Skip to main content

Quantitative Proteomics Characterization of Chromatin-Remodeling Complexes in Health and Disease

  • Chapter
  • First Online:
  • 1425 Accesses

Abstract

Recent advances in the field of chromatin remodeling have elucidated its role in various cellular processes beyond transcription. The intricate dynamics and interplay between several chromatin-remodeling complexes has been shown to be responsible for events ranging from cell differentiation, epigenetic regulation, and human diseases. One of the biggest challenges in understanding the function of these large protein complexes is dissecting their assembly, interactions with other proteins, and identifying the role of individual components. Technological advances in quantitative proteomics make it one of the most sought after technique in identifying and analyzing multiprotein complexes and posttranslational modifications. In particular, multidimensional protein identification technology and spectral counting-based quantitative proteomic analysis is a popular choice for analyzing chromatin remodeling complexes. The reason being they are straightforward approaches and are able to identify and quantify low abundant proteins in a label-free manner. This chapter highlights the recent findings of chromatin-remodeling complexes with respect to cellular processes and disease states and the role of quantitative proteomics has played in these findings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CTCL:

Cutaneous T cell lymphoma

Da:

Daltons

dNSAF:

Distributed normalized spectral abundance factors

DSB:

Double-strand break

ESI:

Electron spray ionization

HATs:

Histone acetyltransferases

HPLC:

High-performance liquid chromatography

ICAT:

Isotope coded affinity tag

iTRAQ:

Isobaric tags for absolute and relative quantitation

LC:

Liquid chromatography

MS:

Mass spectrometry

MudPIT:

Multidimensional protein identification technology

m/z :

Mass to charge

NSAF:

Normalized spectral abundance factor

PFL:

Protein frequency library

PTMs:

Posttranslational modifications

rDNA:

Ribosomal DNA

RP:

Reversed phase

SAHA:

Suberoylanilide hydroxamic acid

SCX:

Strong cation exchange

SILAC:

Stable isotope labeling by amino acids in cell culture

SNAP:

SILAC nucleosome affinity purifications

TAP:

Tandem affinity purification

TMT:

Tandem mass tags

References

  1. Wilson BG, Roberts CW. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011;11(7):481–92.

    Article  PubMed  CAS  Google Scholar 

  2. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.

    Article  PubMed  CAS  Google Scholar 

  3. Suganuma T, Workman JL. Signals and combinatorial functions of histone modifications. Annu Rev Biochem. 2011;80:473–99.

    Article  PubMed  CAS  Google Scholar 

  4. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  PubMed  CAS  Google Scholar 

  5. Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007;447(7143):407–12.

    Article  PubMed  CAS  Google Scholar 

  6. Lee J-S, Smith E, Shilatifard A. The language of histone crosstalk. Cell. 2010;142(5):682–5.

    Article  PubMed  CAS  Google Scholar 

  7. Gavin AC, Maeda K, Kuhner S. Recent advances in charting protein-protein interaction: mass spectrometry-based approaches. Curr Opin Biotechnol. 2011;22(1):42–9.

    Article  PubMed  CAS  Google Scholar 

  8. Washburn MP, Wolters D, Yates 3rd JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001;19(3):242–7.

    Article  PubMed  CAS  Google Scholar 

  9. Fournier ML, Gilmore JM, Martin-Brown SA, Washburn MP. Multidimensional separations-based shotgun proteomics. Chem Rev. 2007;107(8):3654–86.

    Article  PubMed  CAS  Google Scholar 

  10. Lee KK, Sardiu ME, Swanson SK, Gilmore JM, Torok M, Grant PA, et al. Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes. Mol Syst Biol. 2011;7:503.

    PubMed  Google Scholar 

  11. Sardiu ME, Cai Y, Jin J, Swanson SK, Conaway RC, Conaway JW, et al. Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics. Proc Natl Acad Sci USA. 2008;105(5):1454–9.

    Article  PubMed  CAS  Google Scholar 

  12. Sardiu ME, Gilmore JM, Carrozza MJ, Li B, Workman JL, Florens L, et al. Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics. PLoS One. 2009;4(10):e7310.

    Article  PubMed  CAS  Google Scholar 

  13. Swanson SK, Florens L, Washburn MP. Generation and analysis of multidimensional protein identification technology datasets. Methods Mol Biol. 2009;492:1–20.

    Article  PubMed  CAS  Google Scholar 

  14. Eng J, McCormack A, Yates J. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994;5(11):976–89.

    Article  CAS  Google Scholar 

  15. Tabb DL, McDonald WH, Yates 3rd JR. DTASelect and contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res. 2002;1(1):21–6.

    Article  PubMed  CAS  Google Scholar 

  16. Geiger T, Cox J, Mann M. Proteomic changes resulting from gene copy number variations in cancer cells. PLoS Genet. 2010;6(9):e1001090.

    Article  PubMed  CAS  Google Scholar 

  17. Fournier ML, Paulson A, Pavelka N, Mosley AL, Gaudenz K, Bradford WD, et al. Delayed correlation of mRNA and protein expression in rapamycin-treated cells and a role for Ggc1 in cellular sensitivity to rapamycin. Mol Cell Proteomics. 2010;9(2):271–84.

    Article  PubMed  CAS  Google Scholar 

  18. Smith KT, Martin-Brown SA, Florens L, Washburn MP, Workman JL. Deacetylase inhibitors dissociate the histone-targeting ING2 subunit from the Sin3 complex. Chem Biol. 2010;17(1):65–74.

    Article  PubMed  CAS  Google Scholar 

  19. Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon AM, et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol. 2011;29(3):255–65.

    Article  PubMed  CAS  Google Scholar 

  20. Shiio Y, Eisenman RN, Yi EC, Donohoe S, Goodlett DR, Aebersold R. Quantitative proteomic analysis of chromatin-associated factors. J Am Soc Mass Spectrom. 2003;14(7):696–703.

    Article  PubMed  CAS  Google Scholar 

  21. Xiong L, Darwanto A, Sharma S, Herring J, Hu S, Filippova M, et al. Mass spectrometric studies on epigenetic interaction networks in cell differentiation. J Biol Chem. 2011;286(15):13657–68.

    Article  PubMed  CAS  Google Scholar 

  22. Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell. 2010;142(6):967–80.

    Article  PubMed  CAS  Google Scholar 

  23. Cuomo A, Moretti S, Minucci S, Bonaldi T. SILAC-based proteomic analysis to dissect the “histone modification signature” of human breast cancer cells. Amino Acids. 2011;41(2):387–99.

    Article  PubMed  CAS  Google Scholar 

  24. Tsai YC, Greco TM, Boonmee A, Miteva Y, Cristea IM. Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. Mol Cell Proteomics. 2012;11(2):M111.015156.

    Article  PubMed  CAS  Google Scholar 

  25. Chan DW, Wang Y, Wu M, Wong J, Qin J, Zhao Y. Unbiased proteomic screen for binding proteins to modified lysines on histone H3. Proteomics. 2009;9(9):2343–54.

    Article  PubMed  CAS  Google Scholar 

  26. Schulze WX, Usadel B. Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol. 2010;61(1):491–516.

    Article  PubMed  CAS  Google Scholar 

  27. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17(10):994–9.

    Article  PubMed  CAS  Google Scholar 

  28. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3(12):1154–69.

    Article  PubMed  CAS  Google Scholar 

  29. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 2003;75(8):1895–904.

    Article  PubMed  CAS  Google Scholar 

  30. Oda Y, Nagasu T, Chait BT. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol. 2001;19(4):379–82.

    Article  PubMed  CAS  Google Scholar 

  31. Washburn MP, Ulaszek R, Deciu C, Schieltz DM, Yates 3rd JR. Analysis of quantitative proteomic data generated via multidimensional protein identification technology. Anal Chem. 2002;74(7):1650–7.

    Article  PubMed  CAS  Google Scholar 

  32. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1(5):376–86.

    Article  PubMed  CAS  Google Scholar 

  33. Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem. 2012;404(4):939–65.

    Article  PubMed  CAS  Google Scholar 

  34. Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, et al. Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics. 2011;11(4):535–53.

    Article  PubMed  CAS  Google Scholar 

  35. Liu H, Sadygov RG, Yates JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 2004;76(14):4193–201.

    Article  PubMed  CAS  Google Scholar 

  36. Zybailov B, Coleman MK, Florens L, Washburn MP. Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling. Anal Chem. 2005;77(19):6218–24.

    Article  PubMed  CAS  Google Scholar 

  37. Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP. Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res. 2006;5(9):2339–47.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang Y, Wen Z, Washburn MP, Florens L. Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal Chem. 2010;82(6):2272–81.

    Article  PubMed  CAS  Google Scholar 

  39. Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC, et al. Quantitative proteomic analysis of distinct mammalian mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci USA. 2006;103(50):18928–33.

    Article  PubMed  CAS  Google Scholar 

  40. Mosley AL, Sardiu ME, Pattenden SG, Workman JL, Florens L, Washburn MP. Highly reproducible label free quantitative proteomic analysis of RNA polymerase complexes. Mol Cell Proteomics. 2011;2011:10(2).

    Google Scholar 

  41. Sato S, Tomomori-Sato C, Parmely TJ, Florens L, Zybailov B, Swanson SK, et al. A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol Cell. 2004;14(5):685–91.

    Article  PubMed  CAS  Google Scholar 

  42. Cai Y, Jin J, Florens L, Swanson SK, Kusch T, Li B, et al. The mammalian YL1 protein is a shared subunit of the TRRAP/TIP60 histone acetyltransferase and SRCAP complexes. J Biol Chem. 2005;280(14):13665–70.

    Article  PubMed  CAS  Google Scholar 

  43. Jin J, Cai Y, Yao T, Gottschalk AJ, Florens L, Swanson SK, et al. A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex. J Biol Chem. 2005;280(50):41207–12.

    Article  PubMed  CAS  Google Scholar 

  44. Cai Y, Jin J, Yao T, Gottschalk AJ, Swanson SK, Wu S, et al. YY1 functions with INO80 to activate transcription. Nat Struct Mol Biol. 2007;14(9):872–4.

    Article  PubMed  CAS  Google Scholar 

  45. Chen L, Cai Y, Jin J, Florens L, Swanson SK, Washburn MP, et al. Subunit organization of the human INO80 chromatin remodeling complex. J Biol Chem. 2011;286(13):11283–9.

    Article  PubMed  CAS  Google Scholar 

  46. Lee KK, Prochasson P, Florens L, Swanson SK, Washburn MP, Workman JL. Proteomic analysis of chromatin-modifying complexes in Saccharomyces cerevisiae identifies novel subunits. Biochem Soc Trans. 2004;32(Pt 6):899–903.

    PubMed  CAS  Google Scholar 

  47. Lin C-H, Li B, Swanson S, Zhang Y, Florens L, Washburn MP, et al. Heterochromatin protein 1a stimulates histone H3 lysine 36 demethylation by the Drosophila KDM4A demethylase. Mol Cell. 2008;32(5):696–706.

    Article  PubMed  CAS  Google Scholar 

  48. Smolle M, Venkatesh S, Gogol MM, Li H, Zhang Y, Florens L, et al. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol. 2012;19(9):884–92.

    Article  PubMed  CAS  Google Scholar 

  49. Lin C, Smith ER, Takahashi H, Lai KC, Martin-Brown S, Florens L, et al. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell. 2010;37(3):429–37.

    Article  PubMed  CAS  Google Scholar 

  50. Smith Edwin R, Lin C, Garrett Alexander S, Thornton J, Mohaghegh N, Hu D, et al. The little elongation complex regulates small nuclear RNA transcription. Mol Cell. 2011;44(6):954–65.

    Article  PubMed  CAS  Google Scholar 

  51. Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem. 2009;78:273–304.

    Article  PubMed  CAS  Google Scholar 

  52. Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 2011;21(3):396–420.

    Article  PubMed  CAS  Google Scholar 

  53. Saha A, Wittmeyer J, Cairns BR. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat Struct Mol Biol. 2005;12(9):747–55.

    Article  PubMed  CAS  Google Scholar 

  54. Lorch Y, Maier-Davis B, Kornberg RD. Mechanism of chromatin remodeling. Proc Natl Acad Sci. 2010;107(8):3458–62.

    Article  PubMed  CAS  Google Scholar 

  55. Lia G, Praly E, Ferreira H, Stockdale C, Tse-Dinh YC, Dunlap D, et al. Direct observation of DNA distortion by the RSC Complex. Mol Cell. 2006;21(3):417–25.

    Article  PubMed  CAS  Google Scholar 

  56. Fitzgerald DJ, DeLuca C, Berger I, Gaillard H, Sigrist R, Schimmele K, et al. Reaction cycle of the yeast Isw2 chromatin remodeling complex. EMBO J. 2004;23(19):3836–43.

    Article  PubMed  CAS  Google Scholar 

  57. Gangaraju VK, Bartholomew B. Dependency of ISW1a chromatin remodeling on extranucleosomal DNA. Mol Cell Biol. 2007;27(8):3217–25.

    Article  PubMed  CAS  Google Scholar 

  58. Gangaraju VK, Prasad P, Srour A, Kagalwala MN, Bartholomew B. Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2. Mol Cell. 2009;35(1):58–69.

    Article  PubMed  CAS  Google Scholar 

  59. Racki LR, Yang JG, Naber N, Partensky PD, Acevedo A, Purcell TJ, et al. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature. 2009;462(7276):1016–21.

    Article  PubMed  CAS  Google Scholar 

  60. Blosser TR, Yang JG, Stone MD, Narlikar GJ, Zhuang X. Dynamics of nucleosome remodelling by individual ACF complexes. Nature. 2009;462(7276):1022–7.

    Article  PubMed  CAS  Google Scholar 

  61. Saha A, Wittmeyer J, Cairns BR. Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol. 2006;7(6):437–47.

    Article  PubMed  CAS  Google Scholar 

  62. Sudarsanam P, Iyer VR, Brown PO, Winston F. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci. 2000;97(7):3364–9.

    Article  PubMed  CAS  Google Scholar 

  63. Davie JK, Kane CM. Genetic interactions between TFIIS and the Swi-Snf chromatin-remodeling complex. Mol Cell Biol. 2000;20(16):5960–73.

    Article  PubMed  CAS  Google Scholar 

  64. Chai B, Huang J, Cairns BR, Laurent BC. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 2005;19(14):1656–61.

    Article  PubMed  CAS  Google Scholar 

  65. Angus-Hill ML, Schlichter A, Roberts D, Erdjument-Bromage H, Tempst P, Cairns BR. A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSC in gene expression and cell cycle control. Mol Cell. 2001;7(4):741–51.

    Article  PubMed  CAS  Google Scholar 

  66. Huang J, Laurent BC. A role for the RSC chromatin remodeler in regulating cohesion of sister chromatid arms. Cell Cycle. 2004;3(8):971–3.

    Article  Google Scholar 

  67. Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature. 1997;388(6642):598–602.

    Article  PubMed  CAS  Google Scholar 

  68. Stopka T, Skoultchi AI. The ISWI ATPase Snf2h is required for early mouse development. Proc Natl Acad Sci. 2003;100(24):14097–102.

    Article  PubMed  CAS  Google Scholar 

  69. Unhavaithaya Y, Shin TH, Miliaras N, Lee J, Oyama T, Mello CC. MEP-1 and a homolog of the NURD complex component Mi-2 act together to maintain germline-soma distinctions in C. elegans. Cell. 2002;111(7):991–1002.

    Article  PubMed  CAS  Google Scholar 

  70. Shen X, Mizuguchi G, Hamiche A, Wu C. A chromatin remodelling complex involved in transcription and DNA processing. Nature. 2000;406(6795):541–4.

    Article  PubMed  CAS  Google Scholar 

  71. Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, Greenblatt JF, Haber JE, et al. INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell. 2004;119(6):767–75.

    Article  PubMed  CAS  Google Scholar 

  72. Shimada K, Oma Y, Schleker T, Kugou K, Ohta K, Harata M, et al. Ino80 chromatin remodeling complex promotes recovery of stalled replication forks. Curr Biol. 2008;18(8):566–75.

    Article  PubMed  CAS  Google Scholar 

  73. Rangasamy D, Berven L, Ridgway P, Tremethick DJ. Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J. 2003;22(7):1599–607.

    Article  PubMed  CAS  Google Scholar 

  74. Krogan NJ, Baetz K, Keogh M-C, Datta N, Sawa C, Kwok TCY, et al. Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4. Proc Natl Acad Sci USA. 2004;101(37):13513–8.

    Article  PubMed  CAS  Google Scholar 

  75. Dhillon N, Oki M, Szyjka SJ, Aparicio OM, Kamakaka RT. H2A.Z functions to regulate progression through the cell cycle. Mol Cell Biol. 2006;26(2):489–501.

    Article  PubMed  CAS  Google Scholar 

  76. Ford J, Odeyale O, Shen C-H. Activator-dependent recruitment of SWI/SNF and INO80 during INO1 activation. Biochem Biophys Res Commun. 2008;373(4):602–6.

    Article  PubMed  CAS  Google Scholar 

  77. Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell. 2000;102(4):463–73.

    Article  PubMed  CAS  Google Scholar 

  78. Bird AW, Yu DY, Pray-Grant MG, Qiu Q, Harmon KE, Megee PC, et al. Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature. 2002;419(6905):411–5.

    Article  PubMed  CAS  Google Scholar 

  79. Parthun MR, Widom J, Gottschling DE. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell. 1996;87(1):85–94.

    Article  PubMed  CAS  Google Scholar 

  80. Miller KM, Tjeertes JV, Coates J, Legube G, Polo SE, Britton S, et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat Struct Mol Biol. 2010;17(99):1144–51.

    Article  PubMed  CAS  Google Scholar 

  81. Krogan NJ, Dover J, Wood A, Schneider J, Heidt J, Boateng MA, et al. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell. 2003;11(3):721–9.

    Article  PubMed  CAS  Google Scholar 

  82. Nguyen AT, Xiao B, Neppl RL, Kallin EM, Li J, Chen T, et al. DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev. 2011;25(3):263–74.

    Article  PubMed  CAS  Google Scholar 

  83. Huyen Y, Zgheib O, DiTullio Jr RA, Gorgoulis VG, Zacharatos P, Petty TJ, et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature. 2004;432(7015):406–11. doi:10.1038/nature03114.

    Article  PubMed  CAS  Google Scholar 

  84. Liu W, Tanasa B, Tyurina OV, Zhou TY, Gassmann R, Liu WT, et al. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature. 2010;466(7305):508–12.

    Article  PubMed  CAS  Google Scholar 

  85. Denslow SA, Wade PA. The human Mi-2//NuRD complex and gene regulation. Oncogene. 2007;26(37):5433–8.

    Article  PubMed  CAS  Google Scholar 

  86. Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem. 2012;81:65–95.

    Article  PubMed  CAS  Google Scholar 

  87. Bernt KM, Armstrong SA. Targeting epigenetic programs in MLL-rearranged leukemias. Hematology Am Soc Hematol Educ Program. 2011;2011(1):354–60.

    Article  PubMed  Google Scholar 

  88. Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, et al. Mutations truncating the EP300 acetylase in human cancers. Nat Genet. 2000;24(3):300–3.

    Article  PubMed  CAS  Google Scholar 

  89. Pfister S, Rea S, Taipale M, Mendrzyk F, Straub B, Ittrich C, et al. The histone acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma. Int J Cancer. 2008;122(6):1207–13.

    Article  PubMed  CAS  Google Scholar 

  90. Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007;1(1):19–25.

    Article  PubMed  CAS  Google Scholar 

  91. Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L, et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet. 2011;43(9):860–3.

    Article  PubMed  CAS  Google Scholar 

  92. Huang C, Sloan EA, Boerkoel CF. Chromatin remodeling and human disease. Curr Opin Genet Dev. 2003;13(3):246–52.

    Article  PubMed  CAS  Google Scholar 

  93. Gibbons RJ, McDowell TL, Raman S, O'Rourke DM, Garrick D, Ayyub H, et al. Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat Genet. 2000;24(4):368–71.

    Article  PubMed  CAS  Google Scholar 

  94. Xu Y, Sun Y, Jiang X, Ayrapetov MK, Moskwa P, Yang S, et al. The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. J Cell Biol. 2010;27:2010.

    Google Scholar 

  95. Faucher D, Wellinger RJ. Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway. PLoS Genet. 2010;6(8):e1001082.

    Article  PubMed  CAS  Google Scholar 

  96. Kusch T, Florens L, MacDonald WH, Swanson SK, Glaser RL, Yates JR, et al. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science. 2004;306(5704):2084–7.

    Article  PubMed  CAS  Google Scholar 

  97. Suganuma T, Gutierrez JL, Li B, Florens L, Swanson SK, Washburn MP, et al. ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding. Nat Struct Mol Biol. 2008;15(4):364–72.

    Article  PubMed  CAS  Google Scholar 

  98. Suganuma T, Mushegian A, Swanson SK, Abmayr SM, Florens L, Washburn MP, et al. The ATAC acetyltransferase complex coordinates MAP kinases to regulate JNK target genes. Cell. 2010;142(5):726–36.

    Article  PubMed  CAS  Google Scholar 

  99. Bao Y, Shen X. INO80 subfamily of chromatin remodeling complexes. Mutat Res. 2007;618(1–2):18–29.

    PubMed  CAS  Google Scholar 

  100. Lee JS, Shukla A, Schneider J, Swanson SK, Washburn MP, Florens L, et al. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell. 2007;131(6):1084–96.

    Article  PubMed  CAS  Google Scholar 

  101. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature. 2006;440(7084):637–43.

    Article  PubMed  CAS  Google Scholar 

  102. Gavin A-C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature. 2006;440(7084):631–6.

    Article  PubMed  CAS  Google Scholar 

  103. Boulon S, Ahmad Y, Trinkle-Mulcahy L, Verheggen C, Cobley A, Gregor P, et al. Establishment of a protein frequency library and its application in the reliable identification of specific protein interaction partners. Mol Cell Proteomics. 2010;9(5):861–79.

    Article  PubMed  CAS  Google Scholar 

  104. Byrum SD, Raman A, Taverna SD, Tackett AJ. ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus. Cell Rep. 2012;2(1):198–205.

    Article  PubMed  CAS  Google Scholar 

  105. Lambert JP, Fillingham J, Siahbazi M, Greenblatt J, Baetz K, Figeys D. Defining the budding yeast chromatin-associated interactome. Mol Syst Biol. 2010;6:448.

    Article  PubMed  CAS  Google Scholar 

  106. Lambert JP, Mitchell L, Rudner A, Baetz K, Figeys D. A novel proteomics approach for the discovery of chromatin-associated protein networks. Mol Cell Proteomics. 2009;8(4):870–82.

    Article  PubMed  CAS  Google Scholar 

  107. Daniels DL, Mendez J, Mosley AL, Ramisetty SR, Murphy N, Benink H, et al. Examining the complexity of human RNA polymerase complexes using HaloTag technology coupled to label free quantitative proteomics. J Proteome Res. 2012;11(2):564–75.

    Article  PubMed  CAS  Google Scholar 

  108. Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell. 2005;123(4):581–92.

    Article  PubMed  CAS  Google Scholar 

  109. Keogh M-C, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR, et al. Cotranscriptional Set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell. 2005;123(4):593–605.

    Article  PubMed  CAS  Google Scholar 

  110. Kurdistani SK, Grunstein M. Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol. 2003;4(4):276–84.

    Article  PubMed  CAS  Google Scholar 

  111. Hah N, Kolkman A, Ruhl DD, Pijnappel WW, Heck AJ, Timmers HT, et al. A role for BAF57 in cell cycle-dependent transcriptional regulation by the SWI/SNF chromatin remodeling complex. Cancer Res. 2010;70(11):4402–11.

    Article  PubMed  CAS  Google Scholar 

  112. Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell. 2010;143(3):470–84.

    Article  PubMed  CAS  Google Scholar 

  113. Smith KT, Workman JL. Histone deacetylase inhibitors: anticancer compounds. Int J Biochem Cell Biol. 2009;41(1):21–5.

    Article  PubMed  CAS  Google Scholar 

  114. Prince HM, Bishton MJ, Harrison SJ. Clinical studies of histone deacetylase inhibitors. Clin Cancer Res. 2009;15(12):3958–69.

    Article  PubMed  CAS  Google Scholar 

  115. Washburn MP. Driving biochemical discovery with quantitative proteomics. Trends Biochem Sci. 2011;36(3):170–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the members of Washburn laboratory for critical reading of the manuscript and thoughtful insights. This work was supported by the Stowers Institute for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Washburn Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakshminarasimhan, M., Washburn, M.P. (2014). Quantitative Proteomics Characterization of Chromatin-Remodeling Complexes in Health and Disease. In: Emili, A., Greenblatt, J., Wodak, S. (eds) Systems Analysis of Chromatin-Related Protein Complexes in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7931-4_9

Download citation

Publish with us

Policies and ethics