner HL (2008) Novel therapeutic strategies for multiple sclerosis–a multifaceted adversary. Nat Rev Drug Discov 7:909–925PubMedCrossRefGoogle Scholar
  41. Lyons AB (2000) Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 243:147–154PubMedCrossRefGoogle Scholar
  42. Mansfield K (2003) Marmoset models commonly used in biomedical research. Comp Med 53:383–392PubMedGoogle Scholar
  43. Massacesi L, Joshi N, Lee-Parritz D, Rombos A, Letvin NL, Hauser SL (1992) Experimental allergic encephalomyelitis in cynomolgus monkeys. Quantitation of T cell responses in peripheral blood. J Clin Invest 90:399–404PubMedCrossRefGoogle Scholar
  44. Massacesi L, Genain CP, Lee-Parritz D, Letvin NL, Canfield D, Hauser SL (1995) Active and passively induced experimental autoimmune encephalomyelitis in common marmosets: a new model for multiple sclerosis. Ann Neurol 37:519–530PubMedCrossRefGoogle Scholar
  45. McFarland HI, Lobito AA, Johnson MM, Nyswaner JT, Frank JA, Palardy GR, Tresser N, Genain CP, Mueller JP, Matis LA, Lenardo MJ (1999) Determinant spreading associated with demyelination in a nonhuman primate model of multiple sclerosis. J Immunol 162:2384–2390PubMedGoogle Scholar
  46. Mills KH (2011) TLR-dependent T cell activation in autoimmunity. Nature reviews. Immunology 11:807–822PubMedGoogle Scholar
  47. Ransohoff RM (2006) EAE: pitfalls outweigh virtues of screening potential treatments for multiple sclerosis. Trends Immunol 27:167–168PubMedCrossRefGoogle Scholar
  48. Rivers TM, Schwenkter FF (1935) Encephalomyelitis accompanied by myelin destruction experimentally produced in monkeys. J Exp Med 61:698–703Google Scholar
  49. Raine CS, Cannella B, Hauser SL, Genain CP (1999) Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: a case for antigen-specific antibody mediation. Ann Neurol 46:144–160PubMedCrossRefGoogle Scholar
  50. Rich C, Link JM, Zamora A, Jacobsen H, Meza-Romero R, Offner H, Jones R, Burrows GG, Fugger L, Vandenbark AA (2004) Myelin oligodendrocyte glycoprotein-35–55 peptide induces severe chronic experimental autoimmune encephalomyelitis in HLA-DR2-transgenic mice. Eur J Immunol 34:1251–1261PubMedCrossRefGoogle Scholar
  51. Rivers TM, Sprunt DH, Berry GP (1933) Observations on the attempts to produce acute disseminated allergic encephalomyelitis in primates. J Exp Med 58:39–53PubMedCrossRefGoogle Scholar
  52. Rose LM, Richards TL, Peterson J, Petersen R, Alvord EC Jr (1997) Resolution of CNS lesions following treatment of experimental allergic encephalomyelitis in macaques with monoclonal antibody to the CD18 leukocyte integrin. Mult Scler 2:259–266PubMedGoogle Scholar
  53. Segal BM, Constantinescu CS, Raychaudhuri A, Kim L, Fidelus-Gort R, Kasper LH (2008) Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol 7:796–804PubMedCrossRefGoogle Scholar
  54. Sanvito L, Constantinescu CS, Gran B, ’t Hart BA (2010) The multifaceted role of interferon-γ in central nervous system autoimmune demyelination. Open Autoimmun J 2:151–159CrossRefGoogle Scholar
  55. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z, Freeman C, Hunt SE, Edkins S, Gray E, Booth DR, Potter SC, Goris A, Band G, Oturai AB, Strange A, Saarela J, Bellenguez C, Fontaine B, Gillman M, Hemmer B, Gwilliam R, Zipp F, Jayakumar A, Martin R, Leslie S, Hawkins S, Giannoulatou E, D’Alfonso S, Blackburn H, Boneschi FM, Liddle J, Harbo HF, Perez ML, Spurkland A, Waller MJ, Mycko MP, Ricketts M, Comabella M, Hammond N, Kockum I, McCann OT, Ban M, Whittaker P, Kemppinen A, Weston P, Hawkins C, Widaa S, Zajicek J, Dronov S, Robertson N, Bumpstead SJ, Barcellos LF, Ravindrarajah R, Abraham R, Alfredsson L, Ardlie K, Aubin C, Baker A, Baker K, Baranzini SE, Bergamaschi L, Bergamaschi R, Bernstein A, Berthele A, Boggild M, Bradfield JP, Brassat D, Broadley SA, Buck D, Butzkueven H, Capra R, Carroll WM, Cavalla P, Celius EG, Cepok S, Chiavacci R, Clerget-Darpoux F, Clysters K, Comi G, Cossburn M, Cournu-Rebeix I, Cox MB, Cozen W, Cree BA, Cross AH, Cusi D, Daly MJ, Davis E, Bakker PI de, Debouverie M, D’Hooghe BM, Dixon K, Dobosi R, Dubois B, Ellinghaus D, Elovaara I, Esposito F, Fontenille C, Foote S, Franke A, Galimberti D, Ghezzi A, Glessner J, Gomez R, Gout O, Graham C, Grant SF, Guerini FR, Hakonarson H, Hall P, Hamsten A, Hartung HP, Heard RN, Heath S, Hobart J, Hoshi M, Infante-Duarte C, Ingram G, Ingram W, Islam T, Jagodic M, Kabesch M, Kermode AG, Kilpatrick TJ, Kim C, Klopp N, Koivisto K, Larsson M, Lathrop M, Lechner-Scott JS, Leone MA, Leppa V, Liljedahl U, Bomfim IL, Lincoln RR, Link J, Liu J, Lorentzen AR, Lupoli S, Macciardi F, Mack T, Marriott M, Martinelli V, Mason D, McCauley JL, Mentch F, Mero IL, Mihalova T, Montalban X, Mottershead J, Myhr KM, Naldi P, Ollier W, Page A, Palotie A, Pelletier J, Piccio L, Pickersgill T, Piehl F, Pobywajlo S, Quach HL, Ramsay PP, Reunanen M, Reynolds R, Rioux JD, Rodegher M, Roesner S, Rubio JP, Ruckert IM, Salvetti M, Salvi E, Santaniello A, Schaefer CA, Schreiber S, Schulze C, Scott RJ, Sellebjerg F, Selmaj KW, Sexton D, Shen L, Simms-Acuna B, Skidmore S, Sleiman PM, Smestad C, Sorensen PS, Sondergaard HB, Stankovich J, Strange RC, Sulonen AM, Sundqvist E, Syvanen AC, Taddeo F, Taylor B, Blackwell JM, Tienari P, Bramon E, Tourbah A, Brown MA, Tronczynska E, Casas JP, Tubridy N, Corvin A, Vickery J, Jankowski J, Villoslada P, Markus HS, Wang K, Mathew CG, Wason J, Palmer CN, Wichmann HE, Plomin R, Willoughby E, Rautanen A, Winkelmann J, Wittig M, Trembath RC, Yaouanq J, Viswanathan AC, Zhang H, Wood NW, Zuvich R, Deloukas P, Langford C, Duncanson A, Oksenberg JR, Pericak-Vance MA, Haines JL, Olsson T, Hillert J, Ivinson AJ, De Jager PL, Peltonen L, Stewart GJ, Hafler DA, Hauser SL, McVean G, Donnelly P, Compston A (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219PubMedCrossRefGoogle Scholar
  56. Shiina T, Kono A, Westphal N, Suzuki S, Hosomichi K, Kita YF, Roos C, Inoko H, Walter L (2011) Comparative genome analysis of the major histocompatibility complex (MHC) class I B/C segments in primates elucidated by genomic sequencing in common marmoset (Callithrix jacchus). Immunogenetics 63:485–499PubMedCrossRefGoogle Scholar
  57. Slierendregt BL, Hall M, ’t Hart B, Otting N, Anholts J, Verduin W, Claas F, Jonker M, Lanchbury JS, Bontrop RE (1995) Identification of an Mhc-DPB1 allele involved in susceptibility to experimental autoimmune encephalomyelitis in rhesus macaques. Int Immunol 7:1671–1679PubMedCrossRefGoogle Scholar
  58. Smith PA, Heijmans N, Ouwerling B, Breij EC, Evans N, Noort JM van, Plomp AC, Delarasse C, Hart B, Pham-Dinh D, Amor S (2005) Native myelin oligodendrocyte glycoprotein promotes severe chronic neurological disease and demyelination in Biozzi ABH mice. Eur J Immunol 35:1311–1319PubMedCrossRefGoogle Scholar
  59. Sriram S, Steiner I (2005) Experimental allergic encephalomyelitis: A misleading model of multiple sclerosis. Ann Neurol 58:939–945PubMedCrossRefGoogle Scholar
  60. Steinman L, Zamvil SS (2005) Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends Immunol 26:565–571PubMedCrossRefGoogle Scholar
  61. Steinman L, Zamvil SS (2006) How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol 60:12–21PubMedCrossRefGoogle Scholar
  62. Stuart G, Krikorian KS. (1933) Neuroparalytic accidents complicating antirabic treatment. Br Med J 1:501–504PubMedCrossRefGoogle Scholar
  63. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ (2005) Broadly targeted human cytomegalovirus-specific CD4 + and CD8 + T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685PubMedCrossRefGoogle Scholar
  64. ’t Hart BA, van Y Kooyk. (2004) Yin-Yang regulation of autoimmunity by DCs. Trends Immunol 25:353–359PubMedCrossRefGoogle Scholar
  65. ’t Hart BA, Massacesi L (2009) Clinical, pathological, and immunologic aspects of the multiple sclerosis model in common marmosets (Callithrix jacchus). J Neuropathol Exp Neurol 68:341–355PubMedCrossRefGoogle Scholar
  66. ’t Hart BA, Bauer J, Muller HJ, Melchers B, Nicolay K, Brok H, Bontrop RE, Lassmann H, Massacesi L (1998) Histopathological characterization of magnetic resonance imaging- detectable brain white matter lesions in a primate model of multiple sclerosis: a correlative study in the experimental autoimmune encephalomyelitis model in common marmosets (Callithrix jacchus). Am J Pathol 153:649–663CrossRefGoogle Scholar
  67. ’t Hart B, Amor S, Jonker M (2004) Evaluating the validity of animal models for research into therapies for immune-based disorders. Drug Discov Today 9:517–524PubMedCrossRefGoogle Scholar
  68. ’t Hart BA, Bauer J, Brok HP, Amor S (2005a) Non-human primate models of experimental autoimmune encephalomyelitis: variations on a theme. J Neuroimmunol 168:1–12CrossRefGoogle Scholar
  69. ’t Hart BA, Brok HP, Remarque E, Benson J, Treacy G, Amor S, Hintzen RQ, Laman JD, Bauer J, Blezer EL (2005b) Suppression of ongoing disease in a nonhuman primate model of multiple sclerosis by a human-anti-human IL-12p40 antibody. J Immunol 175:4761–4768Google Scholar
  70. ’t Hart BA, Blezer EL, Brok HP, Boon L, Boer M de, Bauer J, Laman JD (2005c) Treatment with chimeric anti-human CD40 antibody suppresses MRI-detectable inflammation and enlargement of pre-existing brain lesions in common marmosets affected by MOG-induced EAE. J Neuroimmunol 163:31–39CrossRefGoogle Scholar
  71. ’t Hart BA, Hintzen RQ, Laman JD (2009) Multiple sclerosis—a response-to-damage model. Trends Mol Med 15:235–244PubMedCrossRefGoogle Scholar
  72. ’t Hart BA, Gran B, Weissert R (2011) EAE: imperfect but useful models of multiple sclerosis. Trends Mol Med 17:119–125PubMedCrossRefGoogle Scholar
  73. Tardif SD, Smucny DA, Abbott DH, Mansfield K, Schultz-Darken N, Yamamoto ME (2003) Reproduction in captive common marmosets (Callithrix jacchus). Comp Med 53:364–368PubMedGoogle Scholar
  74. Teitelbaum D, Aharoni R, Klinger E, Kreitman R, Raymond E, Malley A, Shofti R, Sela M, Arnon R (2004) Oral glatiramer acetate in experimental autoimmune encephalomyelitis: clinical and immunological studies. Ann N Y Acad Sci 1029:239–249PubMedCrossRefGoogle Scholar
  75. Uccelli A, Oksenberg JR, Jeong MC, Genain CP, Rombos T, Jaeger EE, Giunti D, Lanchbury JS, Hauser SL (1997) Characterization of the TCRB chain repertoire in the New World monkey Callithrix jacchus. J Immunol 158:1201–1207PubMedGoogle Scholar
  76. van der Mei IA, Simpson S Jr, Stankovich J, Taylor BV (2011) Individual and joint action of environmental factors and risk of MS. Neurol Clin 29:233–255PubMedCrossRefGoogle Scholar
  77. van der Valk P, Amor S (2009) Preactive lesions in multiple sclerosis. Curr Opin Neurol 22:207–213PubMedGoogle Scholar
  78. van Lambalgen R, Jonker M (1987a) Experimental allergic encephalomyelitis in rhesus monkeys: I. Immunological parameters in EAE resistant and susceptible rhesus monkeys. Clin Exp Immunol 68:100–107Google Scholar
  79. van Lambalgen R, Jonker M (1987b) Experimental allergic encephalomyelitis in rhesus monkeys: II. Treatment of EAE with anti-T lymphocyte subset monoclonal antibodies. Clin Exp Immunol 68:305–312Google Scholar
  80. van Zwam M, Huizinga R, Melief MJ, Wierenga-Wolf AF, Meurs M van, Voerman JS, Biber KP, Boddeke HW, Hopken UE, Meisel C, Meisel A, Bechmann I, Hintzen RQ, ’t Hart BA, Amor S, Laman JD, Boven AL (2009a) Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. J Mol Med 87:273–286CrossRefGoogle Scholar
  81. van Zwam M, Huizinga R, Heijmans N, Meurs M van, Wierenga-Wolf AF, Melief MJ, Hintzen RQ, ’t Hart BA, Amor S, Boven LA, Laman DJ (2009b) Surgical excision of CNS-draining lymph nodes reduces relapse severity in chronic-relapsing experimental autoimmune encephalomyelitis. J Pathol 217:543–551CrossRefGoogle Scholar
  82. von Budingen HC, Hauser SL, Nabavi CB, Genain CP (2001) Characterization of the expressed immunoglobulin IGHV repertoire in the new world marmoset Callithrix jacchus. Immunogenetics 53:557–563CrossRefGoogle Scholar
  83. Vierboom MP, Jonker M, Bontrop RE, ’t Hart BA (2005) Modeling human arthritic diseases in nonhuman primates. Arthritis Res Ther 7:145–154PubMedCrossRefGoogle Scholar
  84. Vierboom MP, Breedveld E, Kondova I, ’t Hart BA (2010) Collagen-induced arthritis in common marmosets: a new nonhuman primate model for chronic arthritis. Arthritis Res Ther 12:R200PubMedCrossRefGoogle Scholar
  85. Villoslada P, Abel K, Heald N, Goertsches R, Hauser SL, Genain CP (2001) Frequency, heterogeneity and encephalitogenicity of T cells specific for myelin oligodendrocyte glycoprotein in naive outbred primates. Eur J Immunol 31:2942–2950PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Bert A. ’t Hart
    • 1
    • 2
    • 3
    • 4
  • S. Anwar Jagessar
    • 1
    • 4
  • Krista Haanstra
    • 1
  • Yolanda S. Kap
    • 1
    • 3
    • 4
  • Jon D. Laman
    • 3
  1. 1.Department of ImmunobiologyBiomedical Primate Research CentreRIJSWIJKThe Netherlands
  2. 2.Department of NeuroscienceUniversity Medical Centre GroningenGroningenThe Netherlands
  3. 3.Department of ImmunologyErasmus Medical CenterRotterdamThe Netherlands
  4. 4.MS center ErasMSRotterdamThe Netherlands

Personalised recommendations