Skip to main content

Cannabinoids, Monoamines, COMT and Schizophrenia: Pathobiological Mechanisms in Psychosis

  • Chapter
  • First Online:
Endocannabinoid Regulation of Monoamines in Psychiatric and Neurological Disorders

Abstract

Chronic cannabis use is associated with increased risk for developing a psychotic disorder, with risk to develop psychosis highest among individuals who use cannabis during adolescence. The majority of cannabis users, however, do not develop a diagnosable psychiatric disorder. Individuals genetically predisposed to the development of psychosis seem at increased risk to the effects of cannabis. Contemporary models of psychosis posit that genetic predisposition and/or disruption at critical developmental periods is a substrate on which act various biological and psychosocial adversities, resulting in early functional impairments and later emergence of diagnostic symptoms. Recent years has seen the generation of experimental models of psychosis based on the interaction of genetic mutations and environmental factors (e.g. exposure to drugs of abuse). An emerging human and animal literature has shown showing that variation in the genes implicated in dopamine neurotransmission (COMT, AKT1, D2R) moderates the psychotomimetic effects of cannabis exposure. Further studies are required to clarify the molecular underpinnings of dopamine system involvement in cannabis-induced psychosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abush H, Akirav I (2012) Short- and long-term cognitive effects of chronic cannabinoids administration in late-adolescence rats. PLoS One 7(2):e31731

    PubMed  CAS  Google Scholar 

  • Altar CA, Cai N, Bliven T et al (1997) Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389(6653):856–860

    PubMed  CAS  Google Scholar 

  • Arnone D, Barrick TR, Chengappa S (2008) Corpus callosum damage in heavy marijuana use: preliminary evidence from diffusion tensor tractography and tract-based spatial statistics. Neuroimage 41(3):1067–74

    PubMed  CAS  Google Scholar 

  • Andersen SL, Teicher MH (2008) Stress, sensitive periods and maturational events in adolescent depression. Trends Neurosci 31(4):183–91

    PubMed  CAS  Google Scholar 

  • Arseneault L, Cannon M, Poulton R et al (2002) Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. BMJ 325(7374):1212–1213

    PubMed  Google Scholar 

  • Arseneault L, Cannon M, Witton J et al (2004) Causal association between cannabis and psychosis: examination of the evidence. Br J Psychiatry 184:110–117

    PubMed  Google Scholar 

  • Ayhan Y, Sawa A, Ross CA et al (2009) Animal models of gene-environment interactions in schizophrenia. Behav Brain Res 204(2):274–81

    PubMed  CAS  Google Scholar 

  • Babovic D, O’Tuathaigh CM, O’Sullivan GJ et al (2007) Exploratory and habituation phenotype of heterozygous and homozygous COMT knockout mice. Behav Brain Res 183(2):236–239

    PubMed  CAS  Google Scholar 

  • Babovic D, O’Tuathaigh CM, O’Connor AM et al (2008) Phenotypic characterization of cognition and social behaviour in mice with heterozygous versus homozygous deletion of catechol-O-methyltransferase. Neuroscience 155(4):1021–1029

    PubMed  CAS  Google Scholar 

  • Baeza I, Graell M, Moreno D et al (2009) Cannabis use in children and adolescents with first episode psychosis: influence on psychopathology and short-term outcome (CAFEPS study). Schizophr Res 113(2–3):129–137

    PubMed  Google Scholar 

  • Barak S, Weiner I (2011) The M1/M4 preferring agonist xanomeline reverses amphetamine-, MK801- and scopolamine-induced abnormalities of latent inhibition: putative efficacy against positive, negative and cognitive symptoms in schizophrenia. Int J Neuropsychopharmacol 14(9):1233–46

    PubMed  CAS  Google Scholar 

  • Barnett JH, Scoriels L, Munafò MR (2008) Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biol Psychiatry 64(2):137–144

    PubMed  CAS  Google Scholar 

  • Bava S, Frank LR, McQueeny T et al (2009) Altered white matter microstructure in adolescent substance users. Psychiatry Res 173(3):228–237

    PubMed  Google Scholar 

  • Behan AT, Hryniewiecka M, O’Tuathaigh CM et al (2012) Chronic adolescent exposure to delta-9-tetrahydrocannabinol in COMT mutant mice: impact on indices of dopaminergic, endocannabinoid and GABAergic pathways. Neuropsychopharmacology 37(7):1773–1783

    PubMed  CAS  Google Scholar 

  • Belue RC, Howlett AC, Westlake TM et al (1995) The ontogeny of cannabinoid receptors in the brain of postnatal and aging rats. Neurotoxicol Teratol 17(1):25–30

    PubMed  CAS  Google Scholar 

  • Bertolino A, Caforio G, Blasi G et al (2004) Interaction of COMT (Val(108/158)Met) genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia. Am J Psychiatry 161(10):1798–1805

    PubMed  Google Scholar 

  • Bhattacharyya S, Crippa JA, Martin-Santos R et al (2009) Imaging the neural effects of cannabinoids: current status and future opportunities for psychopharmacology. Curr Pharm Des 15(22):2603–2614

    PubMed  CAS  Google Scholar 

  • Bhattacharyya S, Morrison PD, Fusar-Poli P (2010) Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology 35(3):764–774

    PubMed  CAS  Google Scholar 

  • Bhattacharyya S, Crippa JA, Allen P (2012) Induction of psychosis by Δ9-tetrahydrocannabinol reflects modulation of prefrontal and striatal function during attentional salience processing. Arch Gen Psychiatry 69(1):27–36

    PubMed  CAS  Google Scholar 

  • Bilder RM, Volavka J, Lachman HM et al (2004) The catechol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 29(11):1943–1961

    PubMed  CAS  Google Scholar 

  • Block RI, O’Leary DS, Ehrhardt JC (2000) Effects of frequent marijuana use on brain tissue volume and composition. Neuroreport 11(3):491–6

    PubMed  CAS  Google Scholar 

  • Bossong MG, van Berckel BN, Boellaard R et al (2009) Delta 9-tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology 34(3):759–66

    PubMed  CAS  Google Scholar 

  • Bossong MG, Niesink RJ (2010) Adolescent brain maturation, the endogenous cannabinoid system and the neurobiology of cannabis-induced schizophrenia. Prog Neurobiol 92(3):370–385

    PubMed  CAS  Google Scholar 

  • Bossong MG, Jansma JM, van Hell HH (2012) Effects of δ9-tetrahydrocannabinol on human working memory function. Biol Psychiatry 71(8):693–699

    PubMed  CAS  Google Scholar 

  • Boucher AA, Hunt GE, Karl T et al (2007a) Heterozygous neuregulin 1 mice display greater baseline and Delta(9)-tetrahydrocannabinol-induced c-Fos expression. Neuroscience 149(4):861–870

    CAS  Google Scholar 

  • Boucher AA, Arnold JC, Duffy L et al (2007b) Heterozygous neuregulin 1 mice are more sensitive to the behavioural effects of Delta9-tetrahydrocannabinol. Psychopharmacology 192(3):325–336

    CAS  Google Scholar 

  • Boucher AA, Hunt GE, Micheau J et al (2011) The schizophrenia susceptibility gene neuregulin 1 modulates tolerance to the effects of cannabinoids. Int J Neuropsychopharmacology 14(5):631–643

    CAS  Google Scholar 

  • Caldú X, Vendrell P, Bartrés-Faz D et al (2007) Impact of the COMT Val108/158 Met and DAT genotypes on prefrontal function in healthy subjects. Neuroimage 37(4):1437–1444

    PubMed  Google Scholar 

  • Casadio P, Fernandes C, Murray RM et al (2011) Cannabis use in young people: the risk for schizophrenia. Neurosci Biobehav Rev 35(8):1779–1787

    PubMed  Google Scholar 

  • Caspi A, Moffitt TE, Cannon M et al (2005) Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol Psychiatry 57(10):1117–1127

    PubMed  CAS  Google Scholar 

  • Cha YM, White AM, Kuhn CM et al (2006) Differential effects of delta9-THC on learning in adolescent and adult rats. Pharmacol Biochem Behav 83(3):448–55

    PubMed  CAS  Google Scholar 

  • Cha YM, Jones KH, Kuhn CM et al (2007) Sex differences in the effects of delta9-tetrahydrocannabinol on spatial learning in adolescent and adult rats. Behav Pharmacol 18(5–6):563–569

    PubMed  CAS  Google Scholar 

  • Chen J, Lipska BK, Halim N et al (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75(5):807–821

    PubMed  CAS  Google Scholar 

  • Cohen M, Solowij N, Carr V (2008) Cannabis, cannabinoids and schizophrenia: integration of the evidence. Aust N Z J Psychiatry 42(5):357–368

    PubMed  Google Scholar 

  • Collip D, van Winkel R, Peerbooms O et al (2011) COMT Val158Met-stress interaction in psychosis: role of background psychosis risk. CNS Neurosci Ther 17(6):612–619

    PubMed  Google Scholar 

  • Costas J, Sanjuán J, Ramos-Ràos R et al (2011) Interaction between COMT haplotypes and cannabis in schizophrenia: a case-only study in two samples from Spain. Schizophr Res 127(1–3):22–27

    PubMed  Google Scholar 

  • Coulston CM, Perdices M, Tennant CC (2007) The neuropsychological correlates of cannabis use in schizophrenia: lifetime abuse/dependence, frequency of use, and recency of use. Schizophr Res 96(1–3):169–184

    PubMed  Google Scholar 

  • Decoster J, van Os J, Kenis G et al (2011) Age at onset of psychotic disorder: cannabis, BDNF Val66Met, and sex-specific models of gene-environment interaction. Am J Med Genet B Neuropsychiatr Genet 156B(3):363–9

    PubMed  Google Scholar 

  • Decoster J, van Os J, Myin-Germeys I et al (2012) Genetic variation underlying psychosis-inducing effects of cannabis: critical review and future directions. Curr Pharm Des 18(32):5015–5023

    PubMed  CAS  Google Scholar 

  • de la Serna E, Mayoral M, Baeza I (2010) Cognitive functioning in children and adolescents in their first episode of psychosis: differences between previous cannabis users and nonusers. J Nerv Ment Dis 198(2):159–62

    Google Scholar 

  • Delisi LE, Bertisch HC, Szulc KU (2006) A preliminary DTI study showing no brain structural change associated with adolescent cannabis use. Harm Reduct J 3:17

    PubMed  Google Scholar 

  • Dempster EL, Mill J, Craig IW et al (2006) The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression. BMC Med Genet 7:10

    PubMed  Google Scholar 

  • Desbonnet L, O’Tuathaigh C, Clarke G et al (2012) Phenotypic effects of repeated psychosocial stress during adolescence in mice mutant for the schizophrenia risk gene neuregulin-1: a putative model of gene × environment interaction. Brain Behav Immun 26(4):660–71

    PubMed  CAS  Google Scholar 

  • Dumontheil I, Roggeman C, Ziermans T et al (2011) Influence of the COMT genotype on working memory and brain activity changes during development. Biol Psychiatry 70(3):222–229

    PubMed  CAS  Google Scholar 

  • Duncan LE, Keller MC (2011) A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. Am J Psychiatry 168(10):1041–9

    Google Scholar 

  • Durstewitz D, Seamans JK (2008) The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol Psychiatry 64(9):739–749

    PubMed  CAS  Google Scholar 

  • Di Forti M, Morgan C, Dazzan P et al (2009) High-potency cannabis and the risk of psychosis. J Psychiatry 195(6):488–491

    Google Scholar 

  • D’Souza DC, Perry E, MacDougall L et al (2004) The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: implications for psychosis. Neuropsychopharmacology 29(8):1558–1572

    Google Scholar 

  • D’Souza DC, Abi-Saab WM, Madonick S et al (2005) Delta-9-tetrahydrocannabinol effects in schizophrenia: implications for cognition, psychosis, and addiction. Biol Psychiatry 57(6):594–608

    Google Scholar 

  • D’Souza DC, Ranganathan M, Braley G et al (2008a) Blunted psychotomimetic and amnestic effects of delta-9-tetrahydrocannabinol in frequent users of cannabis. Neuropsychopharmacology 33(10):2505–2516

    Google Scholar 

  • D’Souza DC, Braley G, Blaise R et al (2008b) Effects of haloperidol on the behavioural, subjective, cognitive, motor, and neuroendocrine effects of Delta-9-tetrahydrocannabinol in humans. Psychopharmacology 198(4):587–603

    Google Scholar 

  • D’Souza DC, Sewell RA, Ranganathan M (2009) Cannabis and psychosis/schizophrenia: human studies. Eur Arch Psychiatry Clin Neurosci 259(7):413–431

    Google Scholar 

  • Egan MF, Goldberg TE, Kolachana BS et al (2001) Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 98(12):6917–6922

    PubMed  CAS  Google Scholar 

  • Egan MF, Kojima M, Callicott JH et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112(2):257–269

    PubMed  CAS  Google Scholar 

  • Egerton A, Allison C, Brett RR et al (2006) Cannabinoids and prefrontal cortical function: insights from preclinical studies. Neurosci Biobehav Rev 30(5):680–695

    PubMed  CAS  Google Scholar 

  • Eggan SM, Lewis DA (2007) Immunocytochemical distribution of the cannabinoid CB1R receptor in the primate neocortex: a regional and laminar analysis. Cereb Cortex 17(1):175–191

    PubMed  Google Scholar 

  • Eggan SM, Mizoguchi Y, Stoyak SR et al (2010) Development of cannabinoid 1 receptor protein and messenger RNA in monkey dorsolateral prefrontal cortex. Cereb Cortex 20(5):1164–1174

    PubMed  Google Scholar 

  • Ellgren M, Spano SM, Hurd YL (2007) Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats. Neuropsychopharmacology 32(3):607–615

    PubMed  CAS  Google Scholar 

  • Estrada G, Fatjó-Vilas M, Muñoz MJ et al (2011) Cannabis use and age at onset of psychosis: further evidence of interaction with COMT Val158Met polymorphism. Acta Psychiatr Scand 123(6):485–492

    PubMed  CAS  Google Scholar 

  • European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) (2010) Statistical Bulletin. http://www.emcdda.europa.eu/stats10

  • Fergusson DM, Horwood LJ, Swain-Campbell NR (2003) Cannabis dependence and psychotic symptoms in young people. Psychol Med 33(1):15–21

    PubMed  CAS  Google Scholar 

  • Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signalling. Physiol Rev 83(3):1017–1066

    PubMed  CAS  Google Scholar 

  • Giuffrida A, Leweke FM, Gerth CW (2004) Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology 29(11):2108–2114

    PubMed  CAS  Google Scholar 

  • Gleason KA, Birnbaum SG, Shukla A et al (2012) Susceptibility of the adolescent brain to cannabinoids: long-term hippocampal effects and relevance to schizophrenia. Transl Psychiatry 2:e199

    PubMed  CAS  Google Scholar 

  • Gogos JA, Morgan M, Luine V (1998) Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behaviour. Proc Natl Acad Sci U S A 95(17):9991–9996

    PubMed  CAS  Google Scholar 

  • Gothelf D, Michaelovsky E, Frisch A et al (2007) Association of the low-activity COMT 158Met allele with ADHD and OCD in subjects with velocardiofacial syndrome. Int J Neuropsychopharmacol 10(3):301–308

    PubMed  CAS  Google Scholar 

  • Gothelf D, Schaer M, Eliez S (2008) Genes, brain development and psychiatric phenotypes in velo-cardio-facial syndrome. Dev Disabil Res Rev 14(1):59–68

    PubMed  Google Scholar 

  • Grant I, Gonzalez R, Carey CL et al (2003) Non-acute (residual) neurocognitive effects of cannabis use: a meta-analytic study. J Int Neuropsychol Soc 9(5):679–689

    PubMed  CAS  Google Scholar 

  • Gray L, Hannan AJ (2007) Dissecting cause and effect in the pathogenesis of psychiatric disorders: genes, environment and behaviour. Curr Mol Med 7(5):470–478

    PubMed  CAS  Google Scholar 

  • Grech A, Van Os J, Jones Pbet al (2005) Cannabis use and outcome of recent onset psychosis. Eur Psychiatry 20(4):349–353

    PubMed  Google Scholar 

  • Green AI, Tohen MF, Hamer RM et al (2004) First episode schizophrenia-related psychosis and substance use disorders: acute response to olanzapine and haloperidol. Schizophr Res 66(2–3):125–135

    PubMed  Google Scholar 

  • Gruber SA, Yurgelun-Todd DA (2005) Neuroimaging of marijuana smokers during inhibitory processing: a pilot investigation. Brain Res Cogn Brain Res 23(1):107–118

    PubMed  Google Scholar 

  • Haasio K, Huotari M, Nissinen E et al (2003) Tissue histopathology, clinical chemistry and behaviour of adult Comt-gene-disrupted mice. J Appl Toxicol 23(4):213–219

    PubMed  CAS  Google Scholar 

  • Harte LC, Dow-Edwards D (2010) Sexually dimorphic alterations in locomotion and reversal learning after adolescent tetrahydrocannabinol exposure in the rat. Neurotoxicol Teratol 32(5):515–524

    PubMed  CAS  Google Scholar 

  • Harrison PJ, Law AJ (2006) Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry 60(2):132–140

    PubMed  CAS  Google Scholar 

  • Henquet C, Rosa A, Krabbendam L (2006) An experimental study of catechol-o-methyltransferase Val158Met moderation of delta-9-tetrahydrocannabinol-induced effects on psychosis and cognition. Neuropsychopharmacology 31(12):2748–2757

    PubMed  CAS  Google Scholar 

  • Ho BC, Wassink TH, Ziebell S et al (2011) Cannabinoid receptor 1 gene polymorphisms and marijuana misuse interactions on white matter and cognitive deficits in schizophrenia. Schizophr Res 128(1–3):66–75

    PubMed  Google Scholar 

  • Hoenicka J, Garrido E, Martànez I et al (2010) Gender-specific COMT Val158Met polymorphism association in Spanish schizophrenic patients. Am J Med Genet B Neuropsychiatr Genet 153B(1):79–85

    PubMed  CAS  Google Scholar 

  • Huotari M, Santha M, Lucas LR et al (2002) Effect of dopamine uptake inhibition on brain catecholamine levels and locomotion in catechol-O-methyltransferase-disrupted mice. J Pharmacol Exp Ther 303(3):1309–1316

    PubMed  CAS  Google Scholar 

  • Insel TR (2010) Rethinking schizophrenia. Nature 468(7321):187–193

    PubMed  CAS  Google Scholar 

  • Ishizuka K, Tajinda K, Colantuoni C (2010) Negative symptoms of schizophrenia correlate with impairment on the University of Pennsylvania smell identification test. Neurosci Res 66(1):106–110

    PubMed  Google Scholar 

  • Jiang H, Xie T, Ramsden DB et al (2003) Human catechol-O-methyltransferase down-regulation by estradiol. Neuropharmacology 45(7):1011–1018

    PubMed  CAS  Google Scholar 

  • Kamath V, Moberg PJ, Gur RE et al (2012) Effects of the val(158)met catechol-O-methyltransferase gene polymorphism on olfactory processing in schizophrenia. Behav Neurosci 126(1):209–215

    PubMed  CAS  Google Scholar 

  • Kang C, Xu X, Liu H et al (2010) Association study of catechol-O-methyltransferase (COMT) gene Val158Met polymorphism with auditory P300 in Chinese Han patients with schizophrenia. Psychiatry Res 180(2–3):153–155

    PubMed  CAS  Google Scholar 

  • Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160(1):13–23

    PubMed  Google Scholar 

  • Kapur S (2004) How antipsychotics become anti-“psychotic”–from dopamine to salience to psychosis. Trends Pharmacol Sci 25(8):402–406

    PubMed  CAS  Google Scholar 

  • Karayiorgou M, Simon TJ, Gogos JA (2010) 22q11.2.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 11(6):402–416

    PubMed  CAS  Google Scholar 

  • Keefe RS, Harvey PD (2012) Cognitive impairment in schizophrenia. Handb Exp Pharmacol 213:11–37

    PubMed  Google Scholar 

  • Kimoto S, Muraki K, Toritsuka M et al (2012) Selective overexpression of Comt in prefrontal cortex rescues schizophrenia-like phenotypes in a mouse model of 22q11.2 deletion syndrome. Transl Psychiatry 2:e146

    PubMed  CAS  Google Scholar 

  • Kirby BP, Waddington JL, O’Tuathaigh CM (2010) Advancing a functional genomics for schizophrenia: psychopathological and cognitive phenotypes in mutants with gene disruption. Brain Res Bull 83(3–4):162–176

    PubMed  CAS  Google Scholar 

  • Kleinloog D, Liem-Moolenaar M, Jacobs G et al (2012) Does olanzapine inhibit the psychomimetic effects of Δ9-tetrahydrocannabinol? J Psychopharmacol 26(10):1307–1316

    PubMed  Google Scholar 

  • Kravariti E, Jacobson C, Morris R et al (2010) Memory in intellectually matched groups of young participants with 22q11.2.2 deletion syndrome and those with schizophrenia. Res Dev Disabil 31(3):864–868

    PubMed  Google Scholar 

  • Lajiness-O’Neill RR, Beaulieu I, Titus JB et al (2005) Memory and learning in children with 22q11.2.2 deletion syndrome: evidence for ventral and dorsal stream disruption? Child Neuropsychol 11(1):55–71

    Google Scholar 

  • Leitman DI, Laukka P, Juslin PN et al (2010) Getting the cue: sensory contributions to auditory emotion recognition impairments in schizophrenia. Schizophr Bull 36(3):545–556

    PubMed  Google Scholar 

  • Leweke FM, Giuffrida A, Wurster U et al (1999) Elevated endogenous cannabinoids in schizophrenia. Neuroreport 10(8):1665–1669

    PubMed  CAS  Google Scholar 

  • Leweke FM, Schneider M (2011) Chronic pubertal cannabinoid treatment as a behavioural model for aspects of schizophrenia: effects of the atypical antipsychotic quetiapine. Int J Neuropsychopharmacol 14(1):43–51

    PubMed  CAS  Google Scholar 

  • Liem-Moolenaar M, te Beek ET, de Kam ML et al (2010) Central nervous system effects of haloperidol on THC in healthy male volunteers. J Psychopharmacol 24(11):1697–1708

    PubMed  CAS  Google Scholar 

  • Linszen D, van Amelsvoort T (2007) Cannabis and psychosis: an update on course and biological plausible mechanisms. Curr Opin Psychiatry 20(2):116–120

    PubMed  Google Scholar 

  • Løberg EM, Hugdahl K (2009) Cannabis use and cognition in schizophrenia. Front Hum Neurosci 3:53

    PubMed  Google Scholar 

  • Long LE, Chesworth R, Arnold JC et al (2010) A follow-up study: acute behavioural effects of Delta(9)-THC in female heterozygous neuregulin 1 transmembrane domain mutant mice. Psychopharmacology 211(3):277–289

    PubMed  CAS  Google Scholar 

  • Long LE, Chesworth R, Huang XF et al (2012) Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice. PLoS One 7(4):e34129

    PubMed  CAS  Google Scholar 

  • Lu BY, Martin KE, Edgar JC et al (2007) Effect of catechol O-methyltransferase val(158)met polymorphism on the p50 gating endophenotype in schizophrenia. Biol Psychiatry 62(7):822–825

    PubMed  CAS  Google Scholar 

  • Malone DT, Hill MN, Rubino T (2010) Adolescent cannabis use and psychosis: epidemiology and neurodevelopmental models. Br J Pharmacol 160(3):511–522

    PubMed  CAS  Google Scholar 

  • Mato S, Del Olmo E, Pazos A (2003) Ontogenetic development of cannabinoid receptor expression and signal transduction functionality in the human brain. Eur J Neurosci 17(9):1747–1754

    PubMed  Google Scholar 

  • McGrath J, Welham J, Scott J (2010) Association between cannabis use and psychosis-related outcomes using sibling pair analysis in a cohort of young adults. Arch Gen Psychiatry 67(5):440–447

    PubMed  Google Scholar 

  • McLaren J, Swift W, Dillon P et al (2008) Cannabis potency and contamination: a review of the literature. Addiction 103(7):1100–1109

    PubMed  Google Scholar 

  • McLaren JA, Silins E, Hutchinson D et al (2010) Assessing evidence for a causal link between cannabis and psychosis: a review of cohort studies. Int J Drug Policy 21(1):10–19

    PubMed  Google Scholar 

  • Medina KL, Nagel BJ, Park A et al (2007) Depressive symptoms in adolescents: associations with white matter volume and marijuana use. J Child Psychol Psychiatry 48(6):592–600

    PubMed  Google Scholar 

  • Meechan DW, Tucker ES, Maynard TM et al (2009) Diminished dosage of 22q11.2 genes disrupts neurogenesis and cortical development in a mouse model of 22q11.2 deletion/DiGeorge syndrome. Proc Natl Acad Sci U S A 106(38):16434–16445

    PubMed  CAS  Google Scholar 

  • Meijer JH, Dekker N, Koeter MW, et al (2012) Cannabis and cognitive performance in psychosis: a cross-sectional study in patients with non-affective psychotic illness and their unaffected siblings. Psychol Med 42(4):705–716

    PubMed  CAS  Google Scholar 

  • Mier D, Kirsch P, Meyer-Lindenberg A (2010) Neural substrates of pleiotropic action of genetic variation in COMT: a meta-analysis. Mol Psychiatry 15(9):918–927

    PubMed  CAS  Google Scholar 

  • Munafò MR, Bowes L, Clark TG et al (2005) Lack of association of the COMT (Val158/108 Met) gene and schizophrenia: a meta-analysis of case-control studies. Mol Psychiatry 10(8):765–770

    PubMed  Google Scholar 

  • Matochik JA, Eldreth DA, Cadet JL et al (2005) Altered brain tissue composition in heavy marijuana users. Drug Alcohol Depend 77(1):23–30

    PubMed  CAS  Google Scholar 

  • Molero P, Ortuño F, Zalacain M et al (2007) Clinical involvement of catechol-O-methyltransferase polymorphisms in schizophrenia spectrum disorders: influence on the severity of psychotic symptoms and on the response to neuroleptic treatment. Pharmacogenomics J 7(6):418–426

    PubMed  CAS  Google Scholar 

  • Moore TH, Zammit S, Lingford-Hughes A, Barnes TR, Jones PB, Burke M, Lewis G (2007) Cannabis use and risk of psychotic or affective mental health outcomes: A systematic review. Lancet 370(9584):319–328

    Google Scholar 

  • Morgan CJ, Curran HV (2008) Effects of cannabidiol on schizophrenia-like symptoms in people who use cannabis. Br J Psychiatry 192(4):306–7

    PubMed  Google Scholar 

  • Morgan CJ, Duffin S, Hunt S et al (2012) Neurocognitive function and schizophrenia-proneness in individuals dependent on ketamine, on high potency cannabis (‘skunk’) or on cocaine. Pharmacopsychiatry 45(7):269–74

    PubMed  CAS  Google Scholar 

  • Morrison PD, Murray RM (2009) From real-world events to psychosis: the emerging neuropharmacology of delusions. Schizophr Bull 35(4):668–674

    Google Scholar 

  • Morrison PD, Zois V, McKeown DA et al (2009) The acute effects of synthetic intravenous Delta9-tetrahydrocannabinol on psychosis, mood and cognitive functioning. Psychol Med 39(10):1607–1616

    PubMed  CAS  Google Scholar 

  • Moser PC, Hitchcock JM, Lister S et al (2000) The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Res Brain Res Rev 33(2–3):275–307

    PubMed  CAS  Google Scholar 

  • Murphy KC, Jones LA, Owen MJ (1999) High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 56(10):940–945

    PubMed  CAS  Google Scholar 

  • Murphy KC, Owen MJ (2001) Velo-cardio-facial syndrome: a model for understanding the genetics and pathogenesis of schizophrenia. Br J Psychiatry 179:397–402

    PubMed  CAS  Google Scholar 

  • Murray RM, Morrison PD, Henquet C et al (2007) Cannabis, the mind and society: the harsh realities. Nat Rev Neurosci 8(11):885–895

    PubMed  CAS  Google Scholar 

  • Murray RM, Lappin J, Di Forti M (2008) Schizophrenia: from developmental deviance to dopamine dysregulation. Eur Neuropsychopharmacol 18:129–134.

    Google Scholar 

  • Okochi T, Ikeda M, Kishi T et al (2009) Meta-analysis of association between genetic variants in COMT and schizophrenia: an update. Schizophr Res 110(1–3):140–148

    PubMed  Google Scholar 

  • O’Shea M, Singh ME, McGregor IS et al (2004) Chronic cannabinoid exposure produces lasting memory impairment and increased anxiety in adolescent but not adult rats. J Psychopharmacol 18(4):502–508

    Google Scholar 

  • O’Shea M, McGregor IS, Mallet PE (2006) Repeated cannabinoid exposure during perinatal, adolescent or early adult ages produces similar longlasting deficits in object recognition and reduced social interaction in rats. J Psychopharmacol 20(5):611–621

    Google Scholar 

  • O’Tuathaigh CM, Hryniewiecka M, Behan A et al (2010) Chronic adolescent exposure to Δ-9-tetrahydrocannabinol in COMT mutant mice: impact on psychosis-related and other phenotypes. Neuropsychopharmacology 35(11):2262–2273

    Google Scholar 

  • O’Tuathaigh CM, Clarke G, Walsh J et al (2012a) Genetic vs. pharmacological inactivation of COMT influences cannabinoid-induced expression of schizophrenia-related phenotypes. Int J Neuropsychopharmacol 15(9):1331–1342

    Google Scholar 

  • O’Tuathaigh CM, Desbonnet L, Waddington JL (2012b) Mutant mouse models in evaluating novel approaches to antipsychotic treatment. Handb Exp Pharmacol 213:113–45

    Google Scholar 

  • Papaleo F, Crawley JN, Song J et al (2008) Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J Neurosci 28(35):8709–8723

    PubMed  CAS  Google Scholar 

  • Papaleo F, Lipska BK, Weinberger DR (2012) Mouse models of genetic effects on cognition: relevance to schizophrenia. Neuropharmacology 62(3):1204–1220

    PubMed  CAS  Google Scholar 

  • Pelayo-Terán JM, Pérez-Iglesias R, Mata I et al (2010) Catechol-o-methyltransferase (COMT) Val158Met variations and cannabis use in first-episode non-affective psychosis: clinical-onset implications. Psychiatry Res 179(3):291–296

    PubMed  Google Scholar 

  • Pelayo-Terán JM, Suárez-Pinilla P, Chadi N et al (2012) Gene-environment interactions underlying the effect of cannabis in first episode psychosis. Curr Pharm Des 18(32):5024–5035

    PubMed  Google Scholar 

  • Pelletier M, Achim AM, Montoya A et al (2005) Cognitive and clinical moderators of recognition memory in schizophrenia: a meta-analysis. Schizophr Res 74(2–3):233–252

    PubMed  Google Scholar 

  • Pistis M, Muntoni AL, Pillolla G et al (2002) Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study. Eur J Neurosci 15(11):1795–1802

    PubMed  Google Scholar 

  • Pitts DK, Freeman AS, Chiodo LA (1990) Dopamine neuron ontogeny: electrophysiological studies. Synapse 6(4):309–320

    PubMed  CAS  Google Scholar 

  • Potvin S, Joyal CC, Pelletier J et al (2008) Contradictory cognitive capacities among substance-abusing patients with schizophrenia: a meta-analysis. Schizophr Res 100(1–3):242–251

    PubMed  Google Scholar 

  • Prasad SE, Howley S, Murphy KC (2008) Candidate genes and the behavioural phenotype in 22q11.2.2 deletion syndrome. Dev Disabil Res Rev 14(1):26–34

    PubMed  Google Scholar 

  • Quinn HR, Matsumoto I, Callaghan PD et al (2008) Adolescent rats find repeated Delta(9)-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure. Neuropsychopharmacology 33(5):1113–1126

    PubMed  Google Scholar 

  • Rabin RA, Zakzanis KK, George TP (2011) The effects of cannabis use on neurocognition in schizophrenia: a meta-analysis. Schizophr Res 128(1–3):111–116

    PubMed  Google Scholar 

  • Rais M, Cahn W, Van Haren N et al (2008) Excessive brain volume loss over time in cannabis-using first-episode schizophrenia patients. Am J Psychiatry 165(4):490–496

    PubMed  Google Scholar 

  • Realini N, Rubino T, Parolaro D (2009) Neurobiological alterations at adult age triggered by adolescent exposure to cannabinoids. Pharmacol Res 60(2):132–138

    PubMed  CAS  Google Scholar 

  • Renard D, Taieb G, Gras-Combe G et al (2012) Cannabis-related myocardial infarction and cardioembolic stroke. J Stroke Cerebrovasc Dis 21(1):82–83

    PubMed  Google Scholar 

  • Reuter M, Peters K, Schroeter K et al (2005) The influence of the dopaminergic system on cognitive functioning: a molecular genetic approach. Behav Brain Res 164(1):93–99

    PubMed  CAS  Google Scholar 

  • Reuter M, Schmitz A, Corr P et al (2006) Molecular genetics support Gray’s personality theory: the interaction of COMT and DRD2 polymorphisms predicts the behavioural approach system. Int J Neuropsychopharmacol 9(2):155–166

    PubMed  CAS  Google Scholar 

  • Ringen PA, Melle I, Berg AO (2013) Cannabis use and premorbid functioning as predictors of poorer neurocognition in schizophrenia spectrum disorder. Schizophr Res 143(1):84–9

    PubMed  Google Scholar 

  • Roiser JP, Stephan KE, den Ouden HE et al (2009) Do patients with schizophrenia exhibit aberrant salience? Psychol Med 39(2):199–209

    PubMed  CAS  Google Scholar 

  • Roth WT, Pfefferbaum A (1992) Abnormalities of the left temporal lobe in schizophrenia. N Engl J Med 327(23):1689

    PubMed  CAS  Google Scholar 

  • Rubino T, Guidali C, Vigano D (2008) CB1R receptor stimulation in specific brain areas differently modulate anxiety-related behaviour. Neuropharmacology 54(1):151–160

    PubMed  CAS  Google Scholar 

  • Rubino T, Realini N, Braida D, Alberio T, Capurro V, Vigano D (2009a) The depressive phenotype induced in adult female rats by adolescent exposure toTHC isassociated with cognitive impairment and altered neuroplasticity in the prefrontal cortex. Neurotox Res 15(4):291–302

    Google Scholar 

  • Rubino T, Realini N, Braida D, Guidi S, Capurro V, Vigano D (2009b) Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment inadulthood. Hippocampus 19(8):763–772

    Google Scholar 

  • Rubino T, Realini N, Braida D (2012) The depressive phenotype induced in adult female rats by adolescent exposure to THC is associated with cognitive impairment and altered neuroplasticity in the prefrontal cortex. Neurotox Res 15(4):291–302

    Google Scholar 

  • Schnell T, Koethe D, Daumann J et al (2009) The role of cannabis in cognitive functioning of patients with schizophrenia. Psychopharmacology 205(1):45–52

    PubMed  CAS  Google Scholar 

  • Schneider M, Koch M (2003) Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats. Neuropsychopharmacology 28(10):1760–1769

    PubMed  CAS  Google Scholar 

  • Schneider M (2008) Puberty as a highly vulnerable developmental period for the consequences of cannabis exposure. Addict Biol 13(2):253–263

    PubMed  Google Scholar 

  • Schubart CD, Sommer IE, van Gastel WA (2011) Cannabis with high cannabidiol content is associated with fewer psychotic experiences. Schizophr Res 130(1–3):216–221

    PubMed  Google Scholar 

  • Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74(1):1–58

    PubMed  CAS  Google Scholar 

  • Seeman P, Bzowej NH, Guan HC et al (1987) Human brain dopamine receptors in children and aging adults. Synapse 1(5):399–404

    PubMed  CAS  Google Scholar 

  • Seeman P (2011) Schizophrenia diagnosis and treatment. CNS Neurosci Ther 17(2):81–82

    PubMed  Google Scholar 

  • Shaikh M, Hall MH, Schulze K et al (2011) Do COMT, BDNF and NRG1 polymorphisms influence P50 sensory gating in psychosis? Psychol Med 41(2):263–276

    PubMed  CAS  Google Scholar 

  • Shifman S, Bronstein M, Sternfeld M et al (2002) A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 71(6):1296–1302

    PubMed  CAS  Google Scholar 

  • Solowij N, Michie PT (2007) Cannabis and cognitive dysfunction: parallels with endophenotypes of schizophrenia? J Psychiatry Neurosci 32(1):30–52

    PubMed  Google Scholar 

  • Solowij N, Walterfang M, Lubman DI et al (2013) Alteration to hippocampal shape in cannabis users with and without schizophrenia. Schizophr Res 143(1):179–84

    PubMed  Google Scholar 

  • Spear LP (2000) The adolescent brain and age-related behavioural manifestations. Neurosci Biobehav Rev 24(4):417–463

    PubMed  CAS  Google Scholar 

  • Spear LP (2009) Heightened stress responsivity and emotional reactivity during pubertal maturation: implications for psychopathology. Dev Psychopathol 21(1):87–97

    PubMed  Google Scholar 

  • Stark KL, Xu B, Bagchi A et al (2008) Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11.2-deletion mouse model. Nat Genet 40(6):751–760

    PubMed  CAS  Google Scholar 

  • Stefanis NC, Delespaul P, Henquet C et al (2004) Early adolescent cannabis exposure and positive and negative dimensions of psychosis. Addiction 99(10):1333–1341

    PubMed  CAS  Google Scholar 

  • Stefansson H, Sigurdsson E, Steinthorsdottir V et al (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71(4):877–892

    PubMed  Google Scholar 

  • Stelzel C, Basten U, Montag C et al (2009) Effects of dopamine-related gene-gene interactions on working memory component processes. Eur J Neurosci 29(5):1056–1063

    PubMed  Google Scholar 

  • Stokes PR, Mehta MA, Curran HV et al (2009) Can recreational doses of THC produce significant dopamine release in the human striatum? Neuroimage 48(1):186–90

    PubMed  Google Scholar 

  • Stokes PR, Rhodes RA, Grasby PM et al (2011) The effects of the COMT Val108/158Met polymorphism on BOLD activation during working memory, planning, and response inhibition: a role for the posterior cingulate cortex? Neuropsychopharmacology 36(4):763–71

    PubMed  CAS  Google Scholar 

  • Stokes PR, Egerton A, Watson B (2012) History of cannabis use is not associated with alterations in striatal dopamine D2/D3 receptor availability. J Psychopharmacol 26(1):144–9

    PubMed  CAS  Google Scholar 

  • Tammimäki A, Käenmäki M, Kambur O et al (2010) Effect of S-COMT deficiency on behaviour and extracellular brain dopamine concentrations in mice. Psychopharmacology 211(4):389–401

    PubMed  Google Scholar 

  • Tan HY, Chen AG, Kolachana B et al (2012) Effective connectivity of AKT1-mediated dopaminergic working memory networks and pharmacogenetics of anti-dopaminergic treatment. Brain 135(Pt 5):1436–1445

    PubMed  Google Scholar 

  • Tee SF, Tang PY, Loh HC (2011) No evidence for association between DRD3 and COMT with schizophrenia in a Malay population. Genet Mol Res 10(3):1850–1855

    PubMed  CAS  Google Scholar 

  • Tosato S, Dazzan P, Collier D (2005) Association between the neuregulin 1 gene and schizophrenia: a systematic review. Schizophr Bull 31(3):613–617

    Google Scholar 

  • Tovilla-Zárate C, Medellàn BC, Fresán A et al (2013) No association between catechol-o-methyltransferase Val108/158Met polymorphism and schizophrenia or its clinical symptomatology in a Mexican population. Mol Biol Rep 40(2):2053–2058

    PubMed  Google Scholar 

  • Tunbridge EM, Weinberger DR, Harrison PJ (2006) A novel protein isoform of catechol O-methyltransferase (COMT): brain expression analysis in schizophrenia and bipolar disorder and effect of Val158Met genotype. Mol Psychiatry 11(2):116–117

    PubMed  CAS  Google Scholar 

  • Uçok A, Oztürk M, Duman Z et al (2010) COMT Val 158 Met polymorphism is related with interpersonal problem solving in schizophrenia. Eur Psychiatry 25(6):320–322

    PubMed  Google Scholar 

  • van den Buuse M (2010) Modelling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 36(2):246–70

    Google Scholar 

  • van Hell HH, Jager G, Bossong MG (2011) Involvement of the endocannabinoid system in reward processing in the human brain. Psychopharmacology 219(4):981–990

    PubMed  Google Scholar 

  • van Os J, Bak M, Hanssen M et al (2002) Cannabis use and psychosis: a longitudinal population-based study. Am J Epidemiol 156(4):319–327

    PubMed  Google Scholar 

  • van Os J, Rutten BP, Poulton R (2009) Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr Bull 34(6):1066–82

    Google Scholar 

  • van Winkel R, Genetic Risk and Outcome of Psychosis (GROUP) Investigators (2011) Family-based analysis of genetic variation underlying psychosis-inducing effects of cannabis: sibling analysis and proband follow-up. Arch Gen Psychiatry 68(2):148–157

    PubMed  Google Scholar 

  • Waddington JL, Hennessy RJ, O’Tuathaigh CMP et al (2012) Schizophrenia and the lifetime trajectory of psychotic illness: developmental neuroscience and pathobiology. In: Patterson PH (ed) The origins of schizophrenia. Columbia University Press, New York

    Google Scholar 

  • Wang Y, Hu Y, Fang Y et al (2009) Evidence of epistasis between the catechol-O-methyltransferase and aldehyde dehydrogenase 3B1 genes in paranoid schizophrenia. Biol Psychiatry 65(12):1048–1054

    PubMed  CAS  Google Scholar 

  • Wegener N, Koch M (2009) Behavioural disturbances and altered Fos protein expression in adult rats after chronic pubertal cannabinoid treatment. Brain Res 1253:81–91

    PubMed  CAS  Google Scholar 

  • Welch KA, Moorhead TW, McIntosh AM (2012) Tensor-based morphometry of cannabis use on brain structure in individuals at elevated genetic risk of schizophrenia. Psychol Med 29:1–10

    Google Scholar 

  • Wilson W, Mathew R, Turkington T et al (2000) Brain morphological changes and early marijuana use: a magnetic resonance and positron emission tomography study. J Addict Dis 19(1):1–22

    PubMed  CAS  Google Scholar 

  • Wonodi I, Mitchell BD, Stine OC et al (2006) Lack of association between COMT gene and deficit/nondeficit schizophrenia. Behav Brain Funct 2:42

    PubMed  Google Scholar 

  • Yücel M, Solowij N, Respondek C et al (2008) Regional brain abnormalities associated with long-term heavy cannabis use. Arch Gen Psychiatry 65(6):694–701

    PubMed  Google Scholar 

  • Yücel M, Bora E, Lubman DI et al (2012) The impact of cannabis use on cognitive functioning in patients with schizophrenia: a meta-analysis of existing findings and new data in a first-episode sample. Schizophr Bull 38(2):316–330

    PubMed  Google Scholar 

  • Zammit S, Spurlock G, Williams H et al (2007) Genotype effects of CHRNA7, CNR1 and COMT in schizophrenia: interactions with tobacco and cannabis use. Br J Psychiatry 191:402–407

    PubMed  Google Scholar 

  • Zammit S, Owen MJ, Evans J et al (2011) Cannabis, COMT and psychotic experiences. Br J Psychiatry 199(5):380–385

    PubMed  Google Scholar 

  • Zavitsanou K, Wang H, Dalton VS et al (2010) Cannabinoid administration increases 5HT1A receptor binding and mRNA expression in the hippocampus of adult but not adolescent rats. Neuroscience 169(1):315–324

    PubMed  CAS  Google Scholar 

  • Zuardi AW, Shirakawa I, Finkelfarb E et al (1982) Action of cannabidiol on the anxiety and other effects produced by delta 9-THC in normal subjects. Psychopharmacology 76(3):245–250

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors’ studies are supported by a Science Foundation Ireland Principal Investigator grant (07/IN.1/B960).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colm M.P. O’Tuathaigh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

O’Tuathaigh, C., Desbonnet, L., Waddington, J. (2013). Cannabinoids, Monoamines, COMT and Schizophrenia: Pathobiological Mechanisms in Psychosis. In: Van Bockstaele, E. (eds) Endocannabinoid Regulation of Monoamines in Psychiatric and Neurological Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7940-6_14

Download citation

Publish with us

Policies and ethics