Skip to main content

Atomistic Modeling of Defects Implicated in the Bias Temperature Instability

  • Chapter
  • First Online:
Bias Temperature Instability for Devices and Circuits

Abstract

Capture and emission of carriers by point defects in gate dielectrics, such as SiO2 and HfO2, and at their interfaces with the substrate are thought to be responsible for performance and reliability issues in MOS devices, particularly dielectric degradation and the bias temperature instability (BTI). Ultra-thin silicon dioxide films are present at the interface between Si and high-κ oxides; thus it is hoped that understanding the defects in silica which contribute to BTI will also aid the reliability of devices containing high-κ oxides. This chapter reviews the state of the art of modeling oxygen deficiency defects implicated in both electron and hole trapping in amorphous silica (a-SiO2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleetwood, D.M., Pantelides, S.T., Schrimpf, R.D.: Defects in microelectronic materials and devices. CRC Press (2009)

    Google Scholar 

  2. Weeks, R.A.: J. Appl. Phys. 27, 1376 (1956)

    Article  Google Scholar 

  3. Weeks, R.A., Nelson, C.M.: Trapped electrons in irradiated quartz and silica. 2. Electron spin resonance. J. Am. Ceram. Soc. 43, 399 (1960)

    Google Scholar 

  4. Nelson, C.M., Weeks, R.A.: Trapped electron centers in irradiated quartz and silica. 1. Optical absorption. J. Am. Ceram. Soc. 43, 396–399 (1960)

    Google Scholar 

  5. Griscom, D.L.: Trapped electron centres in silica. J. Non-Cryst. Solids 357, 1945–1962 (2011)

    Article  Google Scholar 

  6. Skuja, L.: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids 239, 16–48 (1998)

    Article  Google Scholar 

  7. Skuja, L., Kajihara, K., Hirano, M., Hosono, H.: Hydrogen-related radiation defects in SiO2-based glasses. Nucl. Instrum. Methods Phys. Res. B 266, 2971–2975 (2008)

    Article  Google Scholar 

  8. Messina, F., Cannas, M.: Photochemical generation of E centres from Si-H in amorphous SiO2 under pulsed ultraviolet laser radiation. J. Phys.: Condens. Matter 18(43), 9967–9973

    Google Scholar 

  9. Walters, M., Reisman, A.: Radiation-induced neutral electron trap generation in electrically biased insulated gate field effect transistor gate insulators. J. Electrochem. Soc. 138, 2756–2762 (1991)

    Article  Google Scholar 

  10. Lelis, A.J., Oldham, T.R.: Time dependence of switching oxide traps. IEEE Trans. Nucl. Sci. 41, 1835–1839 (1994)

    Article  Google Scholar 

  11. Conley, J.F., Lenahan, P.M., Lelis, A.J., Oldham, T.R.: Electron Spin Resonance evidence E centers can behave as switching oxide traps. IEEE Trans. Nucl. Sci. 42, 1744–1749 (1995)

    Article  Google Scholar 

  12. Wagner, P., Aichinger, T., Grasser, T., Nelhiebel, M., Vandamme, L.: in Proceedings of the International conference on Noise and Fluctuations. pp. 621–624 (2009)

    Google Scholar 

  13. Grasser, T., Kaczer, B., Göes, W., Aichinger, T., Hehengerber, P., Nelhiebel, M.: Understanding Negative Bias Temperature Instability in the Context of Hole Trapping. Microelectron. Engineering 86, 1876–1882 (2009)

    Article  Google Scholar 

  14. Schroder, D.K.: Microelectron. Reliab. 47, 41–852 (2006)

    Google Scholar 

  15. Leach, A.R.: Molecular modelling: Principles and applications, pp. 359–362. Pearson Prentice Hall (2001)

    Google Scholar 

  16. Grasser, T., Kaczer, B., Goes, W., Reisinger, H., Aichinger, T., Hehenberger, P., Wagner, P.J., Schanovsky, F., Franco, J., Luque, M.T., Nelhiebel, M.: The Paradigm Shift in Understanding the Bias Temperature Instability: From Reaction-Diffusion to Switching Oxide Traps. IEEE Trans. Electr. Dev. 58(11), 3652–3666 (2011)

    Article  Google Scholar 

  17. Martin, R.: Electronic structure: Basic theory and practical methods, p. 173. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  18. Sulimov, V.B., Sushko, P.V., Edwards, A.H., Shluger, A.L., Stoneham, A.M.: Phys. Rev. B 66, 024108 (2002)

    Article  Google Scholar 

  19. Kittel, C.: Introduction to Solid-State Physics. Wiley, New York (1976)

    Google Scholar 

  20. Van de Walle, C., Neugebauer, J.: First-principles calculations for defects and impurities: Applications to III-Nitrides. J. Appl. Phys. 95(8), 3851–3879 (2004)

    Article  Google Scholar 

  21. Pacchioni, G., Ieranò, G.: Phys. Rev. B 57, 818–832 (1998)

    Article  Google Scholar 

  22. Uchino, T., Yoko, T.: Phys. Rev. B 68, 041201(R)–1–4 (2003)

    Google Scholar 

  23. Sushko, P.V., Mukhopadhyay, S., Mysovsky, A.S., Sulimov, V.B., Taga, A., Shluger, A.L.: Structure and properties of defects in amorphous silica: new insight from embedded cluster calculations. J. Phys.: Condens. Matter 17, S2115–S2140 (2005)

    Article  Google Scholar 

  24. Muñoz Ramo, D., Gavartin, J.L., Shluger, A.L., Bersuker, G.: Phys. Rev. B 75, 205336–1–12 (2007)

    Google Scholar 

  25. Pandey, R., Vail, J.M.: F-type centres and hydrogen anions in MgO: Hartree-Fock ground states. Journal of Physics: Condensed Matter 1(17), 2801 (1989)

    Article  Google Scholar 

  26. Vail, J.M.: Theory of electronic defects - Applications to MgO and alkali-halides. J. Phys. Chem. Solids 51(7), 589–607 (1990)

    Article  Google Scholar 

  27. Sousa, C., Illas, F.: On the accurate prediction of the optical absorption energy of F-centers in MgO from explicitly correlated ab initio cluster model calculations. J. Chem. Phys. 115(3), 1435–1439 (2001)

    Article  Google Scholar 

  28. Donnerberg, H., Birkholz, A.: Ab initio study of oxygen vacancies in BaTiO3. J Phys.: Condens. Matter 12(38), 8239 (2000)

    Google Scholar 

  29. Sushko, P.V., Shluger, A.L., Catlow, C.R.A.: Relative energies of surface and defect states: ab initio calculations for the MgO (001) surface. Surf. Sci. 450(3), 153–170 (2000)

    Article  Google Scholar 

  30. Wright, A. C.: Defects in SiO2 and related dielectrics: Science and Technology, p. 1. Kluwer Academic Publisher (2000)

    Google Scholar 

  31. Pramod Vedula, R., Anderson, N.L., Strachan, A.: Phys. Rev. B 85, 205209–1–11 (2012)

    Google Scholar 

  32. Vollmayr, K., Kob, W., Binder, K.: Phys. Rev. B 54, 15808–15827 (1996)

    Article  Google Scholar 

  33. Nicklaw, C.J., Lu, Z.Y., Fleetwood, D.M., Schrimpf, R.D., Pantelides, S.T.: The structure, properties and dynamics of oxygen vacancies in amorphous SiO2. IEEE Trans. Nucl. Sci. 49, 2667–2673 (2002)

    Article  Google Scholar 

  34. Anderson, N.L., Pramod Vedula, R., Schultz, P.A., Van Ginhoven, R.M., Strachan, A.: First-Principles Investigation of low energy E center precursors in amorphous silica. Phys. Rev. Lett. 106, 206402–1–4 (2011)

    Google Scholar 

  35. Anderson, N.L., Pramod Vedula, R., Schultz, P.A., Van Ginhoven, R.M., Strachan, A.: Defect level distributions and atomic relaxations induced by charge trapping in amorphous silica. Appl. Phys. Lett. 100, 172908–1–3 (2012)

    Google Scholar 

  36. Blöchl, P.: Phys. Rev. B 62, 6158 (2000)

    Article  Google Scholar 

  37. Szymanski, M.A., Shluger, A.L., Stoneham, A.M.: Phys. Rev. B 63, 224207–1–9 (2001)

    Google Scholar 

  38. Bongiorno, A., Pasquarello, A.: Oxygen diffusion through the disordered oxide network during silicon oxidation. Phys. Rev. Lett. 88, 125901–1–4 (2002)

    Google Scholar 

  39. Lu, Z.Y., Nicklaw, C.J., Fleetwood, D.M., Schrimpf, R.D., Pantelides, S.T.: Structure, properties, and dynamics of oxygen vacancies in amorphous SiO2. Phys. Rev. Lett. 89, 285505–1–4 (2002)

    Google Scholar 

  40. Mukhopadhyay, S., Sushko, P.V., Stoneham, A.M., Shluger, A.L.: Phys. Rev. B 70, 195203–1–10 (2004)

    Google Scholar 

  41. Mukhopadhyay, S., Sushko, P.V., Stoneham, A.M., Shluger, A.L.: Phys. Rev. B 71, 235204–1–9 (2005)

    Google Scholar 

  42. Donaldio, D., Bernasconi, M., Boero, M.: Ab initio simulations of photoinduced interconversions of oxygen deficient centers in amorphous silica. Phys. Rev. Lett. 87, 195504–1–4 (2001)

    Google Scholar 

  43. Sushko, P.V., Mukhopadhyay, S., Stoneham, A.M., Shluger, A.L.: Oxygen vacancies in amorphous silica: Structure and distribution of properties. Microelectron. Eng. 80, 292–295 (2005)

    Article  Google Scholar 

  44. Rudra, J.K., Fowler, W.B.: Phys. Rev. B 35, 8223–8230 (1987)

    Article  Google Scholar 

  45. Allan, D.C., Teter, M.P.: Local density approximation total energy calculations for silica and titania structure and defects. J. Amer. Ceram. Soc. 73(11), 3247–3250 (1990)

    Article  Google Scholar 

  46. Pantelides, S.T., Lu, Z.Y., Nicklaw, C., Bakos, T., Rashkeev, S.N., Fleetwood, D.M., Schrimpf, R.D.: The E center and oxygen vacancies in SiO2. J. Non-Cryst. Solids 354, 217–223 (2008)

    Article  Google Scholar 

  47. Ling, S., El-Sayed, A.M., Lopez-Gejo, F., Watkins, M.B., Afanas’ev, V., Shluger, A.L.: A computational study of Si-H bonds as precursors for neutral E centres in amorphous silica and at the Si/SiO2 interface. Microelectron. Engineering 109, 310–313 (2013)

    Article  Google Scholar 

  48. Jivanescu, M., Stesmans, A., Afanas’ev, V.V.: Phys. Rev. B 83(9) (2011)

    Google Scholar 

  49. Skuja, L.: Defects in SiO2 and related dielectrics: Science and Technology, p. 73. Kluwer Academic Publisher (2000)

    Google Scholar 

  50. Chadi, D.J.: Negative-U property of oxygen vacancy defect in SiO2 and its implication for the E center in α-quartz. Appl. Phys. Lett. 83, 437–439 (2003)

    Article  Google Scholar 

  51. Roma, G., Lymoge, Y.: Phys. Rev. B 70, 174101–1–8 (2004)

    Google Scholar 

  52. Kimmel, A.V., Sushko, P.V., Shluger, A.L., Bersuker, G.: Positive and negative oxygen vacancies in amorphous SiO2. ECS Trans. 19, 3–18 (2009)

    Article  Google Scholar 

  53. Buscarino, G., Agnello, S., Gelardi, F.M.:29Si hyperfine structure of E center in amorphous silicon dioxide. Phys. Rev. Lett. 97, 135502–1–4 (2006)

    Google Scholar 

  54. Griscom, D., Cook, M.:29Si super-hyperfine interactions of the E center: a potential probe of range-II order in silica glass. J. Non-Cryst. Solids 182, 119–134 (1995)

    Google Scholar 

  55. Robertson, J.: High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327–396 (2006)

    Article  Google Scholar 

  56. Yip, K.L., Fowler, W.B.: Phys. Rev. B 11, 2327–2338 (1975)

    Article  Google Scholar 

  57. Courtot-Descharles, A., Paillet, P., Leray, L.J.: Theoretical study using density functional theory of defects in amorphous silicon dioxide. J. Non-Cryst. Solids 245, 154–160 (1999)

    Article  Google Scholar 

  58. Tsetseris, L., Fleetwood, D.M., Schrimpf, R.D., Zhou, X.J., Batyrev, I.G., Pantelides, S.T.: Hydrogen effects in MOS devices. Microelectron. Engineering 84, 2344–2349 (2007)

    Article  Google Scholar 

  59. Krishnan, A.T., Chakravarthi, S., Nicollian, P., Reddy, V., Krishnan, S.: Negative bias temperature instability mechanism: The role of molecular hydrogen. Appl. Phys. Lett. 88(15), 153518 (2006)

    Article  Google Scholar 

  60. Vanheusden, K., Warren, W.L., Devine, R.A.B., Fleetwood, D.M., Schwank, J.R., Shaneyfelt, M.R., Winokur, P.S., Lemnios, Z.J.: Non-volatile memory device based on mobile protons in sio2 thin films. Nature 386(6625), 587–589 (1997)

    Article  Google Scholar 

  61. Godet, J., Pasquarello, A.: Proton diffusion mechanism in amorphous SiO2. Phys. Rev. Lett. 97, 155901 (2006)

    Article  Google Scholar 

  62. Schanovsky, F., Gös, W., Grasser, T.: Multiphonon hole trapping from first principles. J. Vac. Sci. Technol. B 29,

    Google Scholar 

  63. Vitiello, M., Lopez, N., Illas, F., Pacchioni, G.: H2 cracking at SiO2 defect centers. J. Phys. Cem. A 104(20), 4674–4684 (2000)

    Google Scholar 

  64. Vanheusden, K., Warren, W., Devine, R.: H+ and D+ associated charge buildup during annealing of Si/SiO2/Si structures. J. Non-Cryst. Solids 216(0), 116–123 (1997)

    Article  Google Scholar 

  65. Afanas’ev, V.V., Stesmans, A.: J. Phys.: Condens. Matter 12(10), 2285 (2000)

    Article  Google Scholar 

  66. Jani, M.G., Bossoli, R.B., Halliburton, L.E.: Phys. Rev. B 27, 2285–2293 (1983)

    Article  Google Scholar 

  67. Capron, N., Broqvist, P., Pasquarello, A.: Migration of oxygen vacancy in HfO2 and across the HfO2/SiO2 interface: A first principles investigation. Appl. Phys. Lett. 91, 192905–1–6 (2007)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support from EPSRC and the EU FP7 project MORDRED (FP7-NMP-2010-SMALL-4). The authors are grateful to V. Afanas’ev, A. Asenov, G. Bersuker, M.B. Watkins, S. Ling, S.R. Bradley, and F. Schanovsky for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Al-Moatasem El-Sayed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

El-Sayed, AM., Shluger, A.L. (2014). Atomistic Modeling of Defects Implicated in the Bias Temperature Instability. In: Grasser, T. (eds) Bias Temperature Instability for Devices and Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7909-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7909-3_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7908-6

  • Online ISBN: 978-1-4614-7909-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics