Skip to main content

Proteome Analysis of Chromatin Complexes in Differentiating Stem Cells

  • Chapter
  • First Online:
Systems Analysis of Chromatin-Related Protein Complexes in Cancer

Abstract

Regulation of gene expression by proteins associated with chromatin is a major, yet poorly understood, feature of differentiation and development. Recent genomic studies have highlighted the role of chromatin regulatory proteins in pathologies affecting cellular proliferation and cell cycle, such as cancer. Mass spectrometry-based proteomics approaches have, in the last decade, provided a wealth of information on the dynamic nature of the proteome during cellular differentiation. Label-based approaches have predominated the literature, however, with the development of increasingly sensitive mass spectrometers and liquid chromatographic systems; label-free techniques offer a compelling alternative. Using these approaches, a vast repertoire of proteins have been identified in the proteome of undifferentiated and differentiating stem cells, including transcription factors, chromatin-modifying complexes, histone-modifying enzymes and signalling proteins which act in concert to regulate gene expression. Given the recent correlation between mutations in epigenetic machinery and the development and progression of various cancers, application of these approaches to the study cancer cell proteomes could provide valuable insights into the role of epigenetic reregulation in tumourogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001;19(3):193–204.

    Article  PubMed  CAS  Google Scholar 

  2. Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trail. Lancet. 2011;378(9806):1847–57.

    Article  PubMed  Google Scholar 

  3. Ruff CA, Fehlings MG. Neural stem cells in regenerative medicine: bridging the gap. Panminerva Med. 2010;52(2):125–47.

    PubMed  CAS  Google Scholar 

  4. Takawa M, Masuda K, Kunizaki M, Daigo Y, Takagi K, Iwai Y, et al. Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker. Cancer Sci. 2011;102(7):1298–305.

    Article  PubMed  CAS  Google Scholar 

  5. Wu SM, Hochedlinger K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol. 2011;13(5):497–505.

    Article  PubMed  CAS  Google Scholar 

  6. Strauss R, Hamerlik P, Lieber A, Bartek J. Regulation of stem cell plasticity: mechanisms and relevance to tissue biology and cancer. Mol Ther. 2012;20(5):887–97.

    Article  PubMed  CAS  Google Scholar 

  7. Vincent A, Van Seuningen I. Epigenetics, stem cells and epithelial cell fate. Differentiation. 2009;78(2–3):99–107.

    Article  PubMed  CAS  Google Scholar 

  8. Young RA. Control of the embryonic stem cell state. Cell. 2011;144(6):940–54.

    Article  PubMed  CAS  Google Scholar 

  9. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.

    Article  PubMed  CAS  Google Scholar 

  10. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–9.

    Article  PubMed  CAS  Google Scholar 

  11. Piatti P, Zeilner A, Lusser A. ATP-dependent chromatin remodeling factors and their roles in affecting nucleosome fiber composition. Int J Mol Sci. 2011;12(10):6544–65.

    Article  PubMed  CAS  Google Scholar 

  12. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.

    Article  PubMed  CAS  Google Scholar 

  13. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 2007;21(5):525–30.

    Article  PubMed  CAS  Google Scholar 

  14. Popovic R, Licht JD. Emerging epigenetic targets and therapies in cancer medicine. Cancer Discov. 2012;2(5):405–13.

    Article  PubMed  CAS  Google Scholar 

  15. Pal R, Ravindran G. Assessment of pluripotent and multilineage differentiation potential of NTERA-2 cells as a model for studying human embryonic stem cells. Cell Prolif. 2006;39(6):585–98.

    Article  PubMed  CAS  Google Scholar 

  16. Steen H, Mann M. The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol. 2004 Sep;5(9):699–711.

    Article  CAS  Google Scholar 

  17. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1(5):376–86.

    Article  PubMed  CAS  Google Scholar 

  18. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3(12):1154–69.

    Article  PubMed  CAS  Google Scholar 

  19. Chelius D, Bondarenko PV. Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res. 2002;1(4):317–23.

    Article  PubMed  CAS  Google Scholar 

  20. Liu H, Sadygov RG, Yates 3rd JR. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem. 2004;76(14):4193–201.

    Article  PubMed  CAS  Google Scholar 

  21. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–72.

    Article  PubMed  CAS  Google Scholar 

  22. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2006;126(4):663–76.

    Article  PubMed  CAS  Google Scholar 

  23. Takahashi K, Tanabe K, Ohnuki MA, Narita M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  PubMed  CAS  Google Scholar 

  24. van den Berg DLC, Snoek T, Mullin NP, Yates A, et al. An Oct4-centered protein interaction network in embryonic stem cells. Cell Stem Cell. 2010;6:369–81.

    Article  PubMed  Google Scholar 

  25. Pardo M, Lang B, Yu LA, Proser H, et al. An expanded Oct4 interaction network; implication for stem cell biology, development and disease. Cell Stem Cell. 2010;6:382–95.

    Article  PubMed  CAS  Google Scholar 

  26. Chaerkady R, Kerr CL, Marimuthu A, Kelkar DS, et al. Temporal analysis of neural differentiation using quantitative proteomics. J Proteome Res. 2009;8(3):1315–26.

    Article  PubMed  CAS  Google Scholar 

  27. Sarkar P, Collier TS, Randalf SM, Muddiman DC, et al. The subcellular proteome of undifferentiated human embryonic stem cells. J Proteomics. 2012;12:1–10.

    Google Scholar 

  28. Jadaliha M, Lee HJ, Pakzad M, Fathi A, Jeong SK, et al. Quantitative proteomic analysis of human embryonic stem cell differentiation by 8-plex iTRAQ labelling. PLoS One. 2012;7(6):e38532.

    Article  PubMed  CAS  Google Scholar 

  29. Pewsey E, Bruce C, Tonge P, Evans C, et al. Nuclear proteome dynamics in differentiating embryonic carcinoma (NTERA-2) cells. J Proteome Res. 2010;9:3412–26.

    Article  PubMed  CAS  Google Scholar 

  30. Cagney G, Park S, Chung C, Tong B, O’Dushlaine C, Shields DC, et al. Human tissue profiling with multidimensional protein identification technology. J Proteome Res. 2005;4(5):1757–67. PubMed PMID: 16212430.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Cagney Ph.D., B.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Watson, A., Cagney, G. (2014). Proteome Analysis of Chromatin Complexes in Differentiating Stem Cells. In: Emili, A., Greenblatt, J., Wodak, S. (eds) Systems Analysis of Chromatin-Related Protein Complexes in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7931-4_10

Download citation

Publish with us

Policies and ethics