Targeting Chromatin Modifying Enzymes in Anticancer Drug Discovery

  • Victoria M. Richon
  • Mikel P. Moyer
  • Robert A. Copeland
Chapter

Abstract

Over the past decade the sequencing of human cancer genomes has provided a wealth of information on recurrent genetic alterations in specific subsets of cancers. The understanding of the underlying genetic alterations responsible for oncogenesis in these cancers has led to the successful development of new therapies specifically targeting the genetic alterations. The successes so far have come mainly from targeting genetic alterations in kinases. For example, the identification of mutant V600E RAF in melanoma led to the development of the vemurafenib (a BRAF inhibitor) for the subset of melanoma patients containing this mutation (Bollag et al Nat Rev Drug Discov 11(11):873–76, 2012). Likewise, the identification of the EML4-ALK translocation in a subset of non-small cell lung cancer patients led to approval of crizotinib (an ALK inhibitor) in this patient subset (Ou et al Oncologist 17(11):1351–75, 2012). In addition to the identification of kinase driver mutations, these genomic analyses have also identified chromatin modifying enzymes, specifically, enzymes involving protein methylation, as some of the most frequently observed somatic alterations in cancer. This chapter will focus on the protein methyltransferase class of chromatin modifying enzymes, providing the basis for their emergence as high priority targets for cancer drug discovery and the progress made in the development of inhibitors against this class of targets.

Keywords

Epigenetics Chromatin Histone Methylation Methyltransferase Cancer Genetic alterations Inhibitor 

References

  1. 1.
    Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov. 2012;11(11):873–86.PubMedCrossRefGoogle Scholar
  2. 2.
    Ou SH, Bartlett CH, Mino-Kenudson M, Cui J, Iafrate AJ. Crizotinib for the treatment of ALK-rearranged non-small cell lung cancer: a success story to usher in the second decade of molecular targeted therapy in oncology. Oncologist. 2012;17(11):1351–75.PubMedCrossRefGoogle Scholar
  3. 3.
    Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011;146(6):1016–28.PubMedCrossRefGoogle Scholar
  4. 4.
    Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA. 1964;51:786–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, et al. Active genes are tri-methylated at K4 of histone H3. Nature. 2002;419(6905):407–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Sims 3rd RJ, Nishioka K, Reinberg D. Histone lysine methylation: a signature for chromatin function. Trends Genet. 2003;19(11):629–39.PubMedCrossRefGoogle Scholar
  8. 8.
    Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001;410(6824):116–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Copeland RA, Solomon ME, Richon VM. Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov. 2009;8(9):724–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;11(5):384–400.PubMedCrossRefGoogle Scholar
  11. 11.
    Richon VM, Johnston D, Sneeringer CJ, Jin L, Majer CR, Elliston K, et al. Chemogenetic analysis of human protein methyltransferases. Chem Biol Drug Des. 2011;78(2):199–210.PubMedCrossRefGoogle Scholar
  12. 12.
    Di Lorenzo A, Bedford MT. Histone arginine methylation. FEBS Lett. 2011;585(13):2024–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Frye M, Watt FM. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr Biol. 2006;16(10):971–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Webb KJ, Lipson RS, Al-Hadid Q, Whitelegge JP, Clarke SG. Identification of protein N-terminal methyltransferases in yeast and humans. Biochemistry. 2010;49(25):5225–35.PubMedCrossRefGoogle Scholar
  15. 15.
    Shi Y, Whetstine JR. Dynamic regulation of histone lysine methylation by demethylases. Mol Cell. 2007;25(1):1–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science. 2004;306(5694):279–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298(5595):1039–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Cao R, Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev. 2004;14(2):155–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res. 2008;647(1–2):21–9.PubMedGoogle Scholar
  21. 21.
    Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 2003;22(20):5323–35.PubMedCrossRefGoogle Scholar
  22. 22.
    Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419(6907):624–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA. 2003;100(20):11606–11.PubMedCrossRefGoogle Scholar
  24. 24.
    Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 2006;24(2):268–73.PubMedCrossRefGoogle Scholar
  25. 25.
    Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM, Richon VM, et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci USA. 2010;107(49):20980–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42(2):181–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Yap DB, Chu J, Berg T, Schapira M, Cheng SW, Moradian A, et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood. 2011;117(8):2451–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR, et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol. 2012;8(11):890–6.PubMedGoogle Scholar
  29. 29.
    McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012;492(7427):108–12.PubMedCrossRefGoogle Scholar
  30. 30.
    van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C, et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet. 2009;41(5):521–3.PubMedCrossRefGoogle Scholar
  31. 31.
    Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, Ding L, et al. Novel mutations target distinct subgroups of medulloblastoma. Nature. 2012;488(7409):43–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Sevenet N, Sheridan E, Amram D, Schneider P, Handgretinger R, Delattre O. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet. 1999;65(5):1342–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Wilson BG, Roberts CW. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011;11(7):481–92.PubMedCrossRefGoogle Scholar
  34. 34.
    Kia SK, Gorski MM, Giannakopoulos S, Verrijzer CP. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol Cell Biol. 2008;28(10):3457–64.PubMedCrossRefGoogle Scholar
  35. 35.
    Wilson BG, Wang X, Shen X, McKenna ES, Lemieux ME, Cho YJ, et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell. 2010;18(4):316–28.PubMedCrossRefGoogle Scholar
  36. 36.
    Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tonnissen ER, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42(8):665–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Makishima H, Jankowska AM, Tiu RV, Szpurka H, Sugimoto Y, Hu Z, et al. Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia. 2010;24(10):1799–804.PubMedCrossRefGoogle Scholar
  38. 38.
    Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42(8):722–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Score J, Hidalgo-Curtis C, Jones AV, Winkelmann N, Skinner A, Ward D, et al. Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms. Blood. 2012;119(5):1208–13.PubMedCrossRefGoogle Scholar
  40. 40.
    Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44(3):251–3.PubMedCrossRefGoogle Scholar
  41. 41.
    Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226–31.PubMedCrossRefGoogle Scholar
  42. 42.
    Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol. 2002;12(12):1052–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM, et al. hDOT1L links histone methylation to leukemogenesis. Cell. 2005;121(2):167–78.PubMedCrossRefGoogle Scholar
  44. 44.
    Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007;7(11):823–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Slany RK. The molecular biology of mixed lineage leukemia. Haematologica. 2009;94(7):984–93.PubMedCrossRefGoogle Scholar
  46. 46.
    Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU, et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell. 2008;14(5):355–68.PubMedCrossRefGoogle Scholar
  47. 47.
    Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV, et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell. 2011;20(1):66–78.PubMedCrossRefGoogle Scholar
  48. 48.
    Monroe SC, Jo SY, Sanders DS, Basrur V, Elenitoba-Johnson KS, Slany RK, et al. MLL-AF9 and MLL-ENL alter the dynamic association of transcriptional regulators with genes critical for leukemia. Exp Hematol. 2011;39(1):77–86.PubMedCrossRefGoogle Scholar
  49. 49.
    Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J, et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell. 2011;20(1):53–65.PubMedCrossRefGoogle Scholar
  50. 50.
    Basavapathruni A, Jin L, Daigle SR, Majer CR, Therkelsen CA, Wigle TJ, et al. Conformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L. Chem Biol Drug Des. 2012;80(6):971–80.PubMedCrossRefGoogle Scholar
  51. 51.
    Peifer M, Fernandez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;44(10):1104–10.PubMedCrossRefGoogle Scholar
  52. 52.
    Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471(7339):467–72.PubMedCrossRefGoogle Scholar
  53. 53.
    Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA. 2012;109(10):3879–84.PubMedCrossRefGoogle Scholar
  54. 54.
    Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476(7360):298–303.PubMedCrossRefGoogle Scholar
  55. 55.
    Li Y, Trojer P, Xu CF, Cheung P, Kuo A, Drury 3rd WJ, et al. The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. J Biol Chem. 2009;284(49):34283–95.PubMedCrossRefGoogle Scholar
  56. 56.
    Hudlebusch HR, Skotte J, Santoni-Rugiu E, Zimling ZG, Lees MJ, Simon R, et al. MMSET is highly expressed and associated with aggressiveness in neuroblastoma. Cancer Res. 2011;71(12):4226–35.PubMedCrossRefGoogle Scholar
  57. 57.
    Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM, Bergsagel PL. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood. 1998;92(9):3025–34.PubMedGoogle Scholar
  58. 58.
    Chng WJ, Glebov O, Bergsagel PL, Kuehl WM. Genetic events in the pathogenesis of multiple myeloma. Best Pract Res Clin Haematol. 2007;20(4):571–96.PubMedCrossRefGoogle Scholar
  59. 59.
    Keats JJ, Maxwell CA, Taylor BJ, Hendzel MJ, Chesi M, Bergsagel PL, et al. Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients. Blood. 2005;105(10):4060–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Lauring J, Abukhdeir AM, Konishi H, Garay JP, Gustin JP, Wang Q, et al. The multiple myeloma associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity. Blood. 2008;111(2):856–64.PubMedCrossRefGoogle Scholar
  61. 61.
    Marango J, Shimoyama M, Nishio H, Meyer JA, Min DJ, Sirulnik A, et al. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood. 2008;111(6):3145–54.PubMedCrossRefGoogle Scholar
  62. 62.
    Martinez-Garcia E, Popovic R, Min DJ, Sweet SM, Thomas PM, Zamdborg L, et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood. 2011;117(1):211–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Kuo AJ, Cheung P, Chen K, Zee BM, Kioi M, Lauring J, et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell. 2011;44(4):609–20.PubMedCrossRefGoogle Scholar
  64. 64.
    Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, Pratcorona M, Abbas S, Kuipers JE, et al. NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. Blood. 2011;118(13):3645–56.PubMedCrossRefGoogle Scholar
  65. 65.
    Wang GG, Cai L, Pasillas MP, Kamps MP. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol. 2007;9(7):804–12.PubMedCrossRefGoogle Scholar
  66. 66.
    Angrand PO, Apiou F, Stewart AF, Dutrillaux B, Losson R, Chambon P. NSD3, a new SET domain-containing gene, maps to 8p12 and is amplified in human breast cancer cell lines. Genomics. 2001;74(1):79–88.PubMedCrossRefGoogle Scholar
  67. 67.
    Tonon G, Wong KK, Maulik G, Brennan C, Feng B, Zhang Y, et al. High-resolution genomic profiles of human lung cancer. Proc Natl Acad Sci USA. 2005;102(27):9625–30.PubMedCrossRefGoogle Scholar
  68. 68.
    Rosati R, La Starza R, Veronese A, Aventin A, Schwienbacher C, Vallespi T, et al. NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t(8;11)(p11.2;p15). Blood. 2002;99(10):3857–60.PubMedCrossRefGoogle Scholar
  69. 69.
    Pal S, Baiocchi RA, Byrd JC, Grever MR, Jacob ST, Sif S. Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J. 2007;26(15):3558–69.PubMedCrossRefGoogle Scholar
  70. 70.
    Jansson M, Durant ST, Cho EC, Sheahan S, Edelmann M, Kessler B, et al. Arginine methylation regulates the p53 response. Nat Cell Biol. 2008;10(12):1431–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Copeland RA. Conformational adaptation in drug-target interactions and residence time. Future Med Chem. 2011;3(12):1491–501.PubMedCrossRefGoogle Scholar
  72. 72.
    Chiang PK. Biological effects of inhibitors of S-adenosylhomocysteine hydrolase. Pharmacol Ther. 1998;77(2):115–34.PubMedCrossRefGoogle Scholar
  73. 73.
    Mori S, Iwase K, Iwanami N, Tanaka Y, Kagechika H, Hirano T. Development of novel bisubstrate-type inhibitors of histone methyltransferase SET7/9. Bioorg Med Chem. 2010;18(23):8158–66.PubMedCrossRefGoogle Scholar
  74. 74.
    Yao Y, Chen P, Diao J, Cheng G, Deng L, Anglin JL, et al. Selective inhibitors of histone methyltransferase DOT1L: design, synthesis, and crystallographic studies. J Am Chem Soc. 2011;133(42):16746–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Basavapathruni A et al. Conformational adaption drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L. Chem Biol Drug Des. 2012;80:971–80.PubMedCrossRefGoogle Scholar
  76. 76.
    Copeland RA, Pompliano DL, Meek TD. Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov. 2006;5(9):730–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Knutson SK et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol. 2012;8(11):890–6.PubMedGoogle Scholar
  78. 78.
    Copeland RA, et al. Patent Application WO2012034132. 2012.Google Scholar
  79. 79.
    Brackley J. Inventor WO20111403242011.Google Scholar
  80. 80.
    Duquenne C, et al. Inventor WO20111403252011.Google Scholar
  81. 81.
    Burgess J, et al. Inventor WO20120058052012.Google Scholar
  82. 82.
    Knight SD, et al. Inventor WO20120750802012.Google Scholar
  83. 83.
    Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell. 2007;25(3):473–81.PubMedCrossRefGoogle Scholar
  84. 84.
    Vedadi M, Barsyte-Lovejoy D, Liu F, Rival-Gervier S, Allali-Hassani A, Labrie V, et al. A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat Chem Biol. 2011;7(8):566–74. doi: 10.1038/nchembio.599.PubMedCrossRefGoogle Scholar
  85. 85.
    Ferguson ALN, Howard T, Pollard H, Green I, Grande C, Cheung T, et al. Structural basis of substrate methylation and inhibition of SMYD2. Structure. 2011;19(9):1262–73.PubMedCrossRefGoogle Scholar
  86. 86.
    Purandare AV, Chen Z, Huynh T, Pang S, Geng J, Vaccaro W, et al. Pyrazole inhibitors of coactivator associated arginine methyltransferase 1 (CARM1). Bioorg Med Chem Lett. 2008;18(15):4438–41.PubMedCrossRefGoogle Scholar
  87. 87.
    Allan M, Manku S, Therrien E, Nguyen N, Styhler S, Robert MF, et al. N-Benzyl-1-heteroaryl-3-(trifluoromethyl)-1H-pyrazole-5-carboxamides as inhibitors of co-activator associated arginine methyltransferase 1 (CARM1). Bioorg Med Chem Lett. 2009;19(4):1218–23.PubMedCrossRefGoogle Scholar
  88. 88.
    Huynh T, Chen Z, Pang S, Geng J, Bandiera T, Bindi S, et al. Optimization of pyrazole inhibitors of coactivator associated arginine methyltransferase 1 (CARM1). Bioorg Med Chem Lett. 2009;19(11):2924–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Spannhoff A, Machmur R, Heinke R, Trojer P, Bauer I, Brosch G, et al. A novel arginine methyltransferase inhibitor with cellular activity. Bioorg Med Chem Lett. 2007;17(15):4150–3.PubMedCrossRefGoogle Scholar
  90. 90.
    Campagna-Slater V, Mok MW, Nguyen KT, Feher M, Najmanovich R, Schapira M. Structural chemistry of the histone methyltransferases cofactor binding site. J Chem Inf Model. 2011;51(3):612–23.PubMedCrossRefGoogle Scholar
  91. 91.
    Volkel P, Angrand PO. The control of histone lysine methylation in epigenetic regulation. Biochimie. 2007;89(1):1–20.PubMedCrossRefGoogle Scholar
  92. 92.
    Dillon SC, Zhang X, Trievel RC, Cheng X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 2005;6(8):227.PubMedCrossRefGoogle Scholar
  93. 93.
    Qian C, Wang X, Manzur K, Sachchidanand, Farooq A, Zeng L, et al. Structural insights of the specificity and catalysis of a viral histone H3 lysine 27 methyltransferase. J Mol Biol. 2006;359(1):86–96.PubMedCrossRefGoogle Scholar
  94. 94.
    Schapira M. Structural chemistry of human SET domain protein methyltransferases. Curr Chem Genomics. 2011;5 Suppl 1:85–94.PubMedCrossRefGoogle Scholar
  95. 95.
    Zhang X, Cheng X. Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure. 2003;11(5):509–20.PubMedCrossRefGoogle Scholar
  96. 96.
    Xiao B, Jing C, Wilson JR, Walker PA, Vasisht N, Kelly G, et al. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature. 2003;421(6923):652–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Trievel RC, Flynn EM, Houtz RL, Hurley JH. Mechanism of multiple lysine methylation by the SET domain enzyme Rubisco LSMT. Nat Struct Biol. 2003;10(7):545–52.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Victoria M. Richon
    • 1
  • Mikel P. Moyer
    • 2
  • Robert A. Copeland
    • 2
  1. 1.Oncology Discovery and Preclinical Sciences, Global Oncology Division, SanofiCambridgeUSA
  2. 2.R&D DepartmentEpizyme, Inc.CambridgeUSA

Personalised recommendations