A Scientific Genealogy: Early Development of Fetal–Neonatal Research

  • Lawrence D. Longo
Chapter
Part of the Perspectives in Physiology book series (PHYSIOL, volume 1)

Abstract

From a broad perspective, the human life-span can be considered as two major periods, prenatal life and postnatal life. By definition, the fetus in utero is a developing mammal or other viviparous vertebrate. The word fetus, however, is an adopted Latin word which signified a “bringing forth, breeding, dropping, or hatching” of young (Smith and Hall 2000, p. 296). By metonymy it came to mean the young or progeny. Thus, strictly speaking a contemporary equivalent would be parturition and neonate. By common usage the term has been pushed back in ontogeny, and in humans, medical texts define this as the unborn young from the eighth week of pregnancy following fertilization (or 10 weeks after the onset of the last menstrual period), that time at which the major organs have been formed until the moment of birth. In humans at 8 weeks, it is about 5 cm (2 in.) in length, weighs ~8 g, and the developing head constitutes about one-half the total mass. From weeks 11–17 of gestation the brain, heart, and other organs continue to develop, and subtleties appear in the several structures such as centers of ossification in bones and development of genitalia. At about 16 weeks, a woman who has been pregnant previously will sense fetal movements, “quickening,” although this may not occur until about 20 weeks in a nulliparous (having not delivered before) woman. From weeks 18–27, development continues with the appearance of many structures such as eyelashes and eyebrows, finger and toe nails, and a fine lanugo hair that covers the body. From weeks 28–40, nerve growth with myelinization continues, the amount of body fat increases, the electrocorticogram takes on a cyclic pattern of low voltage high frequency (associated with rapid eye movements and other muscular activity and an increased rate of cerebral metabolism), alternating with high voltage low frequency. At this time, the fetus is capable of life independent of the mother’s womb, and for the most immature, survival has been enhanced greatly by advances in neonatology. By 37 weeks of gestation almost all infants can survive independently of neonatal intensive care (Figs. 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6).

Keywords

Sugar Burner Catheter Starch Dioxide 

References

  1. [Anonymous] (1947) Obituary. Joseph Barcroft. Lancet 1:430–431Google Scholar
  2. Alexander DP, Andrews RD, Huggett AS, Nixon DA, Widdas WF (1955a) The placental transfer of sugars in the sheep: studies with radioactive sugar. J Physiol (Lond) 129:352–366Google Scholar
  3. Alexander DP, Huggett AS, Nixon DA, Widdas WF (1955b) The placental transfer of sugars in the sheep: the influence of concentration gradient upon the rates of hexose formation as shown in umbilical perfusion of the placenta. J Physiol (Lond) 129:367–383Google Scholar
  4. Anselmino KJ, Hoffmann F (1930) Die Ursachen des Icterus neonatorum. Arch Gynakol 143:477–499Google Scholar
  5. Anselmino KJ, Hoffmann F (1931) Die Ursachen des Icterus neonatorum. Bemerkungen zu der vorstehenden Arbeit von Haselhorst und Stromberger, zugleich eine Erweiterung unserer Theorie. Arch Gynakol 147:69–71Google Scholar
  6. Barclay AE, Barcroft J, Barron DH, Franklin KJ (1938) X-ray studies of the closing of the ductus arteriosus. Br J Radiol 11:570–585Google Scholar
  7. Barclay AE, Barcroft J, Barron DH, Franklin KJ (1939) A radiographic demonstration of the circulation through the heart in the adult and in the foetus, and the identification of the ductus arteriosus. Br J Radiol 12:505–518Google Scholar
  8. Barclay AE, Franklin KJ, Prichard MML (1944) The foetal circulation and cardiovascular system, and the changes they undergo at birth. Blackwell Scientific Publications, Ltd., OxfordGoogle Scholar
  9. Barcroft J (1899) An apparatus for estimating the gases of successive small quantities of blood. J Physiol (Lond) 23(Suppl):64Google Scholar
  10. Barcroft J (1900a) Apparatus for the analysis of gases in small quantities of blood. Proc Camb Philos Soc 11:1–10Google Scholar
  11. Barcroft J (1900b) The gaseous metabolism of the submaxillary gland. Part I. On methods, with a description of an apparatus for gas analysis. J Physiol (Lond) 25:265–282Google Scholar
  12. Barcroft J (1900c) The gaseous metabolism of the submaxillary gland. Part II. On the absorption of water from the blood during its passage through the active gland. J Physiol (Lond) 25:479–486Google Scholar
  13. Barcroft J (1901) The gaseous metabolism of the submaxillary gland. Part III. The effect of chorda activity on the respiration of the gland. J Physiol (Lond) 27:31–47Google Scholar
  14. Barcroft J (1908) Differential method of blood-gas analysis. J Physiol (Lond) 37:12–24Google Scholar
  15. Barcroft J (1914) The respiratory function of the blood. Cambridge University Press, Cambridge, MAGoogle Scholar
  16. Barcroft J (1926a) The respiratory function of the blood. Part I. Lessons from high altitudes, 2nd edn. Macmillan & Co, New YorkGoogle Scholar
  17. Barcroft J (1926b) The functions of the spleen. Lancet 1:683Google Scholar
  18. Barcroft J (1926c) Some recent work on the functions of the spleen. A lecture given to the Leeds University Medical Society on 9 March 1926. Lancet 1:544–547Google Scholar
  19. Barcroft J (1932) Alterations in the size of the denervated spleen related to pregnancy. J Physiol (Lond) 76:443–446Google Scholar
  20. Barcroft J (1933) The conditions of foetal respiration. Lancet 2:1021–1024 (Also published in Rev Soc Argent Biol 10(Suppl):164–177, 1934)Google Scholar
  21. Barcroft J (1934a) Features in the architecture of physiological function. Cambridge University Press, Cambridge, MAGoogle Scholar
  22. Barcroft J (1934b) Respiratory function of blood in the foetus. Rep Br Assoc 102:362Google Scholar
  23. Barcroft J (1935a) The Croonian lecture: foetal respiration. Proc R Soc Lond B 118:242–263Google Scholar
  24. Barcroft J (1935b) Certain changes in circulation and respiration occurring at birth. J Physiol (USSR) 19:29–41Google Scholar
  25. Barcroft J (1935c) The mammal before and after birth. Ir J Med Sci 10:289–301Google Scholar
  26. Barcroft J (1935d) Respiratory and vascular changes in the mammal before and after birth. (John Mallet Purser Memorial Lecture). Lancet 2:647–652Google Scholar
  27. Barcroft J (1936) Fetal circulation and respiration. Physiol Rev 16:103–128Google Scholar
  28. Barcroft J (1938) The brain and its environment. Yale University Press, New Haven, CTGoogle Scholar
  29. Barcroft J (1941) Evolution of function in the mammalian organism. Nature 147:762–765Google Scholar
  30. Barcroft J (1942) The onset of respiration at birth. Lancet 2:117–121Google Scholar
  31. Barcroft J (1943) Phases in foetal life. Glasgow Med J 21:1–13Google Scholar
  32. Barcroft J (1946) Researches on pre-natal life, vol 1. Blackwell Scientific Publications, Oxford (Also published in Springfield, IL, Charles C. Thomas, 1947)Google Scholar
  33. Barcroft JP (1960) Barcroft of Barcroft. Research Pub. Co., LondonGoogle Scholar
  34. Barcroft J, Barron DH (1936) The genesis of respiratory movements in the foetus of the sheep. J Physiol (Lond) 88:56–61Google Scholar
  35. Barcroft J, Barron DH (1937) The development of the “righting” movements in the foetal sheep. J Physiol (Lond) 89(Suppl):19P–20PGoogle Scholar
  36. Barcroft J, Barron DH (1939) The development of behavior in foetal sheep. J Comp Neurol 70:477–502Google Scholar
  37. Barcroft J, Haldane JS (1902) A method of estimating the oxygen and carbonic acid in small quantities of blood. J Physiol (Lond) 28:232–240Google Scholar
  38. Barcroft J, Kennedy JA (1939) The distribution of blood between the foetus and the placenta in sheep. J Physiol (Lond) 95:173–186Google Scholar
  39. Barcroft J, Nagahashi M (1921) The direct measurement of the partial pressure of oxygen in human blood. J Physiol (Lond) 55:339–345Google Scholar
  40. Barcroft J, Roberts FF (1910) Improvements in the technique of blood-gas analysis. J Physiol (Lond) 39:429–437Google Scholar
  41. Barcroft J, Rothschild P (1932) The volume of blood in the uterus during pregnancy. J Physiol (Lond) 76:447–459Google Scholar
  42. Barcroft J, Stevens JG (1928) The effect of pregnancy and menstruation on the size of the spleen. J Physiol (Lond) 66:32–36Google Scholar
  43. Barcroft J, Harris HA, Orahovats D, Weiss R (1925) A contribution to the physiology of the spleen. J Physiol (Lond) 60:443–456Google Scholar
  44. Barcroft J, Douglas CG, Kendal LP, Margaria R (1931) Muscular exercise at low barometric pressures. Arch Sci Biol (Napoli) 16:609–615Google Scholar
  45. Barcroft J, Elliott RH, Flexner LB, Hall FG, Herkel W, McCarthy EF, McClurkin T, Talaat M (1934a) Conditions of foetal respiration in the goat. J Physiol (Lond) 83:192–214Google Scholar
  46. Barcroft J, Flexner LB, Herkel W, McCarthy EF, McClurkin T (1934b) The utilization of oxygen by the uterus in the rabbit. J Physiol (Lond) 83:215–221Google Scholar
  47. Barcroft J, Barron DH, Windle WF (1936) Some observations on genesis of somatic movements in sheep embryos. J Physiol (Lond) 87:73–78Google Scholar
  48. Barcroft J, Kennedy JA, Mason MF (1939a) The direct determination of the oxygen consumption of the foetal sheep. J Physiol (Lond) 95:269–275Google Scholar
  49. Barcroft J, Kramer K, Millikan GA (1939b) The oxygen in the carotid blood at birth. J Physiol (Lond) 94:571–578Google Scholar
  50. Barcroft J, Barron DH, Cowie AT, Forsham PH (1940a) The oxygen supply of the foetal brain of the sheep and the effect of asphyxia on foetal respiratory movement. J Physiol (Lond) 97:338–346Google Scholar
  51. Barcroft J, Kennedy JA, Mason MF (1940b) Oxygen in the blood of the umbilical vessels of the sheep. J Physiol (Lond) 97:347–356Google Scholar
  52. Barron DH (1944) The changes in the fetal circulation at birth. Physiol Rev 24:277–295Google Scholar
  53. Barron DH (1946) The oxygen pressure gradient between the maternal and fetal blood in pregnant sheep. Yale J Biol Med 19:23–27PubMedGoogle Scholar
  54. Barron DH (1952) The exchange of the respiratory gases in the placenta. Etudes Neonatales 1:3–24PubMedGoogle Scholar
  55. Barron DH (1973) Sir Joseph Barcroft. In: Cross KW (ed) Foetal and neonatal physiology. Proceedings of the Sir Joseph Barcroft centenary symposium held at the Physiological Laboratory Cambridge 25 to 27 July 1972, with a foreword by Kenneth W. Cross. Cambridge University Press, Cambridge, MA, pp xiv–xxivGoogle Scholar
  56. Barron DH (1976) Paul Zweifel, pioneer fetal physiologist. A centennary tribute. Arch Gynakol 221:1–4PubMedGoogle Scholar
  57. Barron DH (1978) A history of fetal respiration: from Harvey’s Question (1651) to Zweifel’s answer (1876). In: Longo LD, Reneau DD (eds) Fetal and newborn cardiovascular physiology, vol 1. Garland STPM Press, New York, pp 1–32Google Scholar
  58. Barron DH (1979) Historic perspective. In: Landmarks in perinatology/neonatology – Current Comment. Ross Laboratories, Columbus, OH, No. 9Google Scholar
  59. Barron DH, Matthews BH (1935) Intermittent conduction in the spinal cord. J Physiol (Lond) 85:73–103Google Scholar
  60. Bert P (1878) La pression barométrique. Recherches de physiologie expérimentale. G. Masson, ParisGoogle Scholar
  61. Blackbourn D (1998) The long nineteenth century. A history of Germany, 1780–1918. Oxford University Press, New YorkGoogle Scholar
  62. Boyd CAR (2005) How membrane carriers function: the critical contribution of W.F. Widdas (1952) to modern understanding. Cell Mol Biol 51:621–623PubMedGoogle Scholar
  63. Brambell FWR (1970) Arthur St. George Joseph McCarthy Huggett 1897–1968. Biogr Mem Fellows R Soc 16:342–364Google Scholar
  64. Browne T (1642) Religio medici. Andrew Crooke, London (GM 6612.90); (Also Martin LC (ed). (1964) Religio medici and other works. Clarendon Press, Oxford)Google Scholar
  65. Cohnstein J (1884) Blutveränderung während der Schwangerschaft. Arch Gesamte Physiol Menschen Tiere 34:233–237Google Scholar
  66. Cohnstein J, Zuntz N (1884) Untersuchungen über das Blut, den Kreislauf und die Athmung beim Säugethier-Fötus. Pflugers Arch 34:173–233Google Scholar
  67. Cooper KE, Greenfield ADM (1949) A method for measuring the blood flow in the umbilical vessels. J Physiol (Lond) 108:167–176Google Scholar
  68. Cooper KE, Greenfield ADM, Huggett ASG (1949) The umbilical blood flow in the foetal sheep. J Physiol (Lond) 108:160–166Google Scholar
  69. Coppenhagen JH, van Lieburg MJ (2000) Anafiem gedoe’iem: overleden joodse artsen uit Nederland 1940–1945. Erasmus, RotterdamGoogle Scholar
  70. Darling RC, Smith CA, Asmussen E, Cohen FM (1941) Some properties of human fetal and maternal blood. J Clin Invest 20:739–747PubMedGoogle Scholar
  71. Davy A, Huggett AS (1934) The autolysis of the placental glycogen. J Physiol (Lond) 81:183–193Google Scholar
  72. Dawes GS (1966) Changes in the circulation at birth. In: Cassels DE (ed) The heart and circulation in the newborn and infant. Grune & Stratton, New York, pp 74–79Google Scholar
  73. Dawes GS (1980) The development of breathing. In: Widdowson EM (ed) Studies in perinatal physiology. Pitman Medical, Tunbridge Wells, UK, pp 4–6Google Scholar
  74. Dawes GS (1994) Fetal physiology: historical perspectives. In: Thorburn GD, Harding R (eds) Textbook of fetal physiology. Oxford University Press, Oxford, pp 1–5Google Scholar
  75. Demerec M (ed) (1954) The mammalian fetus: physiological aspects of development. Cold Spring Harbor Symposia on Quantitative Biology, vol 19. The Biological Laboratory, Cold Spring Harbor, NYGoogle Scholar
  76. Eastman NJ (1930) Foetal blood studies. I. The oxygen relationships of umbilical cord blood at birth. Bull Johns Hopkins Hosp 47:221–230Google Scholar
  77. Eastman NJ, McLane CM (1931) Foetal blood studies. II. The lactic acid content of umbilical cord blood under various conditions. Bull Johns Hopkins Hosp 48:261–268Google Scholar
  78. Eastman NJ, Geiling EMK, DeLawder AM (1933) Foetal blood studies. IV. The oxygen and carbon-dioxide dissociation curves of foetal blood. Bull Johns Hopkins Hosp 53:246–254Google Scholar
  79. Elliot RH, Hall FG, Huggett AS (1934) The blood volume and oxygen capacity of the foetal blood in the goat. J Physiol (Lond) 82:160–171Google Scholar
  80. Feldman S (1941) Origins of behavior and man’s life-career. Am J Psychol 54:53–63Google Scholar
  81. Forbes RM (1955) Nathan Zuntz (1847–1920). J Nutr 57:3–15PubMedGoogle Scholar
  82. Franklin KJ (1953) Joseph Barcroft 1872–1947. Oxford University Press, OxfordGoogle Scholar
  83. Franklin KJ, Janker R (1936) Respiration and the venae cavae—further X-ray cinematographic studies. J Physiol (Lond) 86:264–268Google Scholar
  84. Franklin KJ, McLachlin AD (1936a) The constrictor response of the inferior vena cava to stimulation of the splanchnic nerve. J Physiol (Lond) 86:381–385Google Scholar
  85. Franklin KJ, McLachlin AD (1936b) Stream-lines in the abdominal vena cava. J Physiol (Lond) 86:386–387Google Scholar
  86. Franklin KJ, McLachlin AD (1936c) Further studies upon the reactions of the abdominal vena cava. J Physiol (Lond) 87:87–95Google Scholar
  87. Franklin KJ, McLachlin AD (1936d) Stream-lines in the abdominal vena cava in the late stages of pregnancy. J Physiol (Lond) 88:263–264Google Scholar
  88. Frazer JF, Huggett AS (1970) The partition of nutrients between mother and conceptuses in the pregnant rat. J Physiol (Lond) 207:783–788Google Scholar
  89. Galenus [C] (1914) [Opera Omnia] Corpus Medicorum Graecorum V. (Lipsiae [etc]). In aedibus B.G. Teubneri, Akademie-Verlag, BeroliniGoogle Scholar
  90. Geus A (1975) Thierry William Preyer. In: Gillispie CC (ed) Dictionary of scientific biography, vol 11. Charles Scribner’s Sons, New York, pp 135–136Google Scholar
  91. Greenfield ADM (1949) A foetal plethysmograph. J Physiol (Lond) 108:157–159Google Scholar
  92. Greenfield ADM, Shepherd JT, Whelan RF (1951a) The rate of blood-flow in the umbilical cord. Lancet 2:422–424PubMedGoogle Scholar
  93. Greenfield ADM, Shepherd JT, Whelan RF (1951b) The relationship between blood flow in the umbilical cord and the rate of foetal growth in the sheep and guinea-pig. J Physiol (Lond) 115:158–162Google Scholar
  94. Gunga H-C (2009) Nathan Zuntz. His life and work in the fields of high altitude physiology and aviation medicine. Academic, AmsterdamGoogle Scholar
  95. Harvey W (1651) Exercitationes de generatione animalium…. Quibus accedunt quaedam de partu: de membranis ac humoribus uteri: & de conceptione…. Octavian Pulleyn, LondoniGoogle Scholar
  96. Harvey W (1928) Exercitatio anatomica De Motu Cordis et sanguinis in animalibus. An English translation with annotations by Chauncey D. Leake…. Charles C. Thomas, Springfield, ILGoogle Scholar
  97. Haselhorst G, Stromberger K (1930) Über den Gasgehalt des Nabelschnurblutes vor und nach der Geburt des Kindes und über den Gasaustausch in der Plazenta. Z Geburtshilfe Gynakol 98:49–78Google Scholar
  98. Haselhorst G, Stromberger K (1931) Über den Gasgehalt des Nabelschnurblutes vor und nach der Geburt des Kindes und uber den Gasaustausch in der Plazenta. Z Geburtshilfe Gynakol 100:48–70Google Scholar
  99. Haselhorst G, Stromberger K (1932) Über den Gasgehalt des Nabelschnurblutes vor und nach der Geburt des Kindes und über den Gasaustausch in der Plazenta. Z Geburtshilfe Gynakol 102:16–36Google Scholar
  100. Holmes FL (1970) Joseph Barcroft. In: Gillispie CC (ed) Dictionary of scientific biography, vol 1. Charles Scribner’s Sons, New York, pp 452–455Google Scholar
  101. Hoppe-Seyler EFI (1864) Ueber den chemischen und optischen Eigenschaftlen des Blutfarbstaffs. Virchow Arch Path Anat 29:233–235, 597–600Google Scholar
  102. Hoppe-Seyler EFI (1881) Physiologische chemie. A. Hirschwald, BerlinGoogle Scholar
  103. Hugget AS, Widdas WF (1951) The relationship between mammalian foetal weight and conception age. J Physiol (Lond) 114:306–317Google Scholar
  104. Huggett AS (1927) Foetal blood-gas tensions and gas transfusion through the placenta of the goat. J Physiol (Lond) 62:373–384Google Scholar
  105. Huggett AS (1929) Maternal control of the placental glycogen. J Physiol (Lond) 67:360–371Google Scholar
  106. Huggett AS (1930) Foetal respiratory reflexes. J Physiol (Lond) 69:144–152Google Scholar
  107. Huggett AS (1941) The nutrition of the fetus. Physiol Rev 21:438–462Google Scholar
  108. Huggett AS (1944a) The role of the placenta in foetal nutrition. Proc Nutr Soc 1:227–233Google Scholar
  109. Huggett AS (1944b) Nutrition in pregnancy. Diet in pregnancy. Proc Nutr Soc 2:20–27Google Scholar
  110. Huggett AS (1946) Some applications of prenatal nutrition to infant development. Br Med Bull 4:196–204PubMedGoogle Scholar
  111. Huggett AS (1947/1948) Functional embryology: its position and its debt to Joseph Barcroft. Br Med Bull 5:231–232Google Scholar
  112. Huggett AS (1950) Foetal physiology and child health. Arch Dis Child 25:101–109PubMedGoogle Scholar
  113. Huggett AS (1954a) The transport of lipids and carbohydrates across the placenta. The mammalian fetus: physiological aspects of development. Cold Spring Harb Symp Quant Biol 19:82–92PubMedGoogle Scholar
  114. Huggett AS (1954b) Physiological evaluation. The mammalian fetus: physiological aspects of development. Cold Spring Harb Symp Quant Biol 19:212–213PubMedGoogle Scholar
  115. Huggett AS (1955) Problems of sugar transport in the placenta of the ungulate. In: Princeton NJ, Flexner LB (eds) Gestation transactions of the first conference March 9, 10 and 11, 1954. Josiah Macy Jr. Foundation, New York, pp 53–117Google Scholar
  116. Huggett AS (1956) The environment of the foetus and post-natal health. Ir J Med Sci 368:337–352PubMedGoogle Scholar
  117. Huggett AS (1959) Some aspects of development; prenatal and neonatal. Ann Paediatr Fenn 5:94–97PubMedGoogle Scholar
  118. Huggett AS, Morrison SD (1955) Placental glycogen in the rabbit. J Physiol (Lond) 129:68Google Scholar
  119. Huggett AS, Warren FL, Winterton VN (1949) Origin and site of formation of fructose in the foetal sheep. Nature 164:271–272PubMedGoogle Scholar
  120. Huggett AS, Warren FL, Warren NV (1951) The origin of the blood fructose of the foetal sheep. J Physiol (Lond) 113:258–275Google Scholar
  121. Kellogg HB (1928) The course of blood flow through the mammalian heart. Am J Anat 42: 443–465Google Scholar
  122. Kellogg HB (1930) Studies on the fetal circulation of mammals. Am J Physiol 91:637–648Google Scholar
  123. Leibson RG, Likhnitzky II, Sax MG (1936) Oxygen transport of the foetal and maternal blood during pregnancy. J Physiol (Lond) 87:97–112Google Scholar
  124. Lemberg RJ, Barcroft J (1932) Uteroverdin, the green pigment of the dog’s placenta. Proc R Soc Lond B 110:362–372Google Scholar
  125. Lemberg RJ, Barcroft J, Keilin D (1931) Uteroverdin. Nature 128:967–968Google Scholar
  126. Lind J, Wegelius C (1954) Human fetal circulation: changes in the cardiovascular system at birth and disturbances in the post-natal closure of the foramen ovale and ductus arteriosus. Cold Spring Harb Symp Quant Biol 19:109–125PubMedGoogle Scholar
  127. Longo LD (1987) Respiratory gas exchange in the placenta. In: Fishman AP, Farhi LE, Tenney SM (eds) Handbook of physiology. Section 3: The respiratory system, vol 4, Gas exchange. American Physiology Society, Washington, DC, pp 351–401Google Scholar
  128. Ludwig H (2006) Friedrich Schatz, Rostock (1841-1920). Über Zwillinge, Wehen und Schwangerschaftsdauer. Gynakologe 39:657–660Google Scholar
  129. McCance RA (1977) Perinatal physiology. In: Hodgkin AL, Huxley AF, Feldberg W, Rushton WAH, Gregory RA, McCance RA (eds) Informal essays on the history of physiology. The pursuit of nature. Cambridge University Press, Cambridge, MA, pp 133–168Google Scholar
  130. Mellor DJ (2010) Galloping colts, fetal feelings, and reassuring regulations: putting animal-welfare science into practice. J Vet Med Educ 37:94–100PubMedGoogle Scholar
  131. Meschia G, Barron DH (1956) The effect of CO2 and O2 content of the blood on the freezing point of the plasma. Q J Exp Physiol Cogn Med Sci 41:180–194PubMedGoogle Scholar
  132. Meschia G, Hellegers A, Prystowsky H, Huckabee W, Metcalfe J, Barron DH (1961) Oxygen dissociation of the bloods of adult and fetal sheep at high altitude. Q J Exp Physiol Cogn Med Sci 46:156–160PubMedGoogle Scholar
  133. Meschia G, Cotter JR, Breathnach CS, Barron DH (1965) The hemoglobin, oxygen, carbon dioxide and hydrogen ion concentrations in the umbilical bloods of sheep and goats as sampled via indwelling plastic catheters. Q J Exp Physiol Cogn Med Sci 50:185–195PubMedGoogle Scholar
  134. Metcalfe J, Meschia G, Hellegers A, Prystowsky H, Huckabee W, Barron DH (1962a) Observations on the placental exchange of the respiratory gases in pregnant ewes at high altitude. Q J Exp Physiol Cogn Med Sci 47:74–92PubMedGoogle Scholar
  135. Metcalfe J, Meschia G, Hellegers A, Prystowsky H, Huckabee W, Barron DH (1962b) Observations on the growth rates and organ weights of fetal sheep at altitude and sea level. Q J Exp Physiol Cogn Med Sci 47:305–313PubMedGoogle Scholar
  136. Nixon DA, Huggett AS, Amoroso EC (1966) Fructose as a component of the foetal blood and foetal fluids of the bush baby (Galago senegalensis senegalensis). Nature 209:300–301PubMedGoogle Scholar
  137. Pepys MB (1972) Cambridge University Natural Science Club, 1872 to 1972. Nature 237:317–319Google Scholar
  138. Pflüger E (1868) Über die Ursache der Athembewegungen, sowie der Dyspnoe und Apnoe. Pflugers Arch Gesamte Physiol 1:61–106Google Scholar
  139. Pflüger E (1877) Die Lebenszähigkeit des menschlichen Foetus. Arch Gesamte Physiol Menschen Tiere 14:628–629Google Scholar
  140. Pohlman AG (1907) The fetal circulation through the heart. A review of the more important theories, together with a preliminary report on personal findings. Bull Johns Hopkins Hosp 18:409–412Google Scholar
  141. Pohlman AG (1909) The course of the blood through the heart of the fetal mammal, with a note on the reptilian and amphibian circulations. Anat Rec 3:75–109Google Scholar
  142. Pohlman AG (1924) The comparative physiology of the circulatory changes at birth. Z Morphol Anthropol 24:191–204Google Scholar
  143. Preyer WT (1871) Die Blutkrystalle; Untersuchungen. Jena, MaukeGoogle Scholar
  144. Preyer WT (1882) Die Seele des Kindes: Beobachtungen über die geistige Entwicklung des Menschen in den ersten Lebensjahren. T. Grieben, LeipzigGoogle Scholar
  145. Preyer WT (1885) Specielle Physiologie des Embryo; Untersuchungen ueber die Lebenserscheinungen vor der Geburt. T. Grieben, LeipzigGoogle Scholar
  146. Prystowsky H, Hellegers A, Meschia G, Metcalfe J, Huckabee W, Barron DH (1960) The blood volume of fetuses carried by ewes at high altitude. Q J Exp Physiol Cogn Med Sci 45:292–297PubMedGoogle Scholar
  147. Reece EA, Hobbins JC (eds) (2007) Clinical obstetrics: the fetus & mother, 3rd edn. Blackwell Pub, Malden, MAGoogle Scholar
  148. Reynolds SRM (1955) Circulatory adaptations to birth and their clinical implications. Am J Obstet Gynecol 70:148–161PubMedGoogle Scholar
  149. Reynolds SRM (1959) Gestation mechanisms. Ann N Y Acad Sci 75:691–699Google Scholar
  150. Reynolds SRM (1965) Physiology of the uterus. With clinical correlations. With forewords by Corner GW, Frank RT. Paul B. Hoeber, Inc., New York, 1939. 2nd edn 1949. Reprinted by Hafner Publishing Company, New YorkGoogle Scholar
  151. Reynolds SRM (1978) Many slender threads: an essay on progress in perinatal research. In: Longo LD, Reneau DD (eds) Fetal and newborn cardiovascular physiology, vol 1. Garland STPM Press, New York, pp 33–45Google Scholar
  152. Reynolds SRM, Paul WM (1958) Relation of bradycardia and blood pressure of the fetal lamb in utero to mild and severe hypoxia. Am J Physiol 193:249–256PubMedGoogle Scholar
  153. Reynolds SRM, Ardran GM, Prichard MML (1954) Observations on regional circulation times in the lamb under fetal and neonatal conditions. Contrib Embryol Carnegie Inst 35:73–92Google Scholar
  154. Roos J, Romijn C (1937) The oxygen dissociation curve of the cow’s blood during pregnancy and the dissociation curve of the blood of the newborn animal in the course of the first time after birth. Proc K Ned Akad Wet Ser C Biol Med Sci 40:803–812Google Scholar
  155. Roos J, Romijn C (1938) Some conditions of foetal respiration in the cow. J Physiol (Lond) 92:249–267Google Scholar
  156. Roughton FJW (1948) Joseph Barcroft 1872–1947. Obit Not Fellows R Soc 6:315–345Google Scholar
  157. Roughton FJW, Kendrew JC (eds) (1949) Haemoglobin. A Symposium based on a Conference held at Cambridge in June 1948 in memory of Sir Joseph Barcroft. Butterworths Scientific Publications, LondonGoogle Scholar
  158. Sabatier RB (1791) Traité complet d’anatomie, ou Description de toutes les parties du corps humain, par M. Sabatier, …, 3rd edn. T. Barrois, ParisGoogle Scholar
  159. Schatz F (1872a) Beiträge zur physiologischen Geburtskunde. Arch Gynakol 3:58–144Google Scholar
  160. Schatz F (1872b) Beiträge zur physiologischen Geburtskunde. Arch Gynakol 4:34–111Google Scholar
  161. Schatz F (1872c) Beiträge zur physiologischen Geburtskunde. Arch Gynakol 4:193–225Google Scholar
  162. Schatz F (1872d) Beiträge zur physiologischen Geburtskunde. Arch Gynakol 4:418–456Google Scholar
  163. Schatz F (1900) Klinische Beiträge zur Physiologie des Fötus. Verlag von August Hirschwald, BerlinGoogle Scholar
  164. Schröder H, Young M (1995) Classics revisited: Wilhelm (William) Th. Preyer: Specielle Physiologie des Embryo. pp 644 (Grieben, Leipzig 1885). Placenta 16:105–108PubMedGoogle Scholar
  165. Sen AK, Widdas WF (1962a) Determination of the temperature and pH dependence of glucose transfer across the human erythrocyte membrane measured by glucose exit. J Physiol (Lond) 160:392–403Google Scholar
  166. Sen AK, Widdas WF (1962b) Variations of the parameters of glucose transfer across the human erythrocyte membrane in the presence of inhibitors of transfer. J Physiol (Lond) 160:404–416Google Scholar
  167. Smith W, Hall TD (2000) Smith’s English-Latin dictionary with Foreword by D. Sacré. Bolchazy-Carducci Pub, Wauconda, ILGoogle Scholar
  168. Smith CA, Kaplan E (1942) Adjustment of blood oxygen levels in neonatal life. Am J Dis Child 64:843–859Google Scholar
  169. van Houckgeest B (1872) Untersuchungen über Peristaltik des Magens und Darmkanals. Pflugers Arch 6:266–302Google Scholar
  170. Van Slyke DD, Neill JM (1924) The determination of gases in blood and other solutions by vacuum extraction and manometric measurement. J Biol Chem 61:523–573Google Scholar
  171. vom Brocke B (1991) Friedrich Althoff: a great figure in higher education policy in Germany. Minerva 29:269–293Google Scholar
  172. Widdas WF (1952) Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J Physiol (Lond) 118:23–39Google Scholar
  173. Widdas WF (1961) Transport mechanisms in the foetus. Br Med Bull 17:107–111PubMedGoogle Scholar
  174. Widdas WF (1988) Old and new concepts of the membrane transport for glucose in cells. Biochim Biophys Acta 947:385–404PubMedGoogle Scholar
  175. Windle WF (1940) Physiology of the fetus; origin and extent of function in prenatal life. W.B. Saunders, Philadelphia, PAGoogle Scholar
  176. Wolff CF (1778) De foramina ovali ejusque in dirigendo saguinis motu. Observationes novae. Nov comment scient Petropolit. 20Google Scholar
  177. Young IM (1953) A sphincter in the umbilical ring of the rabbit. Nature 171:703PubMedGoogle Scholar
  178. Young M (1992) Classics Revisited: Researches on pre-natal life by Sir Joseph Barcroft. Placenta 13:607–612PubMedGoogle Scholar
  179. Ziegenspeck R (1905) Die Lehre von der doppelten Einmündung der unteren Hohlvene in die Vorhöfe des Herzens und der Autoritätsglaube. Breitkopf & Härtel, LeipzigGoogle Scholar
  180. Zuntz N (1877) Ueber die Respiration des Säugetheir-Foetus. Pflugers Arch 14:605–627Google Scholar
  181. Zuntz N (1884) Ueber die Benutzung curarisirter Thiere zu Stoffwechseluntersuchungen. Leipzig, […]Google Scholar
  182. Zweifel P (1876) Die Respiration des Fötus. Arch Gynakol 9:291–305Google Scholar

Copyright information

© American Physiological Society 2013

Authors and Affiliations

  • Lawrence D. Longo
    • 1
  1. 1.Center for Perinatal BiologyLoma Linda University School of MedicineLoma LindaUSA

Personalised recommendations