Skip to main content

Histone Chaperones, Epigenetics, and Cancer

  • Chapter
  • First Online:
Book cover Systems Analysis of Chromatin-Related Protein Complexes in Cancer

Abstract

Histone chaperones such as CAF1, ASF1, HIRA, DEK, DAXX, and several others play central roles in the transport, modification, replication, and replacement of nucleosomes. These diverse roles affect many processes including epigenetic memory, genome stability, transcription, Polycomb function, and others. Here, we review these functions and their relevance to heterochromatin, epigenetic inheritance, and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laskey RA, Honda BM, Mills AD, Finch JT. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature. 1978;275:416–20.

    PubMed  CAS  Google Scholar 

  2. English CM, Adkins MW, Carson JJ, Churchill ME, Tyler JK. Structural basis for the histone chaperone activity of Asf1. Cell. 2006;127:495–508.

    PubMed  CAS  Google Scholar 

  3. Akey CW, Luger K. Histone chaperones and nucleosome assembly. Curr Opin Struct Biol. 2003;13:6–14.

    PubMed  CAS  Google Scholar 

  4. Loyola A, Almouzni G. Histone chaperones, a supporting role in the limelight. Biochim Biophys Acta. 2004;1677:3–11.

    PubMed  CAS  Google Scholar 

  5. Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science. 2010;330:612–6.

    PubMed  CAS  Google Scholar 

  6. Hake SB, Allis CD. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc Natl Acad Sci USA. 2006;103:6428–35.

    PubMed  CAS  Google Scholar 

  7. Xu M et al. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science. 2010;328:94–8.

    PubMed  CAS  Google Scholar 

  8. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389:251–60.

    PubMed  CAS  Google Scholar 

  9. Wu RS, Tsai S, Bonner WM. Patterns of histone variant synthesis can distinguish G0 from G1 cells. Cell. 1982;31:367–74.

    PubMed  CAS  Google Scholar 

  10. Kappes F et al. The DEK oncoprotein is a Su(var) that is essential to heterochromatin integrity. Genes Dev. 2011;25:673–8.

    PubMed  CAS  Google Scholar 

  11. Ray-Gallet D et al. HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Mol Cell. 2002;9:1091–100.

    PubMed  CAS  Google Scholar 

  12. Graham PJ. Developments in occupational health and safety qualifications. Ann Occup Hyg. 1992;36:663–8.

    PubMed  CAS  Google Scholar 

  13. Goldberg AD et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell. 2010;140:678–91.

    PubMed  CAS  Google Scholar 

  14. Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 2010;24:1253–65.

    PubMed  CAS  Google Scholar 

  15. Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA. 2011;107:14075–80.

    Google Scholar 

  16. Campos EI et al. The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol. 2010;17:1343–51.

    PubMed  CAS  Google Scholar 

  17. Loyola A, Bonaldi T, Roche D, Imhof A, Almouzni G. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell. 2006;24:309–16.

    PubMed  CAS  Google Scholar 

  18. Richardson RT, Alekseev O, Alekseev OM, O’Rand MG. Characterization of the NASP promoter in 3T3 fibroblasts and mouse spermatogenic cells. Gene. 2006;371:52–8.

    PubMed  CAS  Google Scholar 

  19. Song JJ, Garlick JD, Kingston RE. Structural basis of histone H4 recognition by p55. Genes Dev. 2008;22:1313–8.

    PubMed  CAS  Google Scholar 

  20. Wang H, Walsh ST, Parthun MR. Expanded binding specificity of the human histone chaperone NASP. Nucleic Acids Res. 2008;36:5763–72.

    PubMed  CAS  Google Scholar 

  21. Finn RM, Browne K, Hodgson KC, Ausio J. sNASP, a histone H1-specific eukaryotic chaperone dimer that facilitates chromatin assembly. Biophys J. 2008;95:1314–25.

    PubMed  CAS  Google Scholar 

  22. Ejlassi-Lassallette A, Mocquard E, Arnaud MC, Thiriet C. H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo. Mol Biol Cell. 2011;22:245–55.

    PubMed  CAS  Google Scholar 

  23. Zhang H, Han J, Kang B, Burgess R, Zhang Z. Human histone acetyltransferase 1 protein preferentially acetylates H4 histone molecules in H3.1-H4 over H3.3-H4. J Biol Chem. 2012;287:6573–81.

    PubMed  CAS  Google Scholar 

  24. Cook AJ, Gurard-Levin ZA, Vassias I, Almouzni G. A specific function for the histone chaperone NASP to fine-tune a reservoir of soluble H3-H4 in the histone supply chain. Mol Cell. 2011;44:918–27.

    PubMed  CAS  Google Scholar 

  25. Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell. 2004;116:51–61.

    PubMed  CAS  Google Scholar 

  26. Elsasser SJ et al. DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition. Nature. 2012;491:560–5.

    PubMed  Google Scholar 

  27. Smith S, Stillman B. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell. 1989;58:15–25.

    PubMed  CAS  Google Scholar 

  28. Kaufman PD, Kobayashi R, Stillman B. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev. 1997;11:345–57.

    PubMed  CAS  Google Scholar 

  29. Bulger M, Ito T, Kamakaka RT, Kadonaga JT. Assembly of regularly spaced nucleosome arrays by Drosophila chromatin assembly factor 1 and a 56-kDa histone-binding protein. Proc Natl Acad Sci USA. 1995;92:11726–30.

    PubMed  CAS  Google Scholar 

  30. Kamakaka RT, Bulger M, Kaufman PD, Stillman B, Kadonaga JT. Postreplicative chromatin assembly by Drosophila and human chromatin assembly factor 1. Mol Cell Biol. 1996;16:810–7.

    PubMed  CAS  Google Scholar 

  31. Tyler JK et al. Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol Cell Biol. 2001;21:6574–84.

    PubMed  CAS  Google Scholar 

  32. Malay AD, Umehara T, Matsubara-Malay K, Padmanabhan B, Yokoyama S. Crystal structures of fission yeast histone chaperone Asf1 complexed with the Hip1 B-domain or the Cac2 C terminus. J Biol Chem. 2008;283:14022–31.

    PubMed  CAS  Google Scholar 

  33. Nowak AJ et al. Chromatin-modifying complex component Nurf55/p55 associates with histones H3 and H4 and polycomb repressive complex 2 subunit Su(z)12 through partially overlapping binding sites. J Biol Chem. 2011;286:23388–96.

    PubMed  CAS  Google Scholar 

  34. Nakano S, Stillman B, Horvitz HR. Replication-coupled chromatin assembly generates a neuronal bilateral asymmetry in C. elegans. Cell. 2011;147:1525–36.

    PubMed  CAS  Google Scholar 

  35. Winkler DD, Zhou H, Dar MA, Zhang Z, Luger K. Yeast CAF-1 assembles histone (H3-H4)2 tetramers prior to DNA deposition. Nucleic Acids Res. 2012;40:10139–49.

    PubMed  CAS  Google Scholar 

  36. Liu WH, Roemer SC, Port AM, Churchill ME. CAF-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA. Nucleic Acids Res. 2011;40:11229–39.

    Google Scholar 

  37. Liu WH, Churchill ME. Histone transfer among chaperones. Biochem Soc Trans. 2012;40:357–63.

    PubMed  CAS  Google Scholar 

  38. Tsubota T et al. Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes. Mol Cell. 2007;25:703–12.

    PubMed  CAS  Google Scholar 

  39. Han J, Zhou H, Li Z, Xu RM, Zhang Z. The Rtt109-Vps75 histone acetyltransferase complex acetylates non-nucleosomal histone H3. J Biol Chem. 2007;282:14158–64.

    PubMed  CAS  Google Scholar 

  40. Das C, Lucia MS, Hansen KC, Tyler JK. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature. 2009;459:113–7.

    PubMed  CAS  Google Scholar 

  41. Li Q et al. Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell. 2008;134:244–55.

    PubMed  CAS  Google Scholar 

  42. Feser J et al. Elevated histone expression promotes life span extension. Mol Cell. 2010;39:724–35.

    PubMed  CAS  Google Scholar 

  43. Kang B et al. Phosphorylation of H4 Ser 47 promotes HIRA-mediated nucleosome assembly. Genes Dev. 2011;25:1359–64.

    PubMed  CAS  Google Scholar 

  44. Burgess RJ, Zhang Z. Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol. 2013;20:14–22.

    PubMed  CAS  Google Scholar 

  45. Lopez de Saro FJ. Regulation of interactions with sliding clamps during DNA replication and repair. Curr Genomics. 2009;10(206–15).

    Google Scholar 

  46. Shibahara K, Stillman B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell. 1999;96:575–85.

    PubMed  CAS  Google Scholar 

  47. Zhang Z, Shibahara K, Stillman B. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature. 2000;408:221–5.

    PubMed  CAS  Google Scholar 

  48. Moggs JG et al. A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage. Mol Cell Biol. 2000;20:1206–18.

    PubMed  CAS  Google Scholar 

  49. Ye X et al. Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol Cell. 2003;11:341–51.

    PubMed  CAS  Google Scholar 

  50. Ransom M et al. FACT and the proteasome promote promoter chromatin disassembly and transcriptional initiation. J Biol Chem. 2009;284:23461–71.

    PubMed  CAS  Google Scholar 

  51. Winkler DD, Luger K. The histone chaperone FACT: structural insights and mechanisms for nucleosome reorganization. J Biol Chem. 2011;286:18369–74.

    PubMed  CAS  Google Scholar 

  52. Gambus A et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol. 2006;8:358–66.

    PubMed  CAS  Google Scholar 

  53. Lorch Y, Maier-Davis B, Kornberg RD. Chromatin remodeling by nucleosome disassembly in vitro. Proc Natl Acad Sci USA. 2006;103:3090–3.

    PubMed  CAS  Google Scholar 

  54. Park YJ, Chodaparambil JV, Bao Y, McBryant SJ, Luger K. Nucleosome assembly protein 1 exchanges histone H2A-H2B dimers and assists nucleosome sliding. J Biol Chem. 2005;280:1817–25.

    PubMed  CAS  Google Scholar 

  55. Park YJ, Luger K. Structure and function of nucleosome assembly proteins. Biochem Cell Biol. 2006;84:549–58.

    PubMed  CAS  Google Scholar 

  56. Worcel A, Han S, Wong ML. Assembly of newly replicated chromatin. Cell. 1978;15:969–77.

    PubMed  CAS  Google Scholar 

  57. Groth A et al. Regulation of replication fork progression through histone supply and demand. Science. 2007;318:1928–31.

    PubMed  CAS  Google Scholar 

  58. Tyler JK et al. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature. 1999;402:555–60.

    PubMed  CAS  Google Scholar 

  59. Natsume R et al. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature. 2007;446:338–41.

    PubMed  CAS  Google Scholar 

  60. Smith S, Stillman B. Stepwise assembly of chromatin during DNA replication in vitro. EMBO J. 1991;10:971–80.

    PubMed  CAS  Google Scholar 

  61. Bowman A et al. The histone chaperones Nap1 and Vps75 bind histones H3 and H4 in a tetrameric conformation. Mol Cell. 2011;41:398–408.

    PubMed  CAS  Google Scholar 

  62. Corpet A et al. Asf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer. EMBO J. 2011;30:480–93.

    PubMed  CAS  Google Scholar 

  63. Mousson F, Ochsenbein F, Mann C. The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways. Chromosoma. 2007;116:79–93.

    PubMed  CAS  Google Scholar 

  64. Zeng W, Ball Jr AR, Yokomori K. HP1: heterochromatin binding proteins working the genome. Epigenetics. 2010;5:287–92.

    PubMed  CAS  Google Scholar 

  65. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher 3rd FJ. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 2002;16:919–32.

    PubMed  CAS  Google Scholar 

  66. Schotta G et al. Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J. 2002;21:1121–31.

    PubMed  CAS  Google Scholar 

  67. Quivy JP, Grandi P, Almouzni G. Dimerization of the largest subunit of chromatin assembly factor 1: importance in vitro and during Xenopus early development. EMBO J. 2001;20:2015–27.

    PubMed  CAS  Google Scholar 

  68. Ono T et al. Chromatin assembly factor 1 ensures the stable maintenance of silent chromatin states in Arabidopsis. Genes Cells. 2006;11:153–62.

    PubMed  CAS  Google Scholar 

  69. Schonrock N, Exner V, Probst A, Gruissem W, Hennig L. Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana. J Biol Chem. 2006;281:9560–8.

    PubMed  Google Scholar 

  70. Song Y et al. CAF-1 is essential for Drosophila development and involved in the maintenance of epigenetic memory. Dev Biol. 2007;311:213–22.

    PubMed  CAS  Google Scholar 

  71. Dohke K et al. Fission yeast chromatin assembly factor 1 assists in the replication-coupled maintenance of heterochromatin. Genes Cells. 2008;13:1027–43.

    PubMed  CAS  Google Scholar 

  72. Enomoto S, McCune-Zierath PD, Gerami-Nejad M, Sanders MA, Berman J. RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo. Genes Dev. 1997;11:358–70.

    PubMed  CAS  Google Scholar 

  73. Monson EK, de Bruin D, Zakian VA. The yeast Cac1 protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres. Proc Natl Acad Sci USA. 1997;94:13081–6.

    PubMed  CAS  Google Scholar 

  74. Enomoto S, Berman J. Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev. 1998;12:219–32.

    PubMed  CAS  Google Scholar 

  75. Taddei A, Roche D, Sibarita JB, Turner BM, Almouzni G. Duplication and maintenance of heterochromatin domains. J Cell Biol. 1999;147:1153–66.

    PubMed  CAS  Google Scholar 

  76. Quivy JP et al. A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J. 2004;23:3516–26.

    PubMed  CAS  Google Scholar 

  77. Quivy JP, Gerard A, Cook AJ, Roche D, Almouzni G. The HP1-p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nat Struct Mol Biol. 2008;15:972–9.

    PubMed  CAS  Google Scholar 

  78. Reese BE, Bachman KE, Baylin SB, Rountree MR. The methyl-CpG binding protein MBD1 interacts with the p150 subunit of chromatin assembly factor 1. Mol Cell Biol. 2003;23:3226–36.

    PubMed  CAS  Google Scholar 

  79. Sarraf SA, Stancheva I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell. 2004;15:595–605.

    PubMed  CAS  Google Scholar 

  80. Loyola A et al. The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep. 2009;10:769–75.

    PubMed  CAS  Google Scholar 

  81. Houlard M et al. CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells. PLoS Genet. 2006;2:e181.

    PubMed  Google Scholar 

  82. Hoek M, Stillman B. Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc Natl Acad Sci USA. 2003;100:12183–8.

    PubMed  CAS  Google Scholar 

  83. Nabatiyan A, Krude T. Silencing of chromatin assembly factor 1 in human cells leads to cell death and loss of chromatin assembly during DNA synthesis. Mol Cell Biol. 2004;24:2853–62.

    PubMed  CAS  Google Scholar 

  84. Takami Y, Ono T, Fukagawa T, Shibahara K, Nakayama T. Essential role of chromatin assembly factor-1-mediated rapid nucleosome assembly for DNA replication and cell division in vertebrate cells. Mol Biol Cell. 2007;18:129–41.

    PubMed  CAS  Google Scholar 

  85. Poleshko A et al. Identification of a functional network of human epigenetic silencing factors. J Biol Chem. 2010;285:422–33.

    PubMed  CAS  Google Scholar 

  86. Lanzuolo C, Orlando V. Memories from the polycomb group proteins. Annu Rev Genet. 2012;46:561–89.

    PubMed  CAS  Google Scholar 

  87. Hoek M, Myers MP, Stillman B. An analysis of CAF-1-interacting proteins reveals dynamic and direct interactions with the KU complex and 14-3-3 proteins. J Biol Chem. 2011;286:10876–87.

    PubMed  CAS  Google Scholar 

  88. Polo SE et al. Clinical significance and prognostic value of chromatin assembly factor-1 overexpression in human solid tumours. Histopathology. 2010;57:716–24.

    PubMed  Google Scholar 

  89. Groth A et al. Human Asf1 regulates the flow of S phase histones during replicational stress. Mol Cell. 2005;17:301–11.

    PubMed  CAS  Google Scholar 

  90. Gazin C, Wajapeyee N, Gobeil S, Virbasius CM, Green MR. An elaborate pathway required for Ras-mediated epigenetic silencing. Nature. 2007;449:1073–7.

    PubMed  CAS  Google Scholar 

  91. Avvakumov N, Nourani A, Cote J. Histone chaperones: modulators of chromatin marks. Mol Cell. 2011;41:502–14.

    PubMed  CAS  Google Scholar 

  92. Masumoto H, Hawke D, Kobayashi R, Verreault A. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature. 2005;436:294–8.

    PubMed  CAS  Google Scholar 

  93. Neumann H et al. A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell. 2009;36:153–63.

    PubMed  CAS  Google Scholar 

  94. Zhang R et al. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell. 2005;8:19–30.

    PubMed  CAS  Google Scholar 

  95. Rai TS, Adams PD. Lessons from senescence: chromatin maintenance in non-proliferating cells. Biochim Biophys Acta. 2012;1819:322–31.

    PubMed  CAS  Google Scholar 

  96. Mehrotra PV et al. DNA repair factor APLF is a histone chaperone. Mol Cell. 2011;41:46–55.

    PubMed  CAS  Google Scholar 

  97. Spector MS, Raff A, DeSilva H, Lee K, Osley MA. Hir1p and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae cell cycle. Mol Cell Biol. 1997;17:545–52.

    PubMed  CAS  Google Scholar 

  98. Sharp JA, Fouts ET, Krawitz DC, Kaufman PD. Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Curr Biol. 2001;11:463–73.

    PubMed  CAS  Google Scholar 

  99. Sutton A, Bucaria J, Osley MA, Sternglanz R. Yeast ASF1 protein is required for cell cycle regulation of histone gene transcription. Genetics. 2001;158:587–96.

    PubMed  CAS  Google Scholar 

  100. Daganzo SM et al. Structure and function of the conserved core of histone deposition protein Asf1. Curr Biol. 2003;13:2148–58.

    PubMed  CAS  Google Scholar 

  101. Fillingham J et al. Two-color cell array screen reveals interdependent roles for histone chaperones and a chromatin boundary regulator in histone gene repression. Mol Cell. 2009;35:340–51.

    PubMed  CAS  Google Scholar 

  102. Passtoors WM et al. Transcriptional profiling of human familial longevity indicates a role for ASF1A and IL7R. PLoS One. 2012;7:e27759.

    PubMed  CAS  Google Scholar 

  103. Sawatsubashi S et al. A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor. Genes Dev. 2010;24:159–70.

    PubMed  CAS  Google Scholar 

  104. Gamble MJ, Fisher RP. SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery. Nat Struct Mol Biol. 2007;14:548–55.

    PubMed  CAS  Google Scholar 

  105. von Lindern M, Breems D, van Baal S, Adriaansen H, Grosveld G. Characterization of the translocation breakpoint sequences of two DEK-CAN fusion genes present in t(6;9) acute myeloid leukemia and a SET-CAN fusion gene found in a case of acute undifferentiated leukemia. Genes Chromosomes Cancer. 1992;5:227–34.

    Google Scholar 

  106. Fornerod M et al. Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements. Oncogene. 1995;10:1739–48.

    PubMed  CAS  Google Scholar 

  107. Khodadoust MS et al. Melanoma proliferation and chemoresistance controlled by the DEK oncogene. Cancer Res. 2009;69:6405–13.

    PubMed  CAS  Google Scholar 

  108. Han S et al. Clinicopathological significance of DEK overexpression in serous ovarian tumors. Pathol Int. 2009;59:443–7.

    PubMed  CAS  Google Scholar 

  109. Orlic M, Spencer CE, Wang L, Gallie BL. Expression analysis of 6p22 genomic gain in retinoblastoma. Genes Chromosomes Cancer. 2006;45:72–82.

    PubMed  CAS  Google Scholar 

  110. Shibata T et al. DEK oncoprotein regulates transcriptional modifiers and sustains tumor initiation activity in high-grade neuroendocrine carcinoma of the lung. Oncogene. 2010;29:4671–81.

    PubMed  CAS  Google Scholar 

  111. Carro MS et al. DEK Expression is controlled by E2F and deregulated in diverse tumor types. Cell Cycle. 2006;5:1202–7.

    PubMed  CAS  Google Scholar 

  112. Wise-Draper TM et al. The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7. J Virol. 2005;79:14309–17.

    PubMed  CAS  Google Scholar 

  113. Wise-Draper TM et al. Apoptosis inhibition by the human DEK oncoprotein involves interference with p53 functions. Mol Cell Biol. 2006;26:7506–19.

    PubMed  CAS  Google Scholar 

  114. Kavanaugh GM et al. The human DEK oncogene regulates DNA damage response signaling and repair. Nucleic Acids Res. 2011;39:7465–76.

    PubMed  CAS  Google Scholar 

  115. Privette Vinnedge LM et al. The human DEK oncogene stimulates beta-catenin signaling, invasion and mammosphere formation in breast cancer. Oncogene. 2011;30:2741–52.

    PubMed  CAS  Google Scholar 

  116. Wise-Draper TM et al. Overexpression of the cellular DEK protein promotes epithelial transformation in vitro and in vivo. Cancer Res. 2009;69:1792–9.

    PubMed  CAS  Google Scholar 

  117. McGarvey T et al. The acute myeloid leukemia-associated protein, DEK, forms a splicing-dependent interaction with exon-product complexes. J Cell Biol. 2000;150:309–20.

    PubMed  CAS  Google Scholar 

  118. Soares LM, Zanier K, Mackereth C, Sattler M, Valcarcel J. Intron removal requires proofreading of U2AF/3' splice site recognition by DEK. Science. 2006;312:1961–5.

    PubMed  Google Scholar 

  119. Ageberg M, Drott K, Olofsson T, Gullberg U, Lindmark A. Identification of a novel and myeloid specific role of the leukemia-associated fusion protein DEK-NUP214 leading to increased protein synthesis. Genes Chromosomes Cancer. 2008;47:276–87.

    PubMed  CAS  Google Scholar 

  120. Salomoni P, Khelifi AF. Daxx: death or survival protein? Trends Cell Biol. 2006;16:97–104.

    PubMed  CAS  Google Scholar 

  121. McDowell TL et al. Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes. Proc Natl Acad Sci USA. 1999;96:13983–8.

    PubMed  CAS  Google Scholar 

  122. Ishov AM, Vladimirova OV, Maul GG. Heterochromatin and ND10 are cell-cycle regulated and phosphorylation-dependent alternate nuclear sites of the transcription repressor Daxx and SWI/SNF protein ATRX. J Cell Sci. 2004;117:3807–20.

    PubMed  CAS  Google Scholar 

  123. Jiao R et al. Physical and functional interaction between the Bloom’s syndrome gene product and the largest subunit of chromatin assembly factor 1. Mol Cell Biol. 2004;24:4710–9.

    PubMed  CAS  Google Scholar 

  124. Heaphy CM et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333:425.

    PubMed  CAS  Google Scholar 

  125. Schwartzentruber J et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482:226–31.

    PubMed  CAS  Google Scholar 

  126. Ding L et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481:506–10.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rod Bremner Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rafiei, M., Bremner, R. (2014). Histone Chaperones, Epigenetics, and Cancer. In: Emili, A., Greenblatt, J., Wodak, S. (eds) Systems Analysis of Chromatin-Related Protein Complexes in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7931-4_15

Download citation

Publish with us

Policies and ethics