Skip to main content

Analysis of Oxide Traps in Nanoscale MOSFETs using Random Telegraph Noise

  • Chapter
  • First Online:
Book cover Bias Temperature Instability for Devices and Circuits

Abstract

This chapter describes the use of random telegraph noise (RTN) to obtain information about traps in highly scaled MOSFETs. A robust hidden Markov model (HMM) algorithm is presented to enable the accurate extraction of trap parameters from both single and multiple-trap signals. The results of a large number of measurements show that even in the absence of bias stress, RTN-generating traps can cause serious variation for high-k/metal gate (HKMG) FETs and that undoped channels do not reduce the problem. Trap time constants are shown to have wide ranging dependence on bias and temperature, leading to hysteretic behavior with time constants much longer than the circuit timescale. The impact of RTN on the stability of memory cells is also presented, along with experimental observations of these effects in SRAM arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To be precise, this description corresponds to an acceptor-type trap, but we prefer not to focus on the trap types because some traps defy easy categorization. Instead, we simply use the preceding definitions of “capture” and “emission” for all traps when plotting |I D | versus time.

  2. 2.

    Some trap models involve three or four internal states but only two observable charge states. Those models can readily be incorporated into this framework, but are not explicitly considered here.

References

  1. K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth, and D. M. Tennant, Phys. Rev. Lett. 52, 228 (1984).

    Article  Google Scholar 

  2. N. Tega, H. Miki, Z. Ren, C. P. D’Emic, Y. Zhu, D. J. Frank, J. Cai, M. A. Guillorn, D.-G. Park, W. Haensch, and K. Torii, in 2009 IEDM Tech. Dig., (IEEE), p. 771.

    Google Scholar 

  3. K. Takeuchi, IEICE Trans. Electron. E95-C, 414 (2012).

    Article  Google Scholar 

  4. H. Miki, N. Tega, M. Yamaoka, D. J. Frank, A. Bansal, M. Kobayashi, K. Cheng, C. P. D’Emic, Z. Ren, S. Wu, J-B. Yau, Y. Zhu, M. A. Guillorn, D.-G. Park, W. Haensch, E. Leobandung, and K. Torii, in 2012 IEDM Tech. Dig., (IEEE), p. 450.

    Google Scholar 

  5. T. Grasser, H. Reisinger, W. Goes, T. Aichinger, P. Hehenberger, P.-J. Wagner, M. Nelhiebel, J. Franco, and B. Kaczer, in 2009 IEDM Tech. Dig., (IEEE), p. 729.

    Google Scholar 

  6. H. Miki, M. Yamaoka, N. Tega, Z. Ren, M. Kobayashi, C. P. D’Emic, Y. Zhu, D. J. Frank, M. A. Guillorn, D.-G. Park, W. Haensch, and K. Torii, in 2011 Symp. VLSI Tech., (IEEE and JSAP), p. 148.

    Google Scholar 

  7. N. Tega, H. Miki, F. Pagette, D. J. Frank, A. Ray, M. J. Rooks, W. Haensch, and K. Torii, in 2009 Symp. VLSI Tech., (IEEE and JSAP), p. 50.

    Google Scholar 

  8. Y. Yuzhelevski, M. Yuzhelevski, and G. Jung, Rev. Sci. Instrum. 71, 1681 (2000).

    Article  Google Scholar 

  9. T. Nagumo, K. Takeuchi, S. Yokogawa, K. Imai, and Y. Hayashi, in 2009 IEDM Tech. Dig. (IEEE), p. 759.

    Google Scholar 

  10. S. Realov and K. L. Shepard, in 2010 IEDM Tech. Dig., (IEEE), p. 624.

    Google Scholar 

  11. D. J. Frank, in 2012 IRPS, Reliability Physics Tutorial Notes, Anaheim, CA (unpublished).

    Google Scholar 

  12. L. Rabiner, Proc. IEEE 77, 257 (1989).

    Article  Google Scholar 

  13. G.D. Forney, Jr., Proc. IEEE 61, 268 (1973).

    Article  MathSciNet  Google Scholar 

  14. K. Takeuchi, T. Nagumo, S. Yokogawa, K. Imai, and Y. Hayashi, in 2009 Symp. VLSI Tech., (IEEE and JSAP), p. 54.

    Google Scholar 

  15. A. Ghetti, C. M. Compagnoni, A. S. Spinelli, and A. Visconti, IEEE Trans. Electron Devices 56, 1746 (2009).

    Article  Google Scholar 

  16. B. Kaczer, Ph.J. Roussel, T. Grasser, and G. Groeseneken, IEEE Electron Dev. Lett. 31, 411 (2010).

    Article  Google Scholar 

  17. A. Asenov, R. Balasubramaniam, A. R. Brown, and J. H. Davies, IEEE Trans. Electron Devices 50, 839 (2003).

    Article  Google Scholar 

  18. N. Tega, H. Miki, T. Osabe, A. Kotabe, K. Otsuga, H. Kurata, S. Kamohara, K. Tokami, Y. Ikeda, and R. Yamada, in 2006 IEDM Tech. Dig., (IEEE), p. 491.

    Google Scholar 

  19. T. Nagumo, K. Takeuchi, T. Hase, and Y. Hayashi, in 2010 IEDM Tech. Dig., (IEEE), p. 628.

    Google Scholar 

  20. H. Miki, M. Yamaoka, D. J. Frank, K. Cheng, D.-G. Park, E. Leobandung, and K. Torii, in 2012 Symp. VLSI Tech., (IEEE and JSAP), p. 137.

    Google Scholar 

  21. H. Miki, N. Tega, Z. Ren, C. P. D’Emic, Y. Zhu, D. J. Frank, M. A. Guillorn, D.-G. Park, W. Haensch, and K. Torii, in 2010 IEDM Tech. Dig., (IEEE), p. 620.

    Google Scholar 

  22. M. Agostinelli, J. Hicks, J. Xu, B. Woolery, K. Mistry, K. Zhang, S. Jacobs, J. Jopling, W. Yang, B. Lee, T. Raz, M. Mehalel, P. Kolar, Y. Wang, J. Sandford, D. Pivin, C. Peterson, M. DiBattista, S. Pae, M. Jones, S. Johnson, and G. Subramanian, in 2005 IEDM Tech. Dig., (IEEE), p. 655.

    Google Scholar 

  23. S. O. Toh, Y. Tsukamoto, Z. Guo, L. Jones, T.-J. King Liu, and B. Nikolic, in 2009 IEDM Tech. Dig., (IEEE), p. 767.

    Google Scholar 

  24. K. Takeuchi, T. Nagumo, K. Takeda, S. Asayama, S. Yokogawa, K. Imai, and Y. Hayashi, in 2010 Symp. VLSI Tech., (IEEE and JSAP), p. 189.

    Google Scholar 

  25. M. Yamaoka, H. Miki, A. Bansal, S. Wu, D. J. Frank, E. Leobandung, and K. Torii, in 2011 IEDM Tech. Dig., (IEEE), p. 745.

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the help and support of the many colleagues who contributed to the work discussed here, including N. Tega, M. Yamaoka, A. Bansal, M. Kobayashi, K. Cheng, C. P. D’Emic, Z. Ren, S. Wu, J.-B. Yau, Y. Zhu, M. A. Guillorn, D.-G. Park, W. Haensch, E. Leobandung, and K. Torii, and also the efforts of the staff of the IBM MRL and the Albany Nanotechnology facilities, where the samples were fabricated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Frank, D.J., Miki, H. (2014). Analysis of Oxide Traps in Nanoscale MOSFETs using Random Telegraph Noise. In: Grasser, T. (eds) Bias Temperature Instability for Devices and Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7909-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7909-3_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7908-6

  • Online ISBN: 978-1-4614-7909-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics