Introductory Ideas

  • Steven G. Krantz
Chapter
Part of the Graduate Texts in Mathematics book series (GTM, volume 268)

Abstract

In the early days of functional analysis—the early twentieth century—people did not yet know what a Banach space was nor a Hilbert space. They frequently studied a particular complete, infinite-dimensional space from a more abstract point of view. The most common space to be studied in this regard was of course L 2. It was when Stefan Bergman took a course from Erhard Schmidt on L 2 of the unit interval I that he conceived of the idea of the Bergman space of square-integrable holomorphic functions on the unit disc D. And the rest is history.

Keywords

Manifold Posit DIF3 

Bibliography

  1. [ADA]
    R. Adams, Sobolev Spaces, Academic Press, 1975.Google Scholar
  2. [AFR]
    P. Ahern, M. Flores, and W. Rudin, An invariant volume-mean-value property, Jour. Functional Analysis 11(1993), 380–397.MathSciNetGoogle Scholar
  3. [AHL]
    L. Ahlfors, Complex Analysis, 3rd ed., McGraw-Hill, New York, 1979.Google Scholar
  4. [ARO]
    N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc. 68(1950), 337–404.MathSciNetMATHGoogle Scholar
  5. [BEG]
    T. N. Bailey, M. G. Eastwood, and C. R. Graham, Invariant theory for conformal and CR geometry, Annals of Math. 139(1994), 491–552.MathSciNetMATHGoogle Scholar
  6. [BAR1]
    D. Barrett, Irregularity of the Bergman projection on a smooth bounded domain in \({\mathbb{C}}^{2},\) Annals of Math. 119(1984), 431–436.Google Scholar
  7. [BAR2]
    D. Barrett, The behavior of the Bergman projection on the Diederich–Fornaess worm, Acta Math., 168(1992), 1–10.MathSciNetMATHGoogle Scholar
  8. [BAR3]
    D. Barrett, Regularity of the Bergman projection and local geometry of domains, Duke Math. Jour. 53(1986), 333–343.MATHGoogle Scholar
  9. [BAR4]
    D. Barrett, Behavior of the Bergman projection on the Diederich–Fornæss worm, Acta Math. 168(1992), 1–10.MathSciNetMATHGoogle Scholar
  10. [BEDF]
    E. Bedford and P. Federbush, Pluriharmonic boundary values, Tohoku Math. Jour. 26(1974), 505–511.MathSciNetMATHGoogle Scholar
  11. [BEF1]
    E. Bedford and J. E. Fornæss, A construction of peak functions on weakly pseudoconvex domains, Ann. Math. 107(1978), 555–568.MATHGoogle Scholar
  12. [BEF2]
    E. Bedford and J. E. Fornæss, Counterexamples to regularity for the complex Monge–Ampère equation, Invent. Math. 50 (1978/79), 129–134.Google Scholar
  13. [BEL1]
    S. Bell, Biholomorphic mappings and the \(\overline{\partial }\) problem, Ann. Math., 114(1981), 103–113.MATHGoogle Scholar
  14. [BEL2]
    S. Bell, Local boundary behavior of proper holomorphic mappings, Proc. Sympos. Pure Math, vol. 41, American Math. Soc., Providence R.I., 1984, 1–7.Google Scholar
  15. [BEL3]
    S. Bell, Differentiability of the Bergman kernel and pseudo-local estimates, Math. Z. 192(1986), 467–472.MathSciNetMATHGoogle Scholar
  16. [BEB]
    S. Bell and H. Boas, Regularity of the Bergman projection in weakly pseudoconvex domains, Math. Annalen 257(1981), 23–30.MathSciNetMATHGoogle Scholar
  17. [BEC]
    S. Bell and D. Catlin, Proper holomorphic mappings extend smoothly to the boundary, Bull. Amer. Math. Soc. (N.S.) 7(1982), 269–272.Google Scholar
  18. [BEK]
    S. Bell and S. G. Krantz, Smoothness to the boundary of conformal maps, Rocky Mt. Jour. Math. 17(1987), 23–40.MathSciNetMATHGoogle Scholar
  19. [BELL]
    S. Bell and E. Ligocka, A simplification and extension of Fefferman’s theorem on biholomorphic mappings, Invent. Math. 57(1980), 283–289.MathSciNetMATHGoogle Scholar
  20. [BERE]
    F. A. Berezin, Quantization in complex symmetric spaces, Math. USSR Izvestia 9(1975), 341–379.Google Scholar
  21. [BER1]
    S. Bergman, Über die Entwicklung der harmonischen Funktionen der Ebene und des Raumes nach Orthogonal funktionen, Math. Annalen 86(1922), 238–271.Google Scholar
  22. [BER2]
    S. Bergman, The Kernel Function and Conformal Mapping, Am. Math. Soc., Providence, RI, 1970.MATHGoogle Scholar
  23. [BES]
    S. Bergman and M. Schiffer, Kernel Functions and Elliptic Differential Equations in Mathematical Physics, Academic Press, New York, 1953.MATHGoogle Scholar
  24. [BEC]
    B. Berndtsson, P. Charpentier, A Sobolev mapping property of the Bergman kernel, Math. Z. 235 (2000), 1–10.Google Scholar
  25. [BERS]
    L. Bers, Introduction to Several Complex Variables, New York Univ. Press, New York, 1964.Google Scholar
  26. [BLK]
    B. E. Blank and S. G. Krantz, Calculus, Key Press, Emeryville, CA, 2006.Google Scholar
  27. [BLP]
    Z. Blocki and P. Pflug, Hyperconvexity and Bergman completeness, Nagoya Math. J. 151(1998), 221–225.MathSciNetMATHGoogle Scholar
  28. [BLG]
    T. Bloom and I. Graham, A geometric characterization of points of type m on real submanifolds of \({\mathbb{C}}^{n},\) J. Diff. Geom. 12(1977), 171–182.Google Scholar
  29. [BOA1]
    H. Boas, Counterexample to the Lu Qi-Keng conjecture, Proc. Am. Math. Soc. 97(1986), 374–375.MathSciNetMATHGoogle Scholar
  30. [BOA2]
    H. Boas, The Lu Qi-Keng conjecture fails generically, Proc. Amer. Math. Soc. 124(1996), 2021–2027.MathSciNetMATHGoogle Scholar
  31. [BOS1]
    H. Boas and E. Straube, Sobolev estimates for the \(\overline{\partial }\)-Neumann operator on domains in \({\mathbb{C}}^{n}\) admitting a defining function that is plurisubharmonic on the boundary, Math. Z. 206 (1991), 81–88.Google Scholar
  32. [BOS2]
    H. Boas and E. Straube, Equivalence of regularity for the Bergman projection and the \(\overline{\partial }\)-Neumann operator, Manuscripta Math. 67(1990), 25–33.MathSciNetMATHGoogle Scholar
  33. [BKP]
    H. Boas, S. G. Krantz, and M. M. Peloso, unpublished.Google Scholar
  34. [BOC1]
    S. Bochner, Orthogonal systems of analytic functions, Math. Z. 14(1922), 180–207.MathSciNetMATHGoogle Scholar
  35. [BOU]
    L. Boutet de Monvel, Le noyau de Bergman en dimension 2, Séminaire sur les Équations aux Dérivées Partielles 1987–1988, Exp. no. XXII, École Polytechnique Palaiseau, 1988, p. 13.Google Scholar
  36. [BOS]
    L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et Szegő, Soc. Mat. de France Asterisque 34–35(1976), 123–164.Google Scholar
  37. [BRE]
    H. J. Bremermann, Holomorphic continuation of the kernel function and the Bergman metric in several complex variables, Lectures on Functions of a Complex Variable, Michigan, 1955, 349–383.Google Scholar
  38. [BUN]
    L. Bungart, Holomorphic functions with values in locally convex spaces and applications to integral formulas, Trans. Am. Math. Soc. 111(1964), 317–344.MathSciNetMATHGoogle Scholar
  39. [BSW]
    D. Burns, S. Shnider, R. O. Wells, On deformations of strictly pseudoconvex domains, Invent. Math. 46(1978), 237–253.MathSciNetMATHGoogle Scholar
  40. [CKNS]
    L. Caffarelli, J. J. Kohn, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge–Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math. 38(1985), 209–252.Google Scholar
  41. [CAR]
    L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand, Princeton, NJ, 1967.MATHGoogle Scholar
  42. [CCP]
    G. Carrier, M. Crook, and C. Pearson, Functions of a Complex Variable, McGraw-Hill, New York, 1966.MATHGoogle Scholar
  43. [CAT1]
    D. Catlin, Necessary conditions for subellipticity of the \(\overline{\partial }-\)Neumann problem, Ann. Math. 117(1983), 147–172.MathSciNetMATHGoogle Scholar
  44. [CAT2]
    D. Catlin, Subelliptic estimates for the \(\overline{\partial }\)Neumann problem, Ann. Math. 126(1987), 131–192.MathSciNetMATHGoogle Scholar
  45. [CAT3]
    D. Catlin, Boundary behavior of holomorphic functions on pseudoconvex domains, J. Differential Geom. 15(1980), 605–625.MathSciNetMATHGoogle Scholar
  46. [CNS]
    D.-C. Chang, A. Nagel, and E. M. Stein, Estimates for the \(\overline{\partial }\)-Neumann problem in pseudoconvex domains of finite type in \({\mathbb{C}}^{2}\), Acta Math. 169(1992), 153–228.MathSciNetMATHGoogle Scholar
  47. [CHE]
    S.-C. Chen, A counterexample to the differentiability of the Bergman kernel function, Proc. AMS 124(1996), 1807–1810.MATHGoogle Scholar
  48. [CHF]
    B.-Y. Chen and S. Fu, Comparison of the Bergman and Szegö kernels, Advances in Math. 228(2011), 2366–2384.MathSciNetMATHGoogle Scholar
  49. [CHS]
    S.-C. Chen and M. C. Shaw, Partial Differential Equations in Several Complex Variables, AMS/IP Studies in Advanced Mathematics, 19. American Mathematical Society, Providence, RI; International Press, Boston, MA, 2001.Google Scholar
  50. [CHENG]
    S.-Y. Cheng, Open problems, Conference on Nonlinear Problems in Geometry Held in Katata, September, 1979, Tohoku University, Dept. of Mathematics, Sendai, 1979, p. 2.Google Scholar
  51. [CHM]
    S. S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133(1974), 219–271.MathSciNetGoogle Scholar
  52. [CHR1]
    M. Christ, Global C irregularity of the \(\overline{\partial }\)?–Neumann problem for worm domains, J. Amer. Math. Soc. 9(1996), 1171–1185.MathSciNetMATHGoogle Scholar
  53. [CHR2]
    M. Christ, Remarks on global irregularity in the \(\overline{\partial }\)-Neumann problem, Several complex variables (Berkeley, CA, 1995–1996), 161–198, Math. Sci. Res. Inst. Publ. 37, Cambridge Univ. Press, Cambridge, 1999.Google Scholar
  54. [COL]
    E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.MATHGoogle Scholar
  55. [COW]
    R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes, Springer Lecture Notes vol. 242, Springer Verlag, Berlin, 1971.Google Scholar
  56. [COH]
    R. Courant and D. Hilbert, Methods of Mathematical Physics, 2nd ed., Interscience, New York, 1966.Google Scholar
  57. [DAN1]
    J. P. D’Angelo, Real hypersurfaces, orders of contact, and applications, Annals of Math. 115(1982), 615–637.MathSciNetMATHGoogle Scholar
  58. [DAN2]
    J. P. D’Angelo, Intersection theory and the \(\overline{\partial }\)- Neumann problem, Proc. Symp. Pure Math. 41(1984), 51–58.MathSciNetGoogle Scholar
  59. [DAN3]
    J. P. D’Angelo, Finite type conditions for real hypersurfaces in \({\mathbb{C}}^{n},\) in Complex Analysis Seminar, Springer Lecture Notes vol. 1268, Springer Verlag, 1987, 83–102.Google Scholar
  60. [DAN4]
    J. P. D’Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, Boca Raton, FL, 1993.MATHGoogle Scholar
  61. [DIE1]
    K. Diederich, Das Randverhalten der Bergmanschen Kernfunktion und Metrik in streng pseudo-konvexen Gebieten, Math. Ann. 187(1970), 9–36.MathSciNetMATHGoogle Scholar
  62. [DIE2]
    K. Diederich, Über die 1. and 2. Ableitungen der Bergmanschen Kernfunktion und ihr Randverhalten, Math. Ann. 203(1973), 129–170.Google Scholar
  63. [DIF1]
    K. Diederich and J. E. Fornæss, Pseudoconvex domains: An example with nontrivial Nebenhülle, Math. Ann. 225(1977), 275–292.MathSciNetMATHGoogle Scholar
  64. [DIF2]
    K. Diederich and J. E. Fornæss, Pseudoconvex domains with real-analytic boundary, Annals of Math. 107(1978), 371–384.MATHGoogle Scholar
  65. [DIF3]
    K. Diederich and J. E. Fornæss, Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), 129–141.Google Scholar
  66. [DIF4]
    K. Diederich and J. E. Fornæss, Smooth extendability of proper holomorphic mappings, Bull. Amer. Math. Soc. (N.S.) 7(1982), 264–268.Google Scholar
  67. [EBI1]
    Ebin, D. G., On the space of Riemannian metrics, Bull. Amer. Math. Soc. 74(1968), 1001–1003.MathSciNetMATHGoogle Scholar
  68. [EBI2]
    Ebin, D. G., The manifold of Riemannian metrics, 1970 Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), pp. 11–40, Amer. Math. Soc., Providence, R.I.Google Scholar
  69. [ENG1]
    M. Engliš, Functions invariant under the Berezin transform, J. Funct. Anal. 121(1994), 233–254.MathSciNetMATHGoogle Scholar
  70. [ENG2]
    M. Engliš, Asymptotics of the Berezin transform and quantization on planar domains, Duke Math. J. 79(1995), 57–76.MathSciNetMATHGoogle Scholar
  71. [EPS]
    B. Epstein, Orthogonal Families of Functions, Macmillan, New York, 1965.MATHGoogle Scholar
  72. [ERD]
    A. Erdelyi, et al, Higher Transcendental Functions, McGraw-Hill, New York, 1953.Google Scholar
  73. [FED]
    H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.MATHGoogle Scholar
  74. [FEF1]
    C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26(1974), 1–65.MathSciNetMATHGoogle Scholar
  75. [FEF2]
    C. Fefferman, Parabolic invariant theory in complex analysis, Adv. Math. 31(1979), 131–262.MathSciNetMATHGoogle Scholar
  76. [FOK]
    G. B. Folland and J. J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex, Princeton University Press, Princeton, NJ, 1972.MATHGoogle Scholar
  77. [FOL]
    G. B. Folland, Spherical harmonic expansion of the Poisson–Szegő kernel for the ball, Proc. Am. Math. Soc. 47(1975), 401–408.MathSciNetMATHGoogle Scholar
  78. [FOM]
    J. E. Fornæss and J. McNeal, A construction of peak functions on some finite type domains. Amer. J. Math. 116(1994), no. 3, 737–755.Google Scholar
  79. [FOR]
    F. Forstneric, An elementary proof of Fefferman’s theorem, Expositiones Math., 10(1992), 136–149.MathSciNetGoogle Scholar
  80. [FRI]
    B. Fridman, A universal exhausting domain, Proc. Am. Math. Soc. 98(1986), 267–270.MathSciNetMATHGoogle Scholar
  81. [FUW]
    S. Fu and B. Wong, On strictly pseudoconvex domains with Kähler–Einstein Bergman metrics, Math. Res. Letters 4(1997), 697–703.MathSciNetMATHGoogle Scholar
  82. [GAM]
    T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, NJ, 1969.MATHGoogle Scholar
  83. [GAS]
    T. Gamelin and N. Sibony, Subharmonicity for uniform algebras. J. Funct. Anal. 35 (1980), 64–108.MathSciNetMATHGoogle Scholar
  84. [GAR]
    J. B. Garnett, Analytic Capacity and Measure, Lecture Notes in Math. 297, Springer, New York, 1972.Google Scholar
  85. [GARA]
    P. R. Garabedian, A Green’s function in the theory of functions of several complex variables, Ann. of Math. 55(1952). 19–33.MathSciNetMATHGoogle Scholar
  86. [GAR]
    J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.MATHGoogle Scholar
  87. [GLE]
    A. Gleason, The abstract theorem of Cauchy-Weil, Pac. J. Math. 12(1962), 511–525.MathSciNetMATHGoogle Scholar
  88. [GOL]
    Goluzin, Geometric Theory of Functions of a Complex Variable, American Mathematical Society, Providence, 1969.Google Scholar
  89. [GRA1]
    C. R. Graham, The Dirichlet problem for the Bergman Laplacian I, Comm. Partial Diff. Eqs. 8(1983), 433–476.MATHGoogle Scholar
  90. [GRA2]
    C. R. Graham, The Dirichlet problem for the Bergman Laplacian II, Comm. Partial Diff. Eqs. 8(1983), 563–641.MATHGoogle Scholar
  91. [GRA3]
    C. R. Graham, Scalar boundary invariants and the Bergman kernel, Complex analysis, II (College Park, Md., 1985–86), 108–135, Lecture Notes in Math. 1276, Springer, Berlin, 1987.Google Scholar
  92. [GRL]
    C. R. Graham and J. M. Lee, Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke Jour. Math. 57(1988), 697–720.MathSciNetMATHGoogle Scholar
  93. [GRA]
    I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in \({\mathbb{C}}^{n}\) with smooth boundary, Trans. Am. Math. Soc. 207(1975), 219–240.MATHGoogle Scholar
  94. [GRL]
    H. Grauert and I. Lieb, Das Ramirezsche Integral und die Gleichung \(\overline{\partial }u =\alpha\) im Bereich der beschränkten Formen, Rice University Studies 56(1970), 29–50.MathSciNetMATHGoogle Scholar
  95. [GKK]
    R. E. Greene, K.-T. Kim, and S. G. Krantz, The Geometry of Complex Domains, Birkhäuser Publishing, Boston, MA, 2011.MATHGoogle Scholar
  96. [GRK1]
    R. E. Greene and S. G. Krantz, Stability properties of the Bergman kernel and curvature properties of bounded domains, Recent Progress in Several Complex Variables, Princeton University Press, Princeton, 1982.Google Scholar
  97. [GRK2]
    R. E. Greene and S. G. Krantz, Deformation of complex structures, estimates for the \(\overline{\partial }\) equation, and stability of the Bergman kernel, Adv. Math. 43(1982), 1–86.MathSciNetMATHGoogle Scholar
  98. [GRK3]
    R. E. Greene and S. G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Annalen 261(1982), 425–446.MathSciNetMATHGoogle Scholar
  99. [GRK4]
    R. E. Greene and S. G. Krantz, The stability of the Bergman kernel and the geometry of the Bergman metric, Bull. Am. Math. Soc. 4(1981), 111–115.MathSciNetMATHGoogle Scholar
  100. [GRK5]
    R. E. Greene and S. G. Krantz, Stability of the Carathéodory and Kobayashi metrics and applications to biholomorphic mappings, Proc. Symp. in Pure Math., Vol. 41 (1984), 77–93.MathSciNetGoogle Scholar
  101. [GRK6]
    R. E. Greene and S. G. Krantz, Normal families and the semicontinuity of isometry and automorphism groups, Math. Zeitschrift 190(1985), 455–467.MathSciNetMATHGoogle Scholar
  102. [GRK7]
    R. E. Greene and S. G. Krantz, Characterizations of certain weakly pseudo-convex domains with non-compact automorphism groups, in Complex Analysis Seminar, Springer Lecture Notes 1268(1987), 121–157.MathSciNetGoogle Scholar
  103. [GRK8]
    R. E. Greene and S. G. Krantz, Characterization of complex manifolds by the isotropy subgroups of their automorphism groups, Indiana Univ. Math. J. 34(1985), 865–879.MathSciNetMATHGoogle Scholar
  104. [GRK9]
    R. E. Greene and S. G. Krantz, Biholomorphic self-maps of domains, Complex Analysis II (C. Berenstein, ed.), Springer Lecture Notes, vol. 1276, 1987, 136–207.Google Scholar
  105. [GRK10]
    R. E. Greene and S. G. Krantz, Techniques for Studying the automorphism Groups of Weakly Pseudoconvex Domains, Several Complex Variables (Stockholm, 1987/1988), 389–410, Math. Notes, 38, Princeton Univ. Press, Princeton, NJ, 1993.Google Scholar
  106. [GRK11]
    R. E. Greene and S. G. Krantz, Invariants of Bergman geometry and results concerning the automorphism groups of domains in \({\mathbb{C}}^{n},\) Proceedings of the 1989 Conference in Cetraro (D. Struppa, ed.), to appear.Google Scholar
  107. [GRK12]
    R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable, 3rd ed., American Mathematical Society, Providence, RI, 2006.Google Scholar
  108. [HAP1]
    R. Harvey and J. Polking, Fundamental solutions in complex analysis. I. The Cauchy-Riemann operator, Duke Math. J. 46(1979), 253–300.Google Scholar
  109. [HAP2]
    R. Harvey and J. Polking, Fundamental solutions in complex analysis. II. The induced Cauchy-Riemann operator, Duke Math. J. 46(1979), 301–340.Google Scholar
  110. [HEL]
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.MATHGoogle Scholar
  111. [HEN]
    G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Mat. Sb. 78(120)(1969), 611–632.MathSciNetGoogle Scholar
  112. [HIL]
    E. Hille, Analytic Function Theory, 2nd ed., Ginn and Co., Boston, 1973.Google Scholar
  113. [HIR1]
    K. Hirachi, The second variation of the Bergman kernel of ellipsoids, Osaka J. Math. 30(1993), 457–473.MathSciNetMATHGoogle Scholar
  114. [HIR2]
    K. Hirachi, Scalar pseudo-Hermitian invariants and the Szegő kernel on three-dimensional CR manifolds, Complex Geometry (Osaka, 1990), Lecture Notes Pure Appl. Math., v. 143, Marcel Dekker, New York, 1993, 67–76.Google Scholar
  115. [HIR3]
    K. Hirachi, Construction of boundary invariants and the logarithmic singularity in the Bergman kernel, Annals of Math. 151(2000), 151–190.MathSciNetMATHGoogle Scholar
  116. [HIR]
    M. Hirsch, Differential Topology, Springer-Verlag, New York, 1976.MATHGoogle Scholar
  117. [HOR1]
    L. Hörmander, L 2 estimates and existence theorems for the \(\overline{\partial }\) operator, Acta Math. 113(1965), 89–152.MathSciNetMATHGoogle Scholar
  118. [HOR2]
    L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, New York, 1963.MATHGoogle Scholar
  119. [HOR3]
    L. Hörmander, Pseudo-differential operators and non-elliptic boundary problems, Ann. Math. 83(1966), 129–209.MATHGoogle Scholar
  120. [HOR5]
    L. Hörmander, “Fourier integral operators,” The Analysis of Linear Partial Differential Operators IV, Reprint of the 1994 ed., Springer, Berlin, Heidelberg, New York, 2009.Google Scholar
  121. [HUA]
    L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, American Mathematical Society, Providence, 1963.Google Scholar
  122. [ISK]
    A. Isaev and S. G. Krantz, Domains with non-compact automorphism group: A Survey, Advances in Math. 146 (1999), 1–38.Google Scholar
  123. [JAK]
    S. Jakobsson, Weighted Bergman kernels and biharmonic Green functions, Ph.D. thesis, Lunds Universitet, 2000, 134 pages.Google Scholar
  124. [KAT]
    Y. Katznelson, Introduction to Harmonic Analysis, John Wiley and Sons, New York, 1968.MATHGoogle Scholar
  125. [KEL]
    O. Kellogg, Foundations of Potential Theory, Dover, New York, 1953.MATHGoogle Scholar
  126. [KER1]
    N. Kerzman, Hölder and L p estimates for solutions of \(\overline{\partial }u = f\) on strongly pseudoconvex domains, Comm. Pure Appl. Math. 24(1971), 301–380.MathSciNetGoogle Scholar
  127. [KER2]
    N. Kerzman, The Bergman kernel function. Differentiability at the boundary, Math. Ann. 195(1972), 149–158.Google Scholar
  128. [KER3]
    N. Kerzman, A Monge–Ampre equation in complex analysis. Several Complex Variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975), pp. 161–167. Amer. Math. Soc., Providence, R.I., 1977.Google Scholar
  129. [KIMYW]
    Y. W. Kim, Semicontinuity of compact group actions on com- pact dierentiable manifolds, Arch. Math. 49(1987), 450–455.MATHGoogle Scholar
  130. [KIS]
    C. Kiselman, A study of the Bergman projection in certain Hartogs domains, Proc. Symposia Pure Math., vol. 52 (E. Bedford, J. D’Angelo, R. Greene, and S. Krantz eds.), American Mathematical Society, Providence, 1991.Google Scholar
  131. [KLE]
    P. Klembeck, Kähler metrics of negative curvature, the Bergman metric near the boundary and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. 27(1978), 275–282.MathSciNetMATHGoogle Scholar
  132. [KOB1]
    S. Kobayashi, Geometry of bounded domains, Trans. AMS 92(1959), 267–290.MATHGoogle Scholar
  133. [KOB2]
    S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, New York, 1970.MATHGoogle Scholar
  134. [KON]
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. I and II, Interscience, New York, 1963, 1969.Google Scholar
  135. [KOH1]
    J. J. Kohn, Quantitative estimates for global regularity, Analysis and geometry in several complex variables (Katata, 1997), 97–128, Trends Math., Birkhäuser Boston, Boston, MA, 1999.Google Scholar
  136. [KOH2]
    J. J. Kohn, Boundary behavior of \(\overline{\partial }\) on weakly pseudoconvex manifolds of dimension two, J. Diff. Geom. 6(1972), 523–542.MathSciNetMATHGoogle Scholar
  137. [KOR1]
    A. Koranyi, Harmonic functions on Hermitian hyperbolic space, Trans. A. M. S. 135(1969), 507–516.MathSciNetMATHGoogle Scholar
  138. [KOR2]
    A. Koranyi, Boundary behavior of Poisson integrals on symmetric spaces, Trans. A.M.S. 140(1969), 393–409.Google Scholar
  139. [KRA1]
    S. G. Krantz, Function Theory of Several Complex Variables, 2nd ed., American Mathematical Society, Providence, RI, 2001.Google Scholar
  140. [KRA2]
    S. G. Krantz, On a construction of L. Hua for positive reproducing kernels, Michigan Journal of Mathematics 59(2010), 211–230.Google Scholar
  141. [KRA3]
    S. G. Krantz, Boundary decomposition of the Bergman kernel, Rocky Mountain Journal of Math., to appear.Google Scholar
  142. [KRA4]
    S. G. Krantz, Partial Differential Equations and Complex Analysis, CRC Press, Boca Raton, FL, 1992.MATHGoogle Scholar
  143. [KRA5]
    S. G. Krantz, Cornerstones of Geometric Function Theory: Explorations in Complex Analysis, Birkhäuser Publishing, Boston, 2006.Google Scholar
  144. [KRA6]
    S. G. Krantz, Invariant metrics and the boundary behavior of holomorphic functions on domains in \({\mathbb{C}}^{n}\), Jour. Geometric. Anal. 1(1991), 71–98.MathSciNetMATHGoogle Scholar
  145. [KRA7]
    S. G. Krantz, Calculation and estimation of the Poisson kernel, J. Math. Anal. Appl. 302(2005)143–148.MathSciNetMATHGoogle Scholar
  146. [KRA8]
    S. G. Krantz, A new proof and a generalization of Ramadanov’s theorem, Complex Variables and Elliptic Eq. 51(2006), 1125–1128.MathSciNetMATHGoogle Scholar
  147. [KRA9]
    S. G. Krantz, Complex Analysis: The Geometric Viewpoint, 2nd ed., Mathematical Association of America, Washington, D.C., 2004.Google Scholar
  148. [KRA11]
    S. G. Krantz, Canonical kernels versus constructible kernels, preprint.Google Scholar
  149. [KRA12]
    S. G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Expositiones Math. 3(1983), 193–260.MathSciNetGoogle Scholar
  150. [KRA13]
    S. G. Krantz, Characterizations of smooth domains in \(\mathbb{C}\) by their biholomorphic self maps, Am. Math. Monthly 90(1983), 555–557.MathSciNetMATHGoogle Scholar
  151. [KRA14]
    S. G. Krantz, A Guide to Functional Analysis, Mathematical Association of America, Washington, D.C., 2013, to appear.Google Scholar
  152. [KRA15]
    S. G. Krantz, A direct connection between the Bergman and Szegő projections, Complex Analysis and Operator Theory, to appear.Google Scholar
  153. [KRPA1]
    S. G. Krantz and H. R. Parks, The Geometry of Domains in Space, Birkhäuser Publishing, Boston, MA, 1996.Google Scholar
  154. [KRPA2]
    S. G. Krantz and H. R. Parks, The Implicit Function Theorem, Birkhäuser, Boston, 2002.MATHGoogle Scholar
  155. [KRP1]
    S. G. Krantz and M. M. Peloso, The Bergman kernel and projection on non-smooth worm domains, Houston J. Math. 34 (2008), 9.3.-950.Google Scholar
  156. [KRP2]
    S. G. Krantz and M. M. Peloso, Analysis and geometry on worm domains, J. Geom. Anal. 18(2008), 478–510.MathSciNetMATHGoogle Scholar
  157. [LEM1]
    L. Lempert, La metrique Kobayashi et las representation des domains sur la boule, Bull. Soc. Math. France 109(1981), 427–474.MathSciNetMATHGoogle Scholar
  158. [LI]
    S.-Y. Li, S-Y. Li, Neumann problems for complex Monge–Ampère equations, Indiana University J. of Math, 43(1994), 1099–1122.Google Scholar
  159. [LIG1]
    E. Ligocka, The Sobolev spaces of harmonic functions, Studia Math. 54(1986). 79–87.MathSciNetGoogle Scholar
  160. [LIG2]
    E. Ligocka, Remarks on the Bergman kernel function of a worm domain, Studia Mathematica 130(1998), 109–113.MathSciNetMATHGoogle Scholar
  161. [MIN]
    B.-L. Min, Domains with prescribed automorphism group, J. Geom. Anal. 19 (2009), 911–928.MathSciNetMATHGoogle Scholar
  162. [NAR]
    R. Narasimhan, Several Complex Variables, University of Chicago Press, Chicago, 1971.MATHGoogle Scholar
  163. [NWY]
    L. Nirenberg, S. Webster, and P. Yang, Local boundary regularity of holomorphic mappings. Comm. Pure Appl. Math. 33(1980), 305–338.MathSciNetMATHGoogle Scholar
  164. [OHS]
    T. Ohsawa, A remark on the completeness of the Bergman metric, Proc. Japan Acad. Ser. A Math. Sci., 57(1981), 238–240.Google Scholar
  165. [PAI]
    Painlevé, Sur les lignes singulières des functions analytiques, Thèse, Gauthier-Villars, Paris, 1887.Google Scholar
  166. [PEE]
    J. Peetre, The Berezin transform and Ha-Plitz operators, J. Operator Theory 24(1990), 165–186.MathSciNetMATHGoogle Scholar
  167. [PET]
    P. Petersen, Riemannian Geometry, Springer, New York, 2009.Google Scholar
  168. [PHS]
    D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms, Acta Math. 157(1986), 99–157.MathSciNetMATHGoogle Scholar
  169. [PHS1]
    D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. I. Acta Math. 157(1986), 99–157.Google Scholar
  170. [PHS2]
    D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms. II. Invent. Math. 86(1986), 75–113.Google Scholar
  171. [PIN]
    S. Pinchuk, The scaling method and holomorphic mappings, Several Complex Variables and Complex Ggeometry, Part 1 (Santa Cruz, CA, 1989), 151–161, Proc. Sympos. Pure Math., 52, Part 1, Amer. Math. Soc., Providence, RI, 1991.Google Scholar
  172. [PIH]
    S. Pinchuk and S. V. Hasanov, Asymptotically holomorphic functions (Russian), Mat. Sb. 134(176) (1987), 546–555.Google Scholar
  173. [PIT]
    S. Pinchuk and S. I. Tsyganov, Smoothness of CR-mappings between strictly pseudoconvex hypersurfaces. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 53(1989), 1120–1129, 1136; translation in Math. USSR-Izv. 35(1990), 457–467.Google Scholar
  174. [RAM1]
    I. Ramadanov, Sur une propriété de la fonction de Bergman. (French) C. R. Acad. Bulgare Sci. 20(1967), 759–762.Google Scholar
  175. [RAM2]
    I. Ramadanov, A characterization of the balls in \({\mathbb{C}}^{n}\) by means of the Bergman kernel, C. R. Acad. Bulgare Sci. 34(1981), 927–929.MathSciNetMATHGoogle Scholar
  176. [RAN]
    R. M. Range, A remark on bounded strictly plurisubharmonic exhaustion functions, Proc. A.M.S. 81(1981), 220–222.Google Scholar
  177. [ROM]
    S. Roman, The formula of Faà di Bruno, Am. Math. Monthly 87(1980), 805–809.MathSciNetMATHGoogle Scholar
  178. [ROW]
    B. Rodin and S. Warschawski, Estimates of the Riemann mapping function near a boundary point, in Romanian-Finnish Seminar on Complex Analysis, Springer Lecture Notes, vol. 743, 1979, 349–366.MathSciNetGoogle Scholar
  179. [ROS]
    J.-P. Rosay, Sur une characterization de la boule parmi les domains de \({\mathbb{C}}^{n}\) par son groupe d’automorphismes, Ann. Inst. Four. Grenoble XXIX(1979), 91–97.Google Scholar
  180. [ROSE]
    P. Rosenthal, On the zeroes of the Bergman function in doubly-connected domains, Proc. Amer. Math. Soc. 21(1969), 33–35.MathSciNetMATHGoogle Scholar
  181. [RUD1]
    W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, New York, 1976.MATHGoogle Scholar
  182. [RUD2]
    W. Rudin, Function Theory in the Unit Ball of \({\mathbb{C}}^{n}\), Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Springer, Berlin, 1980.Google Scholar
  183. [SEM]
    S. Semmes, A generalization of Riemann mappings and geometric structures on a space of domains in \({\mathbb{C}}^{n},\) Memoirs of the American Mathematical Society, 1991.Google Scholar
  184. [SIB]
    N. Sibony, A class of hyperbolic manifolds, Ann. of Math. Stud. 100(1981), 357–372.MathSciNetGoogle Scholar
  185. [SIU]
    Y.-T. Siu, Non Hölder property of Bergman projection of smooth worm domain, Aspects of Mathematics—Algebra, Geometry, and Several Complex Variables, N. Mok (ed.), University of Hong Kong, 1996, 264–304.Google Scholar
  186. [SKW]
    M. Skwarczynski, The distance in the theory of pseudo-conformal transformations and the Lu Qi-King conjecture, Proc. A.M.S. 22(1969), 305–310.Google Scholar
  187. [STE1]
    E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ. 1970.MATHGoogle Scholar
  188. [STE2]
    E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, Princeton, 1972.MATHGoogle Scholar
  189. [STW]
    E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Space, Princeton University Press, Princeton, NJ, 1971.Google Scholar
  190. [STR]
    K. Stromberg, An Introduction to Classical Real Analysis, Wadsworth, Belmont, 1981.MATHGoogle Scholar
  191. [SUY]
    N. Suita and A. Yamada On the Lu Qi-Keng conjecture, Proc. A.M.S. 59(1976), 222–224.Google Scholar
  192. [SZE]
    G. Szegő, Über Orthogonalsysteme von Polynomen, Math. Z. 4(1919), 139–151.MathSciNetGoogle Scholar
  193. [TAN]
    N. Tanaka, On generalized graded Lie algebras and geometric structures, I, J. Math. Soc. Japan 19(1967), 215–254.MathSciNetMATHGoogle Scholar
  194. [THO]
    G. B. Thomas, Calculus, 7th ed., Addison-Wesley, Reading, MA, 1999.Google Scholar
  195. [TRE]
    F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. II, Plenum Press, New York 1982.Google Scholar
  196. [WAR1]
    S. Warschawski, On the boundary behavior of conformal maps, Nagoya Math. J. 30(1967), 83–101.MathSciNetMATHGoogle Scholar
  197. [WAR2]
    S. Warschawski, On boundary derivatives in conformal mapping, Ann. Acad. Sci. Fenn. Ser. A I no. 420(1968), 22 pp.Google Scholar
  198. [WAR3]
    S. Warschawski, Hölder continuity at the boundary in conformal maps, J. Math. Mech. 18(1968/9), 423–7.Google Scholar
  199. [WEB1]
    S. Webster, Biholomorphic mappings and the Bergman kernel off the diagonal, Invent. Math. 51(1979), 155–169.MathSciNetMATHGoogle Scholar
  200. [WEB2]
    S. Webster, On the reflection principle in several complex variables, Proc. Amer. Math. Soc. 71(1978), 26–28.MathSciNetMATHGoogle Scholar
  201. [WHW]
    E. Whittaker and G. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, London, 1935.Google Scholar
  202. [WIE]
    J. Wiegerinck, Domains with finite dimensional Bergman space, Math. Z. 187(1984), 559–562.MathSciNetMATHGoogle Scholar
  203. [WON]
    B. Wong, Characterization of the ball in \({\mathbb{C}}^{n}\) by its automorphism group, Invent. Math. 41(1977), 253–257.MathSciNetMATHGoogle Scholar
  204. [YAU]
    S.-T. Yau, Problem section, Seminar on Differential Geometry, S.-T. Yau ed., Annals of Math. Studies, vol. 102, Princeton University Press, 1982, 669–706.Google Scholar
  205. [ZHU]
    K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer, New York, 2005.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Steven G. Krantz
    • 1
  1. 1.Department of MathematicsWashington University at St. LouisSt. LouisUSA

Personalised recommendations