Skip to main content

Advances in Nanotechnology as Applied to Food Systems

  • Chapter
  • First Online:
Advances in Food Process Engineering Research and Applications

Part of the book series: Food Engineering Series ((FSES))

  • 4276 Accesses

Abstract

The emergence of nanotechnology in food technology is having an impact in several application areas, such as functional food delivery systems, packaging applications, and food safety. Advances in nanostructure fabrication techniques allow food scientists and food technologists to manipulate and navigate the novel and interesting functionalities of foods at the nanoscale that can lead to safe foods with better health benefits and stability that are environmentally sustainable. This chapter summarizes selected studies from the food nanotechnology literature, including our own laboratory, focusing on nanostructured materials, nanoencapsulation and nanoemulsion forming technology for delivery systems, and the application of microfluidic devices for food safety and food analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng: R: Rep 28(1–2):1–63

    Article  Google Scholar 

  • Angellier-Coussy H, Torres-Giner S, Morel M, Gontard N, Gostaldi T (2008) Functional properties of thermoformed wheat gluten/montmorillonite materials with respect to formulation and processing conditions. J Appl Polym Sci 107(1):487–496

    Article  CAS  Google Scholar 

  • Astete CE, Kumar CSSR, Sabliov CM (2007) Size control of poly(d,l-lactide-co-glycolide) and poly(d,l-lactide-co-glycolide)-magnetite nanoparticles synthesized by emulsion evaporation technique. Colloids Surf A Physicochem Eng Asp 299(1–3):209–216

    Article  CAS  Google Scholar 

  • Astete CE, Dolliver DD, Whaley MM, Khachatryan LL, Sabliov CM (2011) Antioxidant poly(d,l-lactide-co-glycolide) acid nanoparticles made with α-tocopheral-ascorbic acid surfactant. ACS Nano 5(12):9313–9325

    Article  CAS  Google Scholar 

  • Bi L, Yang L, Narsimhan G, Bhunia AK, Yao Y (2011) Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. J Control Release 150(2):150–156

    Article  CAS  Google Scholar 

  • Bloom DE (2011) 7 billion and counting. Science 333(6042):562–569

    Article  CAS  Google Scholar 

  • Chang PR, Yanfang X, Dongliang W, Ma X (2011) Amylose wrapped halloysite nanotubes. Carbohydr Polym 84(4):1426–1429

    Article  CAS  Google Scholar 

  • Chaudhry Q, Watkins R, Castle L (2010) Nanotechnologies in the food arena: new opportunities, new applications, new concerns. In: Chaudhry Q, Castle L, Watkins R (eds) Nanotechnologies in foods, vol 4, RSC nanoscience & nanotechnology. RSC, Cambridge, UK

    Chapter  Google Scholar 

  • Chuah AM, Kuroiwa T, Ichikawa S, Kobayachi I, Nakajima M (2009) Formation of biocompatible nanoparticles via the self-assembly of chitosan and modified lecithin. J Food Sci 74(1):N1–N8

    Article  CAS  Google Scholar 

  • Frisk MA, Berthier E, Tepp WH, Johnson EA, Beebe DJ (2008) Bead-based microfluidic toxin sensor integrating evaporative signal amplification. Lab Chip 11(8):1793–1800

    Article  Google Scholar 

  • Ganea GM, Fakayode SO, Losso JN, van Nostrum CF, Sabliov CM, Warner IM (2010) Delivery of phytochemical thymoquinone using molecular micelle modified poly (D, L lactide-co-glycolide) (PLGA) nanoparticles. Nanotechnology 21(28):285104

    Article  Google Scholar 

  • Gokmen V, Mogol BA, Lumaca RB, Fogliano V, Kaplun C, Shimoni E (2011) Development of functional bread containing nanoencapsulated omega-3 fatty acids. J Food Eng 105(4):585–591

    Article  Google Scholar 

  • Graveland-Bikker JF, de Kruif CG (2006) Unique milk protein based nanotubes: Food and nanotechnology meet. Food Sci Technol 17(5):196–203

    Article  CAS  Google Scholar 

  • Graveland-Bikker JF, Schaap IA, Schmidt CF, de Kruif CG (2006) Structural and mechanical study of a self-assembling protein nanotube. Nano Lett 6(4):616–621

    Article  CAS  Google Scholar 

  • Graveland-Bikker JF, Koning RI, Koerten HK, Geels RBJ, Heeren RMA, de Kruif CG (2009) Structural characterization of α-lactalbumin nanotubes. Soft matter 5(10):2020–2026

    Article  CAS  Google Scholar 

  • Guan X, Zhang H, Bi YN, Zhang L, Hao D (2010) Rapid detection of pathogens using antibody-coated microbeads with bioluminescence in microfluidic devices. Biomed Microdevices 12(4):683–691

    Article  CAS  Google Scholar 

  • Huang Y, Yao Y (2011) Particulate structure of phytoglycogen nanoparticles probed using amyloglucosidase. Carbohydr Polym 83(4):1665–1671

    Article  CAS  Google Scholar 

  • Huang YP, Yu HL, Guo L, Huang QR (2009) Preparation, characterization, and applications of octanoyl-chitosan-polyethylene glycol monomethyl ether amphiphile. The 238th ACS National meeting, Washington, DC, 16–20 Aug 2009. AGFD220

    Google Scholar 

  • Hwang ET, Tatavarty R, Lee H, Kim J, Gu MB (2011) Shape reformable polymeric nanofibers entrapped with QDs as a scaffold for enzyme stabilization. J Mater Chem 21(14):5215–5218

    Article  CAS  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673

    Article  CAS  Google Scholar 

  • Kirby CJ (2011) Nanotechnology in the food sector. In: Brennan JG, Grandison AS (eds) Food processing handbook, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Komatsu T (2012) Protein-based nanotubes for biomedical applications. Nanoscale 4(6):1910–1918

    Article  CAS  Google Scholar 

  • Koo OK, Liu YS, Shuaib S, Bhattacharya S, Ladisch MR, Bashir R, Bhunia A (2009) Targeted capture of pathogenic bacteria using a mammalian cell receptor coupled with dielectrophoresis on a biochip. Anal Chem 81(8):3094–3101

    Article  CAS  Google Scholar 

  • Kumar P, Sandeep KP, Alavi S, Truong VD, Gorga RE (2010) Effect of type and content of modified montmorillonite on the structure and properties of Bio‐nanocomposite films based on soy protein isolate and montmorillonite. J Food Sci 75(5):N46–N56

    Article  CAS  Google Scholar 

  • Lan T (2009) Nanocomposite materials for packaging films applications. Symposium on nanomaterials for flexible packaging presentation. PLACE flexible packaging summit, Columbus. http://www.tappi.org/content/events/09PLACESY/Symp_Papers/lan.pdf

  • Le Corre D, Bras J, Dufrene A (2010) Starch nanoparticles: a review. Biomacromolecules 10(5):1139–1153

    Article  Google Scholar 

  • Li Y, Su XL (2005) Microfluidic-based optical biosensing method for rapid detection of Escherichia Coli O157:H7. J Rapid Method Autom Microbiol 14(1):96–109

    Article  Google Scholar 

  • Loveday SM, Rao MA, Creamer LK, Singh H (2009) Factors affecting rheological characteristics of fibril gels: the case of β-lactoglobulin and α-lactalbumin. J Food Sci 74(3):R47–R55

    Article  CAS  Google Scholar 

  • Luecha J, Sozer N, Kokini JL (2010) Synthesis and properties of corn zein/montmorillonite nanocomposite films. J Mater Sci 45(13):3529–3537

    Article  CAS  Google Scholar 

  • Luecha J, Hsiao A, Brodsky S, Liu GL, Kokini JL (2011) Green microfluidic devices made from corn proteins. Lab Chip 11(20):3419–3425

    Article  CAS  Google Scholar 

  • Luo Y, Teng Z, Wang Q (2012) Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. J Agric Food Chem 60(3):836–843

    Article  CAS  Google Scholar 

  • Maul P (2005) Barrier enhancement using additive. PIRA international conference, Brussel. http://www.nanocor.com/tech_papers/BARRIER%20ENHANCEMENT%20USING%20ADDITIVES%20110605.pdf

  • Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  • Rao J, McClements DJ (2011) Food-grade microemulsions, nanoemulsions and emulsions: fabrication from sucrose monopalmitate and lemon oil. Food Hydrocoll 25(6):1413–1423

    Article  CAS  Google Scholar 

  • Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54(16):5814–5822

    Article  CAS  Google Scholar 

  • Roco MC (2011) The long view of nanotechnology development: the national nanotechnology initiative at 10 years. Nanotechnology research directions for societal needs in 2020. Sci Policy Rep 1:1–28

    Google Scholar 

  • Sanvicens N, Pascual N, Fernandez-Arquelles MT, Adrian J, Costa-Fernandez JM, Sanchez-Baeza F, Sanz-Medel A, Marco MP (2011) Quantum dot-based array for sensitive detection of Escherichia Coli. Anal Bioanal Chem 399(8):2755–2762

    Article  CAS  Google Scholar 

  • Song D, Yonathan ST, Deng Y (2011) Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydr Polym 85(1):208–214

    Article  CAS  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 72(2):82–89

    Article  Google Scholar 

  • Sozer N, Sivaguru M, Kokini JL (2012) Use of quantum nanodot crystals as imaging probes for cereal proteins. J Food Eng (submitted)

    Google Scholar 

  • Tunc S, Angellier H, Cahyana Y, Chalier P, Gontard N, Gastaldi E (2007) Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting. J Membr Sci 289(1–2):159–168

    Article  CAS  Google Scholar 

  • Weng X, Chan HC, Jiang H, Li D (2009) Rapid detection of formaldehyde concentration in food on a polydimethylsiloxane (PDMS) microfluidic chip. Food Chem 114(3):1079–1082

    Article  CAS  Google Scholar 

  • Whitesides GM, Boncheva M (2002) Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA 99(8):4769–4774

    Article  CAS  Google Scholar 

  • Yu H, Huang Q (2010) Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch. Food Chem 119(2):669–674

    Article  CAS  Google Scholar 

  • Zhai C, Qiang W, Sheng J, Lei J, Ju H (2010) Pretreatment-free fast ultraviolet detection of melamine in milk products with a disposable microfluidic device. J Chromatogr A 1217(5):785–789

    Article  CAS  Google Scholar 

  • Zhao Y, Yi M, Chao Q, Jie N, Ge Y, Shen H (2009) Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. J Agric Food Chem 57(2):517–524

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef L. Kokini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Luecha, J., Sozer, N., Kokini, J.L. (2013). Advances in Nanotechnology as Applied to Food Systems. In: Yanniotis, S., Taoukis, P., Stoforos, N., Karathanos, V. (eds) Advances in Food Process Engineering Research and Applications. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7906-2_3

Download citation

Publish with us

Policies and ethics