Skip to main content

The Time-Dependent Defect Spectroscopy

  • Chapter
  • First Online:
Book cover Bias Temperature Instability for Devices and Circuits

Abstract

The time-dependent defect spectroscopy (TDDS) is an advancement of the technique to analyze random telegraph signals (RTS). RTS in the drain current of small-area MOSFETs has been used since the 1980s to study capture and emission times of charge carriers in individual traps in the gate insulator. These capture- and emission-time constants are the only electrically determined parameters of individual traps which provide information having the potential to identify the physical nature of these traps. The two main advantages of TDDS compared to RTS are that capture and emission times can be determined over a wide regime in gate bias, ranging from strong inversion to strong accumulation, and that TDDS signals from multiple traps can be analyzed more easily because they are less complex. This chapter is focused on explaining all the experimental aspects of TDDS, on preconditions with respect to samples, proper choice of stress and measuring parameters, data analysis, and limits due to instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. J. Kirton and M. J. Uren, Adv. Phys., vol. 38, pp. 367–468 (1989).

    Google Scholar 

  2. D. V. Lang, J. Appl. Phys., vol. 45, 3023 (1974).

    Google Scholar 

  3. T. Grasser, H. Reisinger, P.-J. Wagner and B. Kaczer, Phys. Rev. B, vol. 82, no. 24, 245318 (2010).

    Article  Google Scholar 

  4. A. Karwath and M. Schulz, Appl. Phys. Lett. 52, p. 634 (1988).

    Google Scholar 

  5. D. K. Schroder and J. A. Babcock, J. Appl. Phys 94, pp. 1–18 (2003).

    Google Scholar 

  6. J. H. Stathis and S. Zafar, Mat. Res. 46, no.2-4, p. 270 (2006).

    Google Scholar 

  7. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).

    Article  Google Scholar 

  8. A. Kerber and E. A. Cartier, IEEE Trans. Dev. Mat. Rel., vol. 9, no. 2, p. 147.162 (2009).

    Google Scholar 

  9. C. T. Chan, H. C. Ma, C. J. Tang and T. Wang, VLSI Digest of tech. papers, p. 90 (2005).

    Google Scholar 

  10. C. T. Chan, C. J. Tang, C. H. Kuo, H. C. Ma, C. W. Tsai, H. C.-H. Wang, M. H. Chi, and T. Wang, Proc. Intl. Rel. Phys. Symp., p. 41 (2005).

    Google Scholar 

  11. V. Huard, C.R. Parthasarathy, and M. Denais, Intl. Integrated Reliability Workshop Final Report, p. 5 (2005).

    Google Scholar 

  12. H.C. Ma, J.P. Chiu, C.J. Tang, T. Wang and C.S. Chang, Proc. Intl. Rel. Phys. Symp., p. 51 (2009).

    Google Scholar 

  13. B. Kaczer, T. Grasser, J. Martin-Martinez, E. Simoen, M. Aoulaiche, Ph. J. Roussel, G.Groeseneken, Proc. Intl. Rel. Phys. Symp., p. 55 (2009).

    Google Scholar 

  14. T. Wang, C.-T. Chan, C.-J. Tang, C.-W. Tsai, H. C.-H. Wang, M.-H. Chi, and D. D. Tang, Transactions on Electron Devices, vol. 53, Issue 5, p. 1073 (2006).

    Google Scholar 

  15. H. Reisinger, T. Grasser and C. Schlünder, Intl. Integrated Reliability Workshop Final Report, p. 30 (2009).

    Google Scholar 

  16. T. Grasser, H. Reisinger, W. Goes, Th. Aichinger, Ph. Hehenberger, P.-J. Wagner, M. Nelhiebel, J. Franco, and B. Kaczer, IEDM Tech. Digest, p. 729 (2009).

    Google Scholar 

  17. H. Reisinger, T. Grasser, W. Gustin and C. Schlünder, proc. Intl. Rel. Phys. Symp., p. 7 (2010).

    Google Scholar 

  18. T. Grasser, H. Reisinger, P.-J. Wagner, F. Schanovsky, W. Goes and B. Kaczer, proc. Intl. Rel. Phys. Symp., p. 16 (2010).

    Google Scholar 

  19. B. Kaczer, T. Grasser, Ph. J. Roussel, J. Franco, R. Degraeve, L.-A. Ragnarsson, E. Simoen, G. Groeseneken and H. Reisinger, proc. Intl. Rel. Phys. Symp., p. 26 (2010).

    Google Scholar 

  20. V. Huard, proc. Intl. Rel. Phys. Symp., p. 33 (2010).

    Google Scholar 

  21. T. Grasser, B. Kaczer, W. Goes, H. Reisinger, Th. Aichinger, Ph. Hehenberger, P.-J. Wagner, F. Schanovsky, J. Franco, Ph. Roussel, and M. Nelhiebel, IEDM Tech. Digest, p. 82 (2010).

    Google Scholar 

  22. J. Martin-Martinez, B. Kaczer, M. Toledano-Luque, R. Rodriguez, M. Nafria, X. Aymerich, G. Groeseneken, proc Intl. Rel. Phys. Symp., p. XT4.1 (2011).

    Google Scholar 

  23. T. Grasser, B. Kaczer, W. Goes, H. Reisinger, P.J. Wagner, F. Schanovsky, J. Franco, M. T. Luque, M. Nelhiebel, Transactions on Electron Devices, vol. 58, Issue 11, p. 3652 (2011).

    Google Scholar 

  24. T. Grasser, Microelectronics Reliability, vol. 52, Issue 1, p.39 (2012).

    Google Scholar 

  25. C. Liu, R. Wang, J. Zou, R. Huang, C. Fan, L. Zhang, J. Fan, Y. Ai, Y. Wang, IEDM Tech. Digest, p. 23.6.1 (2011).

    Google Scholar 

  26. M. Toledano-Luque, B. Kaczer, Ph. J. Roussel, T. Grasser, G.I. Wirth, J. Franco, C. Vrancken, N. Horiguchi, G. Groeseneken, proc. Intl. Rel. Phys. Symp., p. 4A.2.1 (2011.)

    Google Scholar 

  27. T. Grasser, P.-J. Wagner, H. Reisinger, Th. Aichinger, G. Pobegen, M. Nelhiebel, and B. Kaczer, IEDM Tech. Digest, p. 618 (2011).

    Google Scholar 

  28. B. Kaczer, J. Franco, M. Toledano-Luque, Ph. J. Roussel, M. F. Bukhori, A. Asenov, B. Schwarz, M. Bina, T. Grasser, G. Groeseneken, proc. Intl. Rel. Phys. Symp., p. 5A.2.1 (2012).

    Google Scholar 

  29. T. Grasser, B. Kaczer, H. Reisinger, P.-J. Wagner, and M. Toledano-Luque, proc. Intl. Rel. Phys. Symp., p. XT.8.1 (2012).

    Google Scholar 

  30. J. Franco, B. Kaczer, M. Toledano-Luque, Ph. J. Roussel, J. Mitard, L.-Å. Ragnarsson, L. Witters, T. Chiarella, M. Togo, N. Horiguchi, G. Groeseneken, proc. Intl. Rel. Phys. Symp., p. 5A.4.1, (2012).

    Google Scholar 

  31. T. Grasser, H. Reisinger, K. Rott, M. Toledano-Luque, and B. Kaczer, IEDM Tech. Digest, p. 470, (2012).

    Google Scholar 

  32. M. F. Bukhori, T. Grasser, B. Kaczer, H .Reisinger, A. Asenov, IEEE Integrated Reliability Workshop Final Report, p. 76 (2010).

    Google Scholar 

  33. K. S. Ralls , W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth, and D. M. Tennant, Phys. Rev. Lett., vol. 52, p. 228, (1984).

    Google Scholar 

  34. J. P. Campbell, J. Qin, K.P. Cheung, L.C. Yu, J.S. Suehle, A. Oates, K. Sheng, proc. Intl. Rel. Phys. Symp., p. 382 (2009).

    Google Scholar 

  35. M. Toledano-Luque, B. Kaczer, Ph. J. Roussel, J. Franco, L. Å. Ragnarsson, T. Grasser, and G. Groeseneken, Appl. Phys. Lett. 98, 183506 (2011).

    Article  Google Scholar 

  36. A.M. Stoneham, Rep. Prog. Phys., vol. 44, p. 1251, (1981).

    Google Scholar 

  37. T. Grasser, P.-J. Wagner, H. Reisinger, Th. Aichinger, G. Pobegen, M. Nelhiebel, and B. Kaczer, IEDM Tech. Digest, p 618 (2011).

    Google Scholar 

  38. J. Zou, C. Liu, R. Wang, X. Xu, J. Liu, H. Wu, Y. Wang, R. Huang, IEEE Silicon Nanoelectronics Workshop (SNW), p. 1 (2012).

    Google Scholar 

  39. Ph. Hehenberger, H. Reisinger, T. Grasser, Intl. Integrated Reliability Workshop Final Report, p. 8 (2010).

    Google Scholar 

  40. K. Rott, H. Reisinger, S. Aresu, C. Schlünder, K. Kölpin, W. Gustin and T. Grasser, Microelectronics Reliability, vol. 52, Issues 9–10, p. 1891 (2012).

    Google Scholar 

  41. T. Grasser, K. Rott, H. Reisinger, P.-J. Wagner, W. Goes, F. Schanovsky, M. Waltl, M. Toledano-Luque, and B. Kaczer, proc. Intl. Rel. Phys. Symp., p. 2D.2.1, (2013).

    Google Scholar 

  42. B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, M. Goodwin, proc. Intl. Rel. Phys. Symp., p. 381 (2005).

    Google Scholar 

  43. Th. Aichinger, M. Nelhiebel and T. Grasser, proc. Intl. Rel. Phys. Symp., p. 55 (2009).

    Google Scholar 

  44. G. Pobegen, Th. Aichinger, M. Nelhiebel and T. Grasser, IEDM Tech. Digest, p. 614, (2011).

    Google Scholar 

  45. M. Waltl, P.-J. Wagner, H. Reisinger, K. Rott and T. Grasser, IEEE Integrated Reliability Workshop Final Report, p. 74 (2012).

    Google Scholar 

  46. J. P. Campbell, P. M. Lenahan, P.M.; A. T. Krishnan, S. Krishnan, IEEE Device and Materials Reliability, IEEE Trans. Dev. Mat. Rel., vol. 6, Issue: 2, p. 117 (2006).

    Google Scholar 

  47. S. Rangan, N. Mielke, E. C.C. Yeh, IEDM Tech. Digest, p. 14.3.1 (2003).

    Google Scholar 

Download references

Acknowledgment

A part of this work has been supported by the European Commission under the 7th Framework Programme (Collaborative project MORDRED, Contract No. 261868). The author would like to acknowledge the cooperation with all the “MORDRED” partners, the close collaboration with IMEC and Prof. Tibor Grasser’s group, and the help given by the Infineon reliability team, especially Karina Rott and Gunnar Rott.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Reisinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reisinger, H. (2014). The Time-Dependent Defect Spectroscopy. In: Grasser, T. (eds) Bias Temperature Instability for Devices and Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7909-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7909-3_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7908-6

  • Online ISBN: 978-1-4614-7909-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics