Skip to main content

Characterization of Individual Traps in High-κ Oxides

  • Chapter
  • First Online:

Abstract

As the result of the vertical scaling of the CMOS technology, high-κ materials were introduced in the gate stack in order to reduce leakage current while keeping electrostatic control over the channel. Despite the high level of the bulk defects of these materials, only a handful of defects are present in the gate oxide due to the reduced lateral dimensions of the current CMOS technology. However, the relative impact of these traps on the device characteristics increases. In Chap. 17, it has been demonstrated for the conventional SiO2/poly-Si stack that the properties of each Si/SiO2 defect, such as its capture and emission times and its impact, are voltage and/or temperature dependent and widely distributed. In this chapter, we show that identical properties are followed by high-κ-based dielectrics. The stochastical nature of the behavior of the dielectric traps results in each of the nominally identical nm-scaled devices behaving very differently during operation and, therefore, increasing time-dependent variability (heteroskedasticity). Consequently, the lifetime of nm-sized high-κ devices cannot be predicted individually, but can be only described in terms of time (or workload)-dependent distributions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Cartier, A. Kerber, T. Ando, M. M. Frank, K. Choi, S. Krishnan, B. Linder, K. Zhao, F. Monsieur, J. Stathis and V. Narayanan,Tech. Dig. Int. Electron Devices Meet.2011, 441.

    Google Scholar 

  2. M. Cho, M. Aoulaiche, R. Degraeve, B. Kaczer, J. Franco, T. Kauerauf, Ph. J. Roussel, L. . Ragnarsson, J. Tseng, T.Y. Hoffmann and G. Groeseneken, IEEE Int. Reliab. Phys.Symp. Proc. 1095 (2010).

    Google Scholar 

  3. J. Franco, B. Kaczer, G. Eneman, J. Mitard, A. Stesmans, V. Afanas’ev, T. Kauerauf, Ph.J. Roussel, M. Toledano-Luque, M. Cho, R. Degraeve, T. Grasser, L.- . Ragnarsson, L. Witters, J. Tseng, S. Takeoka, W.-E. Wang, T.Y. Hoffmann and G. Groeseneken, Tech. Dig. Int. Electron Devices Meet.2010, 70.

    Google Scholar 

  4. International Technology Roadmap for Semiconductors available at http://public.itrs.net.

    Google Scholar 

  5. B. Kaczer, T. Grasser, J. Martin-Martinez, E. Simoen, M. Aoulaiche, Ph.J. Roussel and G. Groeseneken, IEEE Int. Reliab. Phys. Symp. Proc. 55 (2009).

    Google Scholar 

  6. T. Grasser, H. Reisinger, P. Wagner, F. Schanovsky, W. Goes and B. Kaczer, IEEE Int. Reliab. Phys. Symp. Proc. 16 (2010).

    Google Scholar 

  7. V. Huard, M. Denais and C. Parthasarathy, Microelectron.Reliab.46, 1 (2006).

    Google Scholar 

  8. M. Toledano-Luque, B. Kaczer, T. Grasser, Ph. J. Roussel, J. Franco and G. Groeseneken, J. Vac. Sci. Technol. B 31, 01A114 (2013).

    Google Scholar 

  9. T. Grasser, B. Kaczer, P. Hehenberger, W. Goes, R. O’Connor, H. Reisinger, W. Gustinand C. Schlunder, Tech. Dig. Int. Electron Devices Meet 2007, 801.

    Google Scholar 

  10. T. Grasser, Th. Aichinger, G. Pobegen, H. Reisinger, P.-J. Wagner, J. Franco, M. Nelhiebel and B. Kaczer, , IEEE Int. Reliab. Phys.Symp. Proc.605 (2011).

    Google Scholar 

  11. H. Reisinger, T. Grasser, W. Gustin and C. Schlünder, IEEE Int. Reliab. Phys.Symp. Proc. 7 (2010).

    Google Scholar 

  12. B. Kaczer, Ph. J. Roussel, T. Grasser and G. Groeseneken, IEEE Electron Device Lett. 31, 411 (2010).

    Google Scholar 

  13. A. Asenov, R. Balasubramaniam, A.R. Brown and J.H. Davies, IEEE Trans. Electron Devices 50, 839 (2003).

    Google Scholar 

  14. M.F.Bukhori, S. Roy and A. Asenov, IEEE Trans. Electron Devices 57, 795 (2010).

    Google Scholar 

  15. A. Ghetti, C.M. Compagnoni, A.S. Spinelli and A. Visconti, IEEE Trans. Electron Devices 56, 1746 (2009).

    Google Scholar 

  16. B. Kaczer, T. Grasser, Ph. J. Roussel, J. Franco, R. Degraeve, L.-A. Ragnarsson, E. Simoen, G. Groeseneken and H. Reisinger, IEEE Int. Reliab. Phys. Symp. Proc. 26 (2010).

    Google Scholar 

  17. B. Kaczer, T. Grasser, P.J. Roussel, J. Martin-Martinez, R. O’Connor, B.J. O’Sullivan and G. Groeseneken, IEEE Int. Reliab. Phys. Symp. Proc. 20 (2008).

    Google Scholar 

  18. T. Grasser, H. Reisinger, P.-J. Wagner and B. Kaczer, Phy. Rev. B 82, 245318 (2010).

    Article  Google Scholar 

  19. M. Toledano-Luque, B. Kaczer, Ph.J Roussel, T. Grasser, G.I. Wirth, J. Franco, C. Vrancken, N. Horiguchi and G. Groeseneken, IEEE Int. Reliab. Phys. Symp. Proc 364 (2011).

    Google Scholar 

  20. M. Toledano-Luque, B. Kaczer, E. Simoen, Ph. J. Roussel, A. Veloso, T. Grasser and G. Groeseneken, Microelectron. Reliab.88, 1243 (2011).

    Google Scholar 

  21. M. Toledano-Luque, B. Kaczer, Ph. Roussel, M.J. Cho, T. Grasser and G. Groeseneken, J. Vac. Sci. Technol. B 29, 01AA04 (2011).

    Google Scholar 

  22. M. Toledano-Luque, B. Kaczer, J. Franco, Ph. J. Roussel, T. Grasser, T.Y. Hoffmann and G. Groeseneken, Symposium on VLSI Technology Digest of Technical Papers2011, 152.

    Google Scholar 

  23. B. Kaczer, S. Mahato, V. Valduga de Almeida Camargo, M. Toledano Luque, Ph.J. Roussel, T. Grasser, F. Catthoor, P. Dobrovolny, P. Zuber, G. Wirth and G. Groeseneken,IEEE Int. Reliab. Phys. Symp. Proc. 915 (2011).

    Google Scholar 

  24. M. Cho, J.-D. Lee, M. Aoulaiche, B. Kaczer,Ph. J. Roussel,T. Kauerauf, R. Degraeve, J. Franco, L. Ragnarsson, G. Groeseneken, IEEE Trans. Electron Devices59, 2042 (2012).

    Google Scholar 

  25. A. Kerber, E. Cartier, L. Pantisano, R. Degraeve, T. Kauerauf, Y. Kim, A. Hou, G. Groeseneken, H.E. Maes and U. Schwalke, IEEE Electron Device Lett. 24, 87 (2003).

    Article  Google Scholar 

  26. S. Lee, H.-J. Cho, Y. Son, D.S. Lee and H. Shin, Tech. Dig. - Int. Electron Devices Meet. 2009, 759.

    Google Scholar 

  27. M. Uren, M. Kirton and S. Collins, Phy. Rev. B 37, 8346 (1988).

    Google Scholar 

  28. V. Huard, C. Parthasarathy, C. Guerin, T. Valentin, E. Pion, M. Mammasse, N. Planes and L. Camus, IEEE Int. Reliab. Phys. Symp. Proc.289 (2008).

    Google Scholar 

  29. T. Grasser, P.-J. Wagner, H. Reisinger, Th. Aichinger, G. Pobegen, M. Nelhiebeland B. Kaczer, Tech. Dig. - Int. Electron Devices Meet. (2011), 6618.

    Google Scholar 

  30. T. Grasser, B. Kaczer, W. Goes, H. Reisinger, Th. Aichinger, Ph. Hehenberger, P.-J. Wagner, F. Schanovsky, J. Franco, Ph. Roussel and M. Nelhiebel, Tech. Dig. - Int. Electron Devices Meet. (2010). 82.

    Google Scholar 

  31. K. Takeuchi, T. Nagumo, S. Yokogawa, K. Imai and Y. Hayashi, Symposium on VLSI Technology Digest of Technical Papers 54 (2009).

    Google Scholar 

  32. J.Franco, B. Kaczer, M. Toledano-Luque, Ph.J. Roussel, J. Mitard, L.- . Ragnarsson, L.Witters, T. Chiarella, M. Togo, N. Horiguchi, G. Groeseneken, M. F. Bukhori, T. Grasser and A. Asenov, IEEE Electron Device Lett. 33, 779 (2012).

    Google Scholar 

  33. T. Grasser, Microel. Reliab. 52, 39–70 (2012).

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the stimulating discussion with the imec DRE group (imec) and Prof. Tibor Grasser’s group (Technical University of Vienna). This work was performed as part of imec’s Core Partner Program. It has been in part supported by the European Commission under the seventh Framework Programme (Collaborative project MORDRED, contract No. 261868).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Toledano-Luque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Toledano-Luque, M., Kaczer, B. (2014). Characterization of Individual Traps in High-κ Oxides. In: Grasser, T. (eds) Bias Temperature Instability for Devices and Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7909-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7909-3_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7908-6

  • Online ISBN: 978-1-4614-7909-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics