Skip to main content

Structural Genomics and Drug Discovery for Chromatin-Related Protein Complexes Involved in Histone Tail Recognition

  • Chapter
  • First Online:
Systems Analysis of Chromatin-Related Protein Complexes in Cancer

Abstract

Recruitment of transcriptional regulators and enzymes that remodel chromatin structure is controlled by a complex pattern of post-translational modifications on histones and other chromatin binding proteins. These so-called epigenetic marks specifically recruit protein interaction modules that “read” the complex pattern of post-translational modifications resulting in assembly of protein complexes that alter chromatin structure and regulate gene transcription. Often, several diverse reader domains are present in nuclear chromatin modifying proteins acting synergistically to recognize post-translationally modified histones. In addition to this modular set of interactions, some reader domains simultaneously recognize combination of several post-translational marks, rather than isolated modifications. Due to the complexity and the large number of marks and their combinations, reader domains have evolved as large and diverse families of interaction modules that specifically recognize combinations of acetylated and methylated lysines, methylated arginines, phosphorylated serine, threonine and tyrosine residues as well as other modifications. High throughput protein crystallography has recently contributed significantly in our understanding of the structural mechanisms that govern reader–histone tail interactions. Established parallel expression and purification of recombinant reader domains have enabled screening technologies that evaluated the substrate specificity of entire families of these protein interaction modules. In addition, dysfunction of epigenetic mechanisms such as writing, erasing and reading of post-translational marks has been associated with the development of a large variety of diseases, and reader domains have recently emerged as interesting targets for pharmaceutical intervention. Here, we will review our current knowledge of reader domain structural biology, the mechanisms of specific recognition of substrate sequences and emerging inhibitors that specifically disrupt binding of reader domains to histone tails. Due to space limitations we will limit our analysis in this chapter on reader domains that primarily recognize methylated lysine and arginine residues as well as acetyl-lysine readers of the bromodomain family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012;149(1):214–31.

    Article  PubMed  CAS  Google Scholar 

  2. Wu H, Zeng H, Lam R, Tempel W, Amaya MF, Xu C, et al. Structural and histone binding ability characterizations of human PWWP domains. PLoS One. 2011;6(6):e18919.

    Article  PubMed  Google Scholar 

  3. Filippakopoulos P, Knapp S. The bromodomain interaction module. FEBS Lett. 2012;586(17):2692–704.

    Article  PubMed  CAS  Google Scholar 

  4. Haynes SR, Dollard C, Winston F, Beck S, Trowsdale J, Dawid IB. The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 1992;20(10):2603.

    Article  PubMed  CAS  Google Scholar 

  5. Li H, Ilin S, Wang W, Duncan EM, Wysocka J, Allis CD, et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature. 2006;442(7098):91–5.

    PubMed  CAS  Google Scholar 

  6. Pena PV, Davrazou F, Shi X, Walter KL, Verkhusha VV, Gozani O, et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature. 2006;442(7098):100–3.

    PubMed  CAS  Google Scholar 

  7. Zeng L, Zhang Q, Li S, Plotnikov AN, Walsh MJ, Zhou MM. Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature. 2010;466(7303):258–62.

    Article  PubMed  CAS  Google Scholar 

  8. Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature. 2007;448(7154):714–7.

    Article  PubMed  CAS  Google Scholar 

  9. Musselman CA, Kutateladze TG. Handpicking epigenetic marks with PHD fingers. Nucleic Acids Res. 2011;39(21):9061–71.

    Article  PubMed  CAS  Google Scholar 

  10. Champagne KS, Kutateladze TG. Structural insight into histone recognition by the ING PHD fingers. Curr Drug Targets. 2009;10(5):432–41.

    Article  PubMed  CAS  Google Scholar 

  11. Maurer-Stroh S, Dickens NJ, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting CP. The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci. 2003;28(2):69–74.

    Article  PubMed  CAS  Google Scholar 

  12. Jacobs SA, Khorasanizadeh S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science. 2002;295(5562):2080–3.

    Article  PubMed  CAS  Google Scholar 

  13. Huang Y, Fang J, Bedford MT, Zhang Y, Xu RM. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science. 2006;312(5774):748–51.

    Article  PubMed  CAS  Google Scholar 

  14. Qiu C, Sawada K, Zhang X, Cheng X. The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat Struct Biol. 2002;9(3):217–24.

    PubMed  CAS  Google Scholar 

  15. Kuo AJ, Song J, Cheung P, Ishibe-Murakami S, Yamazoe S, Chen JK, et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature. 2012;484(7392):115–9.

    Article  PubMed  CAS  Google Scholar 

  16. Xu C, Min J. Structure and function of WD40 domain proteins. Protein Cell. 2011;2(3):202–14.

    Article  PubMed  CAS  Google Scholar 

  17. Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury 3rd WJ, et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature. 2009;461(7265):762–7.

    Article  PubMed  CAS  Google Scholar 

  18. Xu C, Bian C, Yang W, Galka M, Ouyang H, Chen C, et al. Binding of different histone marks differentially regulates the activity and specificity of polycomb repressive complex 2 (PRC2). Proc Natl Acad Sci USA. 2010;107(45):19266–71.

    Article  PubMed  CAS  Google Scholar 

  19. Migliori V, Muller J, Phalke S, Low D, Bezzi M, Mok WC, et al. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol. 2012;19(2):136–44.

    Article  PubMed  CAS  Google Scholar 

  20. Nady N, Min J, Kareta MS, Chedin F, Arrowsmith CH. A SPOT on the chromatin landscape? Histone peptide arrays as a tool for epigenetic research. Trends Biochem Sci. 2008;33(7):305–13.

    Article  PubMed  CAS  Google Scholar 

  21. Moriniere J, Rousseaux S, Steuerwald U, Soler-Lopez M, Curtet S, Vitte AL, et al. Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature. 2009;461(7264):664–8.

    Article  PubMed  CAS  Google Scholar 

  22. French CA, Miyoshi I, Aster JC, Kubonishi I, Kroll TG, Dal Cin P, et al. BRD4 bromodomain gene rearrangement in aggressive carcinoma with translocation t(15;19). Am J Pathol. 2001;159(6):1987–92.

    Article  PubMed  CAS  Google Scholar 

  23. Sobulo OM, Borrow J, Tomek R, Reshmi S, Harden A, Schlegelberger B, et al. MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc Natl Acad Sci USA. 1997;94(16):8732–7.

    Article  PubMed  CAS  Google Scholar 

  24. Panagopoulos I, Fioretos T, Isaksson M, Samuelsson U, Billstrom R, Strombeck B, et al. Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13). Hum Mol Genet. 2001;10(4):395–404.

    Article  PubMed  CAS  Google Scholar 

  25. Ciro M, Prosperini E, Quarto M, Grazini U, Walfridsson J, McBlane F, et al. ATAD2 is a novel cofactor for MYC, overexpressed and amplified in aggressive tumors. Cancer Res. 2009;69(21):8491–8.

    Article  PubMed  CAS  Google Scholar 

  26. Tsai WW, Wang Z, Yiu TT, Akdemir KC, Xia W, Winter S, et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature. 2010;468(7326):927–32.

    Article  PubMed  CAS  Google Scholar 

  27. Muller S, Filippakopoulos P, Knapp S. Bromodomains as therapeutic targets. Expert Rev Mol Med. 2011;13:e29.

    Article  PubMed  Google Scholar 

  28. Baker LA, Allis CD, Wang GG. PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks. Mutat Res. 2008;647(1–2):3–12.

    PubMed  CAS  Google Scholar 

  29. Sobacchi C, Marrella V, Rucci F, Vezzoni P, Villa A. RAG-dependent primary immunodeficiencies. Hum Mutat. 2006;27(12):1174–84.

    Article  PubMed  CAS  Google Scholar 

  30. Vidler LR, Brown N, Knapp S, Hoelder S. Druggability analysis and structural classification of bromodomain acetyl-lysine binding sites. J Med Chem. 2012;55(17):7346–59.

    Article  PubMed  CAS  Google Scholar 

  31. Zeng L, Li J, Muller M, Yan S, Mujtaba S, Pan C, et al. Selective small molecules blocking HIV-1 Tat and coactivator PCAF association. J Am Chem Soc. 2005;127(8):2376–7.

    Article  PubMed  CAS  Google Scholar 

  32. Borah JC, Mujtaba S, Karakikes I, Zeng L, Muller M, Patel J, et al. A small molecule binding to the coactivator CREB-binding protein blocks apoptosis in cardiomyocytes. Chem Biol. 2011;18(4):531–41.

    Article  PubMed  CAS  Google Scholar 

  33. Crowe M, Daugan AC-M, Gosmini RLM, Grimes RM, Mirguet O, Mordaunt JE. International patent application WO2011054844A1. 2011

    Google Scholar 

  34. Miyoshi S, Ooike S, Iwata K, Hikawa H, Sugahara K. International patent application WO2009084693A1. 2009.

    Google Scholar 

  35. Chung CW, Coste H, White JH, Mirguet O, Wilde J, Gosmini RL, et al. Discovery and characterization of small molecule inhibitors of the BET family bromodomains. J Med Chem. 2011;54(11):3827–38.

    Article  PubMed  CAS  Google Scholar 

  36. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327):1067–73.

    Article  PubMed  CAS  Google Scholar 

  37. Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468(7327):1119–23.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang G, Liu R, Zhong Y, Plotnikov AN, Zhang W, Zeng L, et al. Down-regulation of NF-kappaB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition. J Biol Chem. 2012;287(34):28840–51.

    Article  PubMed  CAS  Google Scholar 

  39. Filippakopoulos P, Picaud S, Fedorov O, Keller M, Wrobel M, Morgenstern O, et al. Benzodiazepines and benzotriazepines as protein interaction inhibitors targeting bromodomains of the BET family. Bioorg Med Chem. 2012;20(6):1878–86.

    Article  PubMed  CAS  Google Scholar 

  40. Hewings DS, Wang M, Philpott M, Fedorov O, Uttarkar S, Filippakopoulos P, et al. 3,5-dimethylisoxazoles act as acetyl-lysine-mimetic bromodomain ligands. J Med Chem. 2011;54(19):6761–70.

    Article  PubMed  CAS  Google Scholar 

  41. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478(7370):529–33.

    Article  PubMed  CAS  Google Scholar 

  42. Hewings DS, Rooney TP, Jennings LE, Hay D, Schofield CJ, Brennan PE, et al. Progress in the development and application of small molecule inhibitors of bromodomain-acetyl-lysine interactions. J Med Chem. 2012;55(22):9393–413.

    Article  PubMed  CAS  Google Scholar 

  43. Fish PV, Filippakopoulos P, Bish G, Brennan PE, Bunnage ME, Cook AS, et al. Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit. J Med Chem. 2012;55(22):9831–7.

    Article  PubMed  CAS  Google Scholar 

  44. Bailey D, Jahagirdar R, Gordon A, Hafiane A, Campbell S, Chatur S, et al. RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. J Am Coll Cardiol. 2010;55(23):2580–9.

    Article  PubMed  CAS  Google Scholar 

  45. Santiago C, Nguyen K, Schapira M. Druggability of methyl-lysine binding sites. J Comput Aided Mol Des. 2011;25(12):1171–8.

    Article  PubMed  CAS  Google Scholar 

  46. Herold JM, Wigle TJ, Norris JL, Lam R, Korboukh VK, Gao C, et al. Small-molecule ligands of methyl-lysine binding proteins. J Med Chem. 2011;54(7):2504–11.

    Article  PubMed  CAS  Google Scholar 

  47. Herold JM, Ingerman LA, Gao C, Frye SV. Drug discovery toward antagonists of methyl-lysine binding proteins. Curr Chem Genomics. 2011;5:51–61.

    Article  PubMed  CAS  Google Scholar 

  48. James LI, Barsyte-Lovejoy D, Zhong N, Krichevsky L, Korboukh VK, Herold JM, et al. Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. Nat Chem Biol. 2013;9(3):184–91.

    Article  PubMed  CAS  Google Scholar 

  49. Senisterra G, Wu H, Allali-Hassani A, Wasney GA, Barsyte-Lovejoy D, Dombrovski L, et al. Small-molecule inhibition of MLL activity by disruption of its interaction with WDR5. Biochem J. 2013;449(1):151–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors receive funding from the SGC, a registered charity (number 1097737) that receives funds from the Canadian Institutes for Health Research, the Canada Foundation for Innovation, Genome Canada, GlaxoSmithKline, Pfizer, Eli Lilly, Takeda, AbbVie, the Novartis Research Foundation, the Ontario Ministry of Research and Innovation and the Wellcome Trust. P.F. is supported by a Wellcome Trust Career Development Fellowship (095751/Z/11/Z). We apologise to the researchers that we were not able to cite as a result of space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Knapp Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Filippakopoulos, P., Knapp, S. (2014). Structural Genomics and Drug Discovery for Chromatin-Related Protein Complexes Involved in Histone Tail Recognition. In: Emili, A., Greenblatt, J., Wodak, S. (eds) Systems Analysis of Chromatin-Related Protein Complexes in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7931-4_11

Download citation

Publish with us

Policies and ethics