Skip to main content

Statistical Study of Bias Temperature Instabilities by Means of 3D “Atomistic” Simulation

  • Chapter
  • First Online:
Bias Temperature Instability for Devices and Circuits

Abstract

This chapter presents a comprehensive simulation study of the reliability performance in contemporary bulk MOSFET devices. With the CMOS technology entering in the nanoscale era, the statistical variability due to random dopant fluctuations plays a critical role in determining the transistor reliability performance. As a consequence, in contemporary devices, reliability and variability cannot be considered anymore as separate concepts. The reliability has to be reinterpreted as a time-dependent form of variability. In the first part of this chapter we introduce computational models and methods for modelling the reliability phenomena in presence of statistical variability. In particular we present both a frozen-time and a dynamical approach, showing details of their implementation and verification. In the second part of the chapter we report a broad set of simulation results highlighting the importance of variability in reliability evaluation of nanoscale devices. In particular we analyse the impact of variability on the single transistor and on many different transistors in presence of a single trapped charge. Then we show the effects related to multiple trapped charges. Finally the statistical results obtained using the frozen-time and the dynamical methods are compared in terms of accuracy in predicting the statistical dispersion in threshold voltage shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Kaczer, T. Grasser, J. Martin-Martinez, E. Simoen, M. Aoulaiche, P. J. Roussel and G. Groeseneken. Proc. IRPS 2009, 152–153 (2009).

    Google Scholar 

  2. B. Kaczer, T. Grasser, P. J. Roussel, J. Franco, R. Degraeve, L. Ragnarsson, E. Simoen, G. Groesenekenand and H. Reisinger. Proc. IRPS 2010, 26–32 (2010).

    Google Scholar 

  3. M. Toledano-Luque, B. Kaczer, J. Franco, P. Roussel, T. Grasser, T. Hoffmann and G. Groeseneken. IEEE VLSI Technology 2011, 152–153 (2011).

    Google Scholar 

  4. A. Asenov, S. Roy, R. A. Brown, G. Roy, C. Alexander, C. Riddet, C. Millar, B. Cheng, A. Martinez, N. Seoane, D. Reid, M. F. Bukhori, X. Wang and U. Kovac. IEDM Tech. Dig. 2008 (2008).

    Google Scholar 

  5. M. F. Bukhori, S. Roy and A. Asenov. Microelectron. Reliab. 48, 1549–1552 (2008).

    Article  Google Scholar 

  6. J. Franco, B. Kaczer, M. Toledano-Luque, P. J. Roussel, J. Mitard, L.-Ã. Ragnarsson, L. Witters, T. Chiarella, M. Togo, N. Horiguchi and G. Groeseneken. Proc. IRPS 2012, 1–6 (2012).

    Google Scholar 

  7. B. Kaczer, J. Franco, M. Toledano-Luque, P. J. Roussel, M. F. Bukhori, A. Asenov, B. Schwarz, M. Bina, T. Grasser and G. Groeseneken. Proc. IRPS 2012, 152–153 (2012).

    Google Scholar 

  8. A. Mauri, N. Castellani, C. M. Compagnoni, A. Ghetti, P. Cappelletti, A. S. Spinelli and A. L. Lacaita. IEDM Tech. Dig. 2011, 405–408 (2011).

    Google Scholar 

  9. G. D. Panagopoulos and K. Roy. IEEE Trans. Electron Devices 58, 2337–2345 (2011).

    Article  Google Scholar 

  10. A. R. Brown, V. Huard and A. Asenov. IEEE Trans. Electron Devices 57, 2320–2323 (2010).

    Article  Google Scholar 

  11. S. M. Amoroso, F. Adamu-Lema, S. Markov, L. Gerrer and A. Asenov. Proc IWCE 2012, 1–4 (2012).

    Google Scholar 

  12. F. Adamu-Lema, S. Amoroso, S. Markov, L. Gerrer and A. Asenov. Proc.of SISPAD. 2012, 101–104 (2012).

    Google Scholar 

  13. S. Markov, L. Gerrer, F. Adamu-Lema, S. Amoroso and A. Asenov. Proc. SISPAD 2012, 157–160 (2012).

    Google Scholar 

  14. F. Adamu-Lema, C. M. Compagnoni, S. M. Amoroso, N. Castellani, L. Gerrer, S. Markov, A. S. Spinelli, A. L. Lacaita and A. Asenov. IEEE Trans. Elec. Dev. 60, 833–839 (2013).

    Article  Google Scholar 

  15. B. Kaczer, M. Toledano-Luque, J. Franco, P. Weckx (2013) Statistical distribution of defect parameters. In: T. Grasser (eds) Bias temperature instability for devices and circuits. Springer, New York

    Google Scholar 

  16. M. Toledano-Luque, B. Kaczer (2013) Characterization of individual traps in high-κ oxides. In: T. Grasser (ed.) Bias temperature instability for devices and circuits. Springer, New York

    Google Scholar 

  17. A. Asenov, R. Balasubramaniam, A. Brown and J. Davies. IEEE Trans. Electron Devices 50, 334–336 (2003).

    Google Scholar 

  18. T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehen-berger, P. Wagner, F. Schanovsky, J. Franco, M. T. Luque, and M. Nelhiebel. IEEE Trans. Electron Devices 58, 3652–3666 (2011).

    Article  Google Scholar 

  19. M. Toledano-Luque, B. Kaczer, E. Simoen, R. Degraeve, J. Franco, P. J. Roussel, T. Grasser and G. Groeseneken. Proc. IRPS 2012, 1–6 (2012).

    Google Scholar 

  20. S. M. Amoroso, L. Gerrer, S. Markov, F. Adamu-Lema and A. Asenov. Proc. of ESSDERC 2012, 109–112 (2012).

    Google Scholar 

  21. S. M. Amoroso, L. Gerrer, S. Markov, F. Adamu-Lema and A. Asenov. Solid-State Electronics - Accepted for publication (2013).

    Google Scholar 

  22. L. Gerrer, S. Markov, S. Amoroso, F. Adamu-Lema and A. Asenov. Microelectron. Reliab. 52, 1918–1923 (2012).

    Article  Google Scholar 

  23. S. Ogawa and N. Shiono. Phys. Rev. B 51, 4218–4230 (1995).

    Article  Google Scholar 

  24. M. A. Alam. IEDM Tech. Dig. 2003, 345–348 (2003).

    Google Scholar 

  25. D. K. Schroder and J. A. Babcock. J. Appl. Phys. 94, 1–18 (2003).

    Article  Google Scholar 

  26. M.A.Alam and S.Mohapatra. Journal of Microelectronics Reliability 71–81 (2005).

    Google Scholar 

  27. J. H. Stathis and S. Zafar. Microelectron. Reliab. 46, 270–286 (2006).

    Article  Google Scholar 

  28. T. Yamamoto, K. Uwasawa and T. Mogami. IEEE Trans. Elec. Dev. 46, 921–926 (1999).

    Article  Google Scholar 

  29. D. K. Schroder and J. A. Babcock. Microelectron. Reliab. 47, 841–852 (2007).

    Article  Google Scholar 

  30. S. Mahapatra, M. A. Alam, P. B. Kumar, T. R. Dalei, D. Varghese and D. Saha. Microelectron. Eng. 80, 114–121 (2005).

    Article  Google Scholar 

  31. T. Grasser (2013). The capture/emission time map approach to the bias temperature instability. In: T. Grasser (eds) Bias temperature instability for devices and circuits. Springer, New York

    Google Scholar 

  32. A. Asenov, A. R. Brown, J. H. Davies, S. Kaya and G. Slavcheva. IEEE Trans. Electron Devices 50, 1837–1852 (2003).

    Article  Google Scholar 

  33. G. Roy, A. R. Brown, F. Adamu-Lema, S. Roy and A. Asenov. IEEE Trans. Elec. Dev. 53, 3063–3069 (2006).

    Article  Google Scholar 

  34. D. Reid, C. Millar, S. Roy and A. Asenov. IEEE Trans. Electron Devices 57, 2801–2807 (2010).

    Article  Google Scholar 

  35. A. R. Brown, J. Watling and A. Asenov. J. Comput. Electron 5, 333–336 (2006).

    Article  Google Scholar 

  36. H. Dadgour, K. Endo and K. Banerjee. IEDM, Tech. Dig. 2008, 705–708 (2008).

    Google Scholar 

  37. A. R. Brown, N. Idris, J. Watling and A. Asenov. IEEE Electron Device Lett 31, 1199–1201 (2010).

    Article  Google Scholar 

  38. www.goldstandardsimulations.com.

  39. D. A. Buchanan, M. V. Fischetti and D. J. DiMaria. Phys. Rev. B 43, 1471–1486 (1991).

    Article  Google Scholar 

  40. M. Lax. Phys. Rev. 119, 1502–1523 (1960).

    Article  Google Scholar 

  41. S. M. Amoroso, A. Maconi, A. Mauri, C. M. Compagnoni, E. Greco, E. Camozzi, S. Vigano’, P. Tessariol, A. Ghetti, A. S. Spinelli and A. L. Lacaita. IEDM Tech. Dig. 2010, 540–543 (2010).

    Google Scholar 

  42. S. M. Amoroso, A. Maconi, A. Mauri, C. M. Compagnoni, A. S. Spinelli, and A. L. Lacaita. IEEE Trans. Elec. Dev. 1864–1871 (2011).

    Google Scholar 

  43. N. Castellani, C. M. Compagnoni, A. Mauri, A. S. Spinelli and A. L. Lacaita. IEEE Trans. Electron Devices 59, 2488–2494 (2012).

    Article  Google Scholar 

  44. C. M. Compagnoni, N. Castellani, A. Mauri, A. S. Spinelli and A. L. Lacaita. IEEE Trans. Elec. Dev. 59, 2495–2500 (2012).

    Article  Google Scholar 

  45. M. Kirton and M. Uren. Advances in Physics 38, 367–468 (1989).

    Article  Google Scholar 

  46. A. Palma, A. Godoy, J. A. Jimenez-Tejada, J. E. Carceller and J. A. Lopez-Villanueva. Phys. Rev. B 56, 9565–9574 (1997).

    Article  Google Scholar 

  47. J. P. Campbell, J. Qin, K. P. Cheung, L. C. Yu, J. S. Suehle, A. Oates and K. Sheng. Proc. IRPS 2009, 382–388 (2009).

    Google Scholar 

  48. T. Grasser, H. Reisinger, W. Goes, T. Aichinger, P. Hehenberger, P.-J. Wagner, M. Nelhiebel, J. Franco and B. Kaczer. IEDM Tech. Dig. 2009, 729–732 (2009).

    Google Scholar 

  49. T. Nagumo, K. Takeuchi, T. Hase and Y. Hayashi. IEDM Tech. Dig. 2010, 628–631 (2010).

    Google Scholar 

  50. M. Toledano-Luque, B. Kaczer, P. Roussel, M. J. Cho, T. Grasser and G. Groeseneken. J. Vac. Sci. Technol. B 01AA04 (2011).

    Google Scholar 

  51. T. Grasser, B. Kaczer, W. Goes, T. Aichinger, P. Hehenberger and M. Nelhiebel. Proc. IRPS 2009, 33–44 (2009).

    Google Scholar 

  52. K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth and D. M. Tennant. Phys. Rev. Lett. 52, 228–231 (1984).

    Article  Google Scholar 

  53. K. K. Hung, P. K. Ko, C. Hu and Y. C. Cheng. IEEE Electron Device Lett. 11, 90–92 (1990).

    Article  Google Scholar 

  54. T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger, P.-J. Wagner, F. Schanovsky, J. Franco, P. Roussel, and M. Nelhiebel. IEDM Tech. Dig. 2010, 82–85 (2010).

    Google Scholar 

  55. I. Chen, S. E. Holland and C. Hu. IEEE Trans. Electron Devices 32, 413–422 (1985).

    Article  Google Scholar 

  56. D. J. DiMaria. J. Appl. Phys. 8707–8715 (2000).

    Google Scholar 

  57. D. Ielmini, A. S. Spinelli, A. L. Lacaita and M. van Duuren. IEEE Trans. Electron Devices 51, 1288–1295 (2004).

    Article  Google Scholar 

  58. D. Ielmini, A. S. Spinelli, A. L. Lacaita and M. van Duuren. IEEE Trans. Electron Devices 51, 1281–121 (2004).

    Article  Google Scholar 

  59. T. Grasser, T. Aichinger, G. Pobegen, H. Reisinger, P.-J. Wagner, J. Franco, M. Nelhiebel and B. Kaczer. Proc. IRPS 2011, 605–613 (2011).

    Google Scholar 

  60. A. Asenov. IEDM Tech.Dig. 1999 (1999).

    Google Scholar 

  61. A. Asenov, A. R. Brown and J. Watling. Solid-State Electronics 47, 1141–1145 (2003).

    Article  Google Scholar 

  62. G. D. Panagopoulos and K. Roy. IEEE Trans. Electron Devices 58, 391–403 (2011).

    Google Scholar 

  63. A.Asenov, S.Kaya and A.R. Brown. IEEE Trans.Electron Devices 50, 1254–1260 (2003).

    Article  Google Scholar 

  64. C. Alexander, A. R. Brown, J. R. Watling and A. Asenov. Solid-State Electron 733–739 (2005).

    Google Scholar 

  65. A. Asenov, G. Roy, C. Alexander, A. R. Brown, J. Watling and S. Roy. IEEE Conference on Nanotechnology 2004, 334–336 (2004).

    Google Scholar 

  66. T. Grasser, W. Goes, V. Sverdlov and B. Kaczer. Proc. IRPS 2007, 268–280 (2007).

    Google Scholar 

  67. H. Reisinger, T. Grasser and C. Schlunder. Proc. IIRW 2009, 30–35 (2009).

    Google Scholar 

  68. H. Reisinger, T. Grasser, W. Gustin and C. Schlünder. Proc. IRPS 2010, 7–15 (2010).

    Google Scholar 

  69. B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken and M. Goodwin. Proc. IRPS 2005, 381–387 (2005).

    Google Scholar 

  70. M. Denais, A. Bravaix, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, Y. Rey-Tauriac, and N. Revil. IEDM, Tech. Dig. 2004, 109–112 (2004).

    Google Scholar 

  71. H. Reisinger, O. Blank, W. Heinrigs, A. Mühlhoff, W. Gustin and C. Schlünder. Proc. IRPS 2006, 448–453 (2006).

    Google Scholar 

  72. T. Grasser, H. Reisinger, P.-J. Wagner, W. Goes, F. Schanovsky and B. Kaczer. Proc. IRPS 2010, 16–25 (2010).

    Google Scholar 

  73. M. Toledano-Luque, B. Kaczer, E. Simoen, P. J. Roussel, A. Veloso, T. Grasser and G. Groeseneken. Microelectronic Eng. 1243–1246 (2011).

    Google Scholar 

  74. H. Reisinger (2013) The time dependent defect spectroscopy. In: T. Grasser (eds) Bias temperature instability for devices and circuits. Springer, New York

    Google Scholar 

  75. C. M. Compagnoni, A. S. Spinelli, R. Gusmeroli, S. Beltrami, A. Ghetti and A. Visconti. IEEE Trans. Elec. Dev. 55, 2695–2702 (2008).

    Article  Google Scholar 

  76. B. Kaczer, P. J. Roussel, T. Grasser and G. Groeseneken. IEEE Elec. Dev. Lett. 411–413 (2010).

    Google Scholar 

  77. B. Cheng, A. R. Brown and A. Asenov. IEEE Elec. Dev. Lett. 32, 740–742 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The results presented here have been obtained through extensive research activity funded by the European Community through the FP7 project “MORDRED” no. 261868.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Maria Amoroso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Amoroso, S.M., Gerrer, L., Adamu-Lema, F., Markov, S., Asenov, A. (2014). Statistical Study of Bias Temperature Instabilities by Means of 3D “Atomistic” Simulation. In: Grasser, T. (eds) Bias Temperature Instability for Devices and Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7909-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7909-3_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7908-6

  • Online ISBN: 978-1-4614-7909-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics