Skip to main content

Emerging Technologies for Targeted Food Processing

  • Chapter
  • First Online:
Advances in Food Process Engineering Research and Applications

Part of the book series: Food Engineering Series ((FSES))

Abstract

High hydrostatic pressure, pulsed electric fields, ultrasound, and cold plasma are emerging technologies that have already found application in the food industry. This summary aims to describe the basic principles of these nonthermal technologies as well as the state of the art concerning their impact on biological cells, enzymes, and food constituents. Current and potential applications will be discussed focusing on process-structure-function relationships as well as recent advances in process development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acton E, Morris GJ (1992) USA Patent No. W.O. 99/20420

    Google Scholar 

  • Ade-Omowaye BIO, Taiwo KA, Eshtiaghi NM, Angersbach A, Knorr D (2003) Comparative evaluation of the effects of pulsed electric field and freezing on cell membrane permeabilisation and mass transfer during dehydration of red bell peppers. Innov Food Sci Emerg Technol 4:177–188

    CAS  Google Scholar 

  • Aertsen A, Meersman F, Hendrickx M, Vogel R, Michiels CW (2009) Biotechnology under high pressure: applications and implications. Trends Biotechnol 27:434–441

    CAS  Google Scholar 

  • Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2010) Impact of high-intensity pulsed electric field variables affecting peroxidase and lipoxygenase activities of watermelon juice. LWT- Food Sci Technol 43:897–902

    Google Scholar 

  • Alliger H (1975) Ultrasonic disruption. Am Lab 10:75–85

    Google Scholar 

  • Ananta E (2005) Impact of enviromental factors on vitality and stability and high pressure pretreatment on stress tolerance of Lactobacillus rhamnosus GG (ATCC 53103) during spray drying. Technische Universitiät Berlin, Berlin

    Google Scholar 

  • Ananta E, Knorr D (2003) Pressure-induced thermotolerance of Lactobacillus rhamnosus GG. Food Res Int 36:991–997

    Google Scholar 

  • Ananta E, Heinz V, Schlüter O, Knorr D (2001) Kinetic studies on high-pressure inactivation of Bacillus stearothermophilus spores suspended in food matrices. Innov Food Sci Emerg Technol 2:261–272

    Google Scholar 

  • Ananta E, Heinz V, Knorr D (2005) Assessment of high pressure induced damage on Lactobacillus rhamnosus GG by flow cytometry. Food Microbiol 21:567–577

    Google Scholar 

  • Angersbach A, Knorr D (1998) Impact of high-intensity electric field pulses on plant membrane permeabilzation. Trends Food Sci Technol 9:185–191

    Google Scholar 

  • Angersbach A, Heinz V, Knorr D (1999) Electrophysiological model of intact and processed plant tissues: cell disintegration criteria. Biotechnol Prog 15:753–762

    CAS  Google Scholar 

  • Angersbach A, Heinz V, Knorr D (2000) Effects of pulsed electric fields on cell membranes in real food systems. Innov Food Sci Emerg Technol 1:135–149

    CAS  Google Scholar 

  • Ardia A (2004) Process considerations on the application of high pressure treatment at elevated temperature levels for food preservation. Ph.D. thesis, Berlin University of Technology, Berlin, 94 pp

    Google Scholar 

  • Barbosa-Cánovas GV, Góngora-Nieto MM, Pothakamury UR, Swanson BG (1999) Preservation of foods with pulsed electric fields. Academic, San Diego

    Google Scholar 

  • Barsotti L, Dumay E, Mu TH, Fernandez Diaz MD, Cheftel JC (2001) Effects of high voltage electric pulses on protein-based food constituents and structures. Food Sci Technol 12:136–144

    CAS  Google Scholar 

  • Basaran P, Basaran-Akgul N, Oksuz L (2008) Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol 25:626–632

    CAS  Google Scholar 

  • Bates DM, Bagnall WA, Bridges MW (2006) Patent No. US patent application 20060110503

    Google Scholar 

  • Bendicho S, Barbosa-Cánovas GV, Martín O (2003) Reduction of protease activity in simulated milk ultrafiltrate by continuous flow high intensity pulsed electric field treatments. J Food Sci 68:952–957

    CAS  Google Scholar 

  • Benedito J, Carcel JA, Sanjuan N, Mulet A (2000) Use of ultrasound to assess Cheddar cheese characteristics. Ultrasonics 38:727–730

    CAS  Google Scholar 

  • Bluhm H, Sack M (2009) Industrial-scale treatment of biological tissues with pulsed electric fields. In: Vorobiev E, Lebovka N (eds) Electrotechnologies for extraction from food plants and biomaterials. Springer, New York, pp 237–269

    Google Scholar 

  • Bonnafous P, Vernhes M-C, Teissié J, Gabriel B (1999) The generation of reactive-oxygen species associated with long-lasting pulse-induced electropermeabilisation of mammalian cells is based on a non-destructive alteration of the plasma membrane. Biochimica et Biophysica Acta (BBA) – Biomembranes 1461:123–134

    CAS  Google Scholar 

  • Boudam MK, Moisan M, Saoudi B, Popovici C, Gherardi N, Massines F (2006) Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J Phys D: Appl Phys 39:3494–3507

    CAS  Google Scholar 

  • Buckow R (2006) Pressure and temperature effects on the enzymatic conversion of biopolymers. Technsiche Universität Berlin, Berlin

    Google Scholar 

  • Buckow R, Heinz V (2008) High pressure processing – a database of kinetic information. Chemie Ingenieur Technik 80:1081–1095

    CAS  Google Scholar 

  • Buckow R, Heinz V, Knorr D (2005) Two fractional model for evaluating the activity of glucoamylase from Aspergillus niger under combined pressure and temperature conditions. Food Bioprod Process 83:220–228

    CAS  Google Scholar 

  • Buckow R, Heinz V, Knorr D (2007) High pressure phase transition kinetics of maize starch. J Food Eng 81:469–475

    Google Scholar 

  • Bull MK, Olivier SA, van Diepenbeek RJ, Kormelink F, Chapman B (2009) Synergistic inactivation of spores of proteolytic Clostridium botulinum strains by high pressure and heat is strain and product dependent. Appl Environ Microbiol 75:434–445

    CAS  Google Scholar 

  • Bunthof CJ (2002) Flow cytometry, fluorescent probes, and flashing bacteria. Ph.D. thesis, Wageningen University, Wageningen, 160 pp

    Google Scholar 

  • Castro AJ, Swanson BG, Barbosa-Cánovas GV, Zhang QH (2001) Pulsed electric field modification of milk alkaline phosphatase activity. In: Barbosa-Cánovas GV, Zhang QH (eds) Electric fields in food processing. Technomic, Lancaster, pp 65–82

    Google Scholar 

  • Cheftel JC, Culioli J (1997) Effects of high pressure on meat: a review. Meat Sci 46:211–236

    CAS  Google Scholar 

  • Clark JP (2008) An update on ultrasonics. Food Technol 62:75–77

    Google Scholar 

  • Coster HGL (1965) A quantitive analysis of the voltage-current relationships of fixed charge membranes and the associated property of “punch-through”. Biophys J 5:669–686

    CAS  Google Scholar 

  • Craven HM, Swiergon P, Ng S, Midgely J, Versteeg C et al (2008) Evaluation of pulsed electric field and minimal heat treatments for inactivation of pseudomonads and enhancement of milk shelf-life. Innov Food Sci Emerg Technol 9:211–216, Food Innovation: Emerging Science, Technologies and Applications (FIESTA) Conference

    CAS  Google Scholar 

  • Critzer FJ, Kelly-Wintenberg K, South SL, Golden DA (2007) Atmospheric plasma inactivation of foodborne pathogens on fresh produce surfaces. J Food Prot 70:2290–2296

    Google Scholar 

  • Daeschlein G, Woedtke T, Kindel E, Brandenburg R, Weltmann K-D, Jünger M (2010) Antibacterial activity of an atmospheric pressure plasma Jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Processes Polym 7:224–230

    CAS  Google Scholar 

  • Delgado A, Rauh C, Kowalczyk W, Baars A (2008) Review of modelling and simulation of high pressure treatment of materials of biological origin. Trends Food Sci Technol 19:329–336

    CAS  Google Scholar 

  • Deng XT, Shi JJ, Chen HL, Kong MG (2007) Protein destruction by atmospheric pressure glow discharges. Appl Phys Lett 90

    Google Scholar 

  • Diels AMJ, Michiels CW (2006) High-pressure homogenization as a Non-thermal technique for the inactivation of microorganisms. Crit Rev Microbiol 32:201–216

    CAS  Google Scholar 

  • DIL (2011) Elcrack Generators and Technology. Presented at iFood2011, Osnabrueck

    Google Scholar 

  • Dörnenburg H, Knorr D (1993) Cellular permeabilization of cultured plant cell tissues by high electric field pulses or ultra high pressure for recovery of secondary metabolites. Food Biotechnol 7:35–38

    Google Scholar 

  • Dörnenburg H, Knorr D (1995) Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme Microb Technol 17:674–684

    Google Scholar 

  • Dudak FC, Kousal J, Seker UÖS, Boyaci IH, Choukourov A, Biederman H (2007) Influence of the plasma treatment on enzyme structure and activity. Presented at 28th ICPIG, Prague

    Google Scholar 

  • Dumay EM, Kalichevsky MT, Cheftel JC (1998) Characteristics of pressure-induced gel of beta-lactoglobulin at various times after pressure release. Lebensm Wiss Technol 31:10–19

    CAS  Google Scholar 

  • Dwyer C, Donnelly L, Buckin V (2005) Ultrasonic analysis of rennet-induced pre-gelation and gelation processes in milk. J Dairy Res 72:303–310

    CAS  Google Scholar 

  • Ehlbeck J, Schnabel U, Polak M, Winter J, Woetke T et al (2011) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D: Appl Phys 44:013002

    Google Scholar 

  • Eshtiaghi MN, Knorr D (2002) High electric field pulse treatment: potential for sugar beet processing. J Food Eng 52:265–272

    Google Scholar 

  • Fernandes FAN, Gallão MI, Rodrigues S (2009) Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. J Food Eng 90:186–190

    Google Scholar 

  • Fernandez-Diaz MD, Barsotti L, Dumay E, Cheftel C (2000) Effects of pulsed electric fields on ovalbumin solutions and dialyzed egg white. J Agr Food Chem 48:2332–2339

    CAS  Google Scholar 

  • Fiala A, Wouters PC, van den Bosch E, Creyghton YLM (2001) Coupled electrical-fluid model of pulsed electric field treatment in a model food system. Innov Food Sci Emerg Technol 2:229–238

    Google Scholar 

  • Fridman A, Chirokov A, Gutsol A (2005) Non-thermal atmospheric pressure discharges. J Phys D: Appl Phys 38:R1–R24

    CAS  Google Scholar 

  • Galindo F, Dejmek P, Lundgren K, Rasmusson A, Vicente A, Moritz T (2009) Metabolomic evaluation of pulsed electric field-induced stress on potato tissue. Planta 230:469–479

    CAS  Google Scholar 

  • Gallego-Juárez JA (1998) Some applications of air-borne ultrasound to food processing. In: Povey MJW, Mason TJ (eds) Ultrasound in food processing. Thomson Science, London, pp 127–143

    Google Scholar 

  • Garcia D, Gómez N, Manas P, Condon S, Raso J, Pagan R (2005) Occurence of sublethal injury after pulsed electric fields depending on the microorganism, the treatment medium pH and the intensity of the treatment investigated. J Appl Microbiol 99:94–104

    CAS  Google Scholar 

  • García-Pérez JV, Cárcel JA, de la Fuente-Blanco S, Riera-Franco de Sarabia E (2006) Ultrasonic drying of foodstuff in a fluidized bed: parametric study. Ultrasonics proceedings of ultrasonics international (UI’05) and world congress on ultrasonics (WCU) 44:e539–e543

    Google Scholar 

  • Gaunt LF, Beggs CB, Georghiou GE (2006) Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review. IEEE Trans Plasma Sci 34:1257–1269

    CAS  Google Scholar 

  • Gerlach D, Alleborn N, Baars A, Delgado A, Moritz J, Knorr D (2008) Numerical simulations of pulsed electric fields for food preservation: a review. Innov Food Sci Emerg Technol 9:408–417

    Google Scholar 

  • Gomez Galindo F, Wadsö L, Vicente A, Dejmek P (2008) Exploring metabolic responses of potato tissue induced by electric pulses. Food Biophys 3:352–360

    Google Scholar 

  • Grimi N, Mamouni F, Lebovka N, Vorobiev E, Vaxelaire J (2010) Acoustic impulse response in apple tissues treated by pulsed electric field. Biosyst Eng 105:266–272

    Google Scholar 

  • Grönroos A, Pirkonen P, Kyllönen H (2008) Ultrasonic degradation of aqueous carboxymethylcellulose: effect of viscosity, molecular mass, and concentration. Ultrason Sonochem 15:644–648

    Google Scholar 

  • Grzegorzewski F, Rohn S, Kroh LW, Geyer M, Schlüter O (2010a) Surface morphology and chemical composition of lamb’s lettuce (Valerianella locusta) after exposure to a low-pressure oxygen plasma. Food Chem 122:1145–1152

    CAS  Google Scholar 

  • Grzegorzewski F, Rohn S, Quade A, Schröder K, Ehlbeck J et al (2010) Reaction chemistry of 1,4-Benzopyrone derivates in non-equilibrium low-temperature plasmas. Plasma Processes Polym 9999:NA

    Google Scholar 

  • Gudmundsson M, Hafsteinsson H (2001) Effect of electric field pulses on microstructure of muscle foods and roes. Food Sci Technol 12:122–128

    CAS  Google Scholar 

  • Guerrero-Beltrán JÁ, Sepulveda DR, Góngora-Nieto MM, Swanson B, Barbosa-Cánovas GV (2010) Milk thermization by pulsed electric fields (PEF) and electrically induced heat. J Food Eng 100:56–60

    Google Scholar 

  • Harvey EN, Loomis AL (1929) The destruction of luminous bacteria by high frequency sound waves. J Bacteriol 17:373–376

    CAS  Google Scholar 

  • Hayashi N, Kawaguchi R, Liu H (2009) Treatment of protein using oxygen plasma produced by RF discharge. Presented at 14th international congress on plasma physics (ICPP2008), Journal of Plasma and Fusion Research SERIES

    Google Scholar 

  • Heinz V, Knorr D (1996) High pressure inactivation kinetics of Bacillus subtilis cells by a three-state-model considering distribution resistance mechanisms. Food Biotechnol 10:149–161

    Google Scholar 

  • Heinz V, Kortschack F (2002) Germany Patent No. WO 02/49460

    Google Scholar 

  • Heinz V, Knoch A, Lickert T (2009) Product innovation by high pressure processing. New Food 2:43–44

    Google Scholar 

  • Hendrickx M, Knorr D (2002) Ultra high pressure treatment of foods. Kluwer Academic/Plenum Publisher, New York

    Google Scholar 

  • Heremans R, Smeller L (1998) Protein structure and dynamics at high pressure. Biochim Biophys Acta 1386:353–370

    CAS  Google Scholar 

  • Hughes DE, Nyborg WL (1962) Cell disruption by ultrasound: streaming and other activity around sonically induced bubbles is a cause of damage to living cells. Science 138:108–114

    CAS  Google Scholar 

  • Isbarn S, Buckow R, Himmelreich A, Lehmacher A, Heinz V (2007) Inactivation of avian influenza virus by heat and high hydrostatic pressure. J Food Prot 70:667–673

    Google Scholar 

  • Jaeger H, Meneses N, Knorr D (2009a) Impact of PEF treatment inhomogeneity such as electric field distribution, flow characteristics and temperature effects on the inactivation of E. coli and milk alkaline phosphatase. Innov Food Sci Emerg Technol 10:470–480

    CAS  Google Scholar 

  • Jaeger H, Meneses N, Knorr D (2009) Pulsed electric field preservation of heat sensitive products – food safety and qualtiy aspects. Presented at international conference on bio- and food electrotechnologies, Compiegne

    Google Scholar 

  • Jaeger H, Schulz A, Karapetkov N, Knorr D (2009c) Protective effect of milk constituents and sublethal injuries limiting process effectiveness during PEF inactivation of Lb. rhamnosus. Int J Food Microbiol 134:154–161

    CAS  Google Scholar 

  • Jaeger H, Meneses N, Moritz J, Knorr D (2010) Model for the differentiation of temperature and electric field effects during thermal assisted PEF processing. J Food Eng 100:109–118

    Google Scholar 

  • Jaeger H, Schulz M, Lu P, Knorr D (2012) Adjustment of milling, mash electroporation and pressing for the development of a PEF assisted juice production in industrial scale. Innov Food Sci Emerg Technol 14:46–60

    Google Scholar 

  • Jafari SM, He Y, Bhandari B (2007) Production of sub-micron emulsions by ultrasound and microfluidization techniques. J Food Eng 82:478–488

    Google Scholar 

  • Jambrak AR, Mason TJ, Paniwnyk L, Lelas V (2007) Ultrasonic effect on pH, electric conductivity and tissue surface of button mushrooms, brussels sprouts and cauliflower. Czech J Food Sci 25:90–100

    Google Scholar 

  • Jambrak AR, Lelas V, Mason TJ, Kresic G, Badanjak M (2009) Physical properties of ultrasound treated soy proteins. J Food Eng 93:386–393

    CAS  Google Scholar 

  • Jayasooriya SD, Bhandari BR, Torley P, D’Arcy BR (2004) Effect of high power ultrasound waves on properties of meat: a review. Int J Food Prop 7:301–319

    CAS  Google Scholar 

  • Jayasooriya SD, Torley PJ, D'Arcy BR, Bhandari BR (2007) Effect of high power ultrasound and ageing on the physical properties of bovine semitendinosus and longissimus muscles. Meat Sci 75:628–639

    CAS  Google Scholar 

  • Johnston DE, Austin BA, Murphy RJ (1993) Properties of acid-set gels prepared from high-pressure treated skim milk. Milchwissenschaft 48:206–209

    CAS  Google Scholar 

  • Keener KM (2008) Atmospheric non-equilibrium plasma. Encyclopedia Agric Food Biol Eng 1:1–5

    Google Scholar 

  • Kinsloe H, Ackermann E, Reid JJ (1954) Exposure of microorganisms to measured sound fields. J Bacteriol 68:373–380

    CAS  Google Scholar 

  • Knorr D, Angersbach A, Eshtiaghi M, Heinz V, Lee D-U (2001) Processing concepts based on high intensity electric field pulses. Trends Food Sci Technol 12:129–135

    CAS  Google Scholar 

  • Knorr D, Zenker M, Heinz V, Lee D-U (2004) Applications and potential of ultrasonics in food processing. Trends Food Sci Technol 15:261–266

    CAS  Google Scholar 

  • Knorr D, Heinz V, Buckow R (2006) High pressure application for food biopolymers. Biochim Biophys Acta 1764:619–631

    CAS  Google Scholar 

  • Knorr D, Engel K-H, Vogel R, Kochte-Clemens B, Eisenbrand G (2008) Statement on the treatment of food using a pulsed electric field. Mol Nutr Food Res 52:1539–1542

    CAS  Google Scholar 

  • Laroussi M (2002) Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis and prospects. IEEE T Plasma Sci 30:1409–1415

    CAS  Google Scholar 

  • Lebovka NI, Praporscic I, Vorobiev E (2004) Effect of moderate thermal and pulsed electric field treatments on textural properties of carrots, potatoes and apples. Innov Food Sci Emerg Technol 5:9–16

    Google Scholar 

  • Lebovka NI, Shynkaryk MV, El-Belghiti K, Benjelloun H, Vorobiev E (2007a) Plasmolysis of sugarbeet: pulsed electric fields and thermal treatment. J Food Eng 80:639–644

    Google Scholar 

  • Lebovka NI, Shynkaryk NV, Vorobiev E (2007b) Pulsed electric field enhanced drying of potato tissue. J Food Eng 78:606–613

    Google Scholar 

  • Leemans V, Destain M-F (2009) Ultrasonic internal defect detection in cheese. J Food Eng 90:333–340

    Google Scholar 

  • Lelieveld HLM, Notermans S, de Haan SWH (eds) (2007) Food preservation by pulsed electric fields. Woodhead Publishing, Abington

    Google Scholar 

  • Li H, Pordesimo L, Weiss J (2004) High intensity ultrasound-assisted extraction of oil from soybeans. Food Res Int 37:731–738

    CAS  Google Scholar 

  • Lindgren M, Aronsson K, Galt S, Ohlsson T (2002) Simulation of the temperature increase in pulsed electric field (PEF) continuous flow treatment chambers. Innov Food Sci Emerg Technol 3:233–245

    Google Scholar 

  • López-Fandino R, Carrascosa AV, Olano A (1996) The effects of high pressure on whey protein denaturation and cheese making properties of raw milk. J Dairy Sci 79:929–936

    Google Scholar 

  • Ludikhuyze L, Van Loey A, Indrawati I, Denys S, Hendrickx M (2002) Effects of high pressure on enzymes related to food quality. In: Hendrickx M, Knorr D (eds) Ultra high pressure treatments of food. Kluwer/Plenum Publisher, New York, pp 115–166

    Google Scholar 

  • Luscher CM (2008) Effect of high pressure – low temperature phase transitions on model systems, foods and microorganisms. Ph.D. thesis, Berlin University of Technology, Berlin, 158 pp

    Google Scholar 

  • Lyng JG, Allen P, McKenna B (1998) The effects of Pre- and post-rigor high-intensity ultrasound treatment on aspects of lamb tenderness. LWT- Food Sci Technol 31:334–338

    CAS  Google Scholar 

  • Marco-Moles R, Perez-Munuera I, Quiles A, Hernando I (2009) Effect of pulsed electric fields on the main chemical components of liquid egg and stability at 4 °C. Czech J Food Sci 27:109–112

    Google Scholar 

  • Margosch D, Ehrmann MA, Buckow R, Heinz V, Vogel RF, Gänzle MG (2006) High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Appl Environ Microbiol 72(5):3476–3481

    CAS  Google Scholar 

  • Martín-Belloso O, Elez-Martínez P (2005) Enzymatic inactivation by pulsed electric fields. In: Sun D-W (ed) Emerging technologies for food processing. Academic Press, London, pp 155–181

    Google Scholar 

  • Mason TJ, Paniwnyk L, Lorimer JP (1996) The uses of ultrasound in food technology. Ultrasonics sonochemistry proceedings of the symposium on the chemical effects of ultrasound in the 1995 international chemical congress of pacific basin societies 3:S253–S260

    Google Scholar 

  • Mastwijk HC, Nierop Groot MN (2010) Use of cold plasma in food processing. In: Heldman DR, Bridges A, Hoover DG, Wheeler MB (eds) Encyclopedia of biotechnology in agriculture and food. Taylor & Francis, New York

    Google Scholar 

  • Masudo T, Okada T (2006) Particle separation with ultrasound radiation force. Curr Anal Chem 2:213–227

    CAS  Google Scholar 

  • Mathys A (2008) Inactivation mechanisms of Geobacillus and Bacillus spores during high pressure thermal sterilization. Ph.D. thesis, Technische Universität Berlin, Berlin

    Google Scholar 

  • Mathys A, Knorr D (2009) The properties of water in the pressure–temperature landscape. Food Biophys 4:77–82

    Google Scholar 

  • Mathys A, Reineke K, Heinz V, Knorr D (2009) High pressure thermal sterilization – development and application of temperature controlled spore inactivation studies. High Pres Res 29:3–7

    Google Scholar 

  • Matsuura K, Hirotsune M, Nunokawa Y, Satoh M, Honda K (1994) Acceleration of cell growth and ester formation by ultrasonic wave irradiation. J Ferment Bioeng 77:36–40

    CAS  Google Scholar 

  • Mawson R, Knoerzer K (2007) A brief history of the application of ultrasonics in food processing. Presented at 19th international congress on acoustics, Madrid

    Google Scholar 

  • McClements DJ (1995) Advances in the application of ultrasound in food analysis and processing. Trends Food Sci Technol 6:293–299

    CAS  Google Scholar 

  • Michel M, Autio K (2002) Effects of high pressure on protein- and polysaccharide-based structures. In: Hendrickx MEG, Knorr D (eds) Ultra high pressure treatments of foods. Kluwer, New york, pp 189–214

    Google Scholar 

  • Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia LH (2001) Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm 226:1–21

    CAS  Google Scholar 

  • Molina-Gutierrez A, Stippl V, Delgado A, Gaenzle MG, Vogel RF (2002) In situ determination of the intracellular pH of Lactococcus lactis and Lactobacillus plantarum during pressure treatment. Appl Environ Microbiol 68:4399–4406

    CAS  Google Scholar 

  • Moreau M, Orange N, Feuilloley MGJ (2008) Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv 26:610–617

    CAS  Google Scholar 

  • Morent R, Geyter ND, Leys C, Gengembre L, Payen E (2008) Comparison between XPS- and FTIR-analysis of plasma-treated polypropylene film surfaces. Surf Interface Anal 40:597–600

    CAS  Google Scholar 

  • Morren J, Roodenburg B, de Haan SWH (2003) Electrochemical reactions and electrode corrosion in pulsed electric field (PEF) treatment chambers. Innov Food Sci Emerg Technol 4:285–295

    CAS  Google Scholar 

  • Mousavi SAAA, Feizi H, Madoliat R (2007) Investigations on the effects of ultrasonic vibrations in the extrusion process. J Mater Process Technol 187–188:657–661

    Google Scholar 

  • Niemira BA, Sites J (2008) Cold plasma inactivates Salmonella stanley and Escherichia coli O157: H7 inoculated on golden delicious apples. J Food Prot 71:1357–1365

    Google Scholar 

  • Niven GW, Miles CA, Mackey BM (1999) The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: an in vivo study using differential scanning calorimetry. Microbiology 145:419–425

    CAS  Google Scholar 

  • Oey I, Verlinde P, Hendrickx M, Van Loey A (2006) Temperature and pressure stability of l -ascorbic acid and/or [6s] 5-methyltetrahydrofolic acid: a kinetic study. Eur Food Res Technol 223:71–77

    CAS  Google Scholar 

  • Ohshima T, Tamura T, Sato M (2006) Influence of electric field on various enzyme activities. J Electrostat 65:156–161

    Google Scholar 

  • Olivier SA, Bull MK, Stone G, van Diepenbeek RJ, Kormelink F et al (2011) Strong and consistently synergistic inactivation of spores of spoilage-associated Bacillus and Geobacillus spp. By high pressure and heat compared with inactivation by heat alone. Appl Environ Microbiol 77:2317–2324

    CAS  Google Scholar 

  • Pangu GD, Feke DL (2004) Acoustically aided separation of oil droplets from aqueous emulsions. Chem Eng Sci 59:3183–3193

    CAS  Google Scholar 

  • Patist A, Bates D (2008) Ultrasonic innovations in the food industry: from the laboratory to commercial production. Innovative Food Science & Emerging Technologies 9:147–154, Food Innovation: Emerging Science, Technologies and Applications (FIESTA) Conference

    CAS  Google Scholar 

  • Perez O, Pilosof AMR (2004) Pulsed electric field effects on the molecular structure and gelation of ß-lactoglobulin concentrate and egg white. Food Res Int 37:102–110

    CAS  Google Scholar 

  • Perni S, Liu DW, Shama G, Kong MG (2008a) Cold atmospheric plasma decontamination of the pericarps of fruit. J Food Prot 71:302–308

    CAS  Google Scholar 

  • Perni S, Shama G, Kong MG (2008b) Cold atmospheric plasma disinfection of cut fruit surfaces contaminated with migrating microorganisms. J Food Prot 71:1619–1625

    Google Scholar 

  • Perry RH (1984) Perry’s chemical engineers’handbook. McGraw- Hill Book Co, New York

    Google Scholar 

  • Phoon PY, Galindo FG, Vicente A, Dejmek P (2008) Pulsed electric field in combination with vacuum impregnation with trehalose improves the freezing tolerance of spinach leaves. J Food Eng 88:144–148

    CAS  Google Scholar 

  • Povey MJW, Mason TJ (1998) Ultrasound in food processing. Blackie Academic and Professional, London/Weinheim/New York/Tokyo/Melbourne/Madras

    Google Scholar 

  • Praporscic I, Lebovka N, Vorobiev E, Mietton-Peuchot M (2007) Pulsed electric field enhanced expression and juice quality of white grapes. Sep Purif Technol 52:520–526

    CAS  Google Scholar 

  • Puértolas E, López N, Condón S, Álvarez I, Raso J (2010) Potential applications of PEF to improve red wine quality. Trends Food Sci Technol 21:247–255

    Google Scholar 

  • Rademacher B, Hinrichs J (2006) Effects of high pressure treatment on indigenous enzymes in bovine milk: reaction kinetics, inactivation and potential application. Int Dairy J 16:655–661

    CAS  Google Scholar 

  • Ragni L, Berardinelli A, Vannini L, Montanari C, Sirri F et al (2010) Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. J Food Eng 100:125–132

    CAS  Google Scholar 

  • Rajan S, Ahn J, Balasubramaniam VM, Yousef AE (2006) Combined pressure-thermal inactivation kinetics of Bacillus amyloliquefaciens spores in egg patty mince. J Food Prot 69:853–860

    CAS  Google Scholar 

  • Raso J, Heinz V (eds) (2006) Pulsed electric fields technology for the food industry. Springer, Heidelberg

    Google Scholar 

  • Raso J, Heinz V (2007) Pulsed electric fields technology for the food industry. Springer, New York

    Google Scholar 

  • Rastogi NK, Raghavarao KSM, Balasubramaniam VM, Niranjan K, Knorr D (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci Nutr 47:1–44

    Google Scholar 

  • Reineke K, Mathys A, Heinz V, Knorr D (2008) Temperature control for high pressure processes up to 1400 MPa. J Phys Conf 121:142012–142016

    Google Scholar 

  • Reineke K, Doehner I, Schlumbach K, Baier D, Mathys A, Knorr D (2011a) The different pathways of spore germination and inactivation in dependence of pressure and temperature. Innov Food Sci Emerg Technol (in press)

    Google Scholar 

  • Reineke K, Mathys A, Knorr D (2011b) The impact of high pressure and temperature on bacterial spores: inactivation mechanisms of Bacillus subtilis above 500 MPa. J Food Sci 76:M189–M197

    CAS  Google Scholar 

  • Reineke K, Doehner I, Schlumbach K, Baier D, Mathys A, Knorr D (2012) The different pathways of spore germination and inactivation in dependence of pressure and temperature. Innov Food Sci Emerg Technol 13:31–41

    CAS  Google Scholar 

  • Riahi E, Ramaswamy HS (2004) High pressure inactivation kinetics of amylase in apple juice. J Food Eng 64:151–160

    Google Scholar 

  • Riener J, Noci F, Cronin DA, Morgan DJ, Lyng JG (2008) Combined effect of temperature and pulsed electric fields on apple juice peroxidase and polyphenoloxidase inactivation. Food Chem 109:402–407

    CAS  Google Scholar 

  • Roberts RT (1992) High intensity ultrasonics. In: Johnston DE, Knight MK, Ledward DA (eds) The chemistry of muscle-based foods. Royal Society of Chemistry, Cambridge, pp 287–297

    Google Scholar 

  • Roberts RT (1993) High intensity ultrasonics in food processing. Chem Ind 4:119–121

    Google Scholar 

  • Rodrigoa D, Cortésb C, Clynenc C, Schoofsc L, Van Loeya A, Hendrickx M (2006) Thermal and high-pressure stability of purified polygalacturonase and pectinmethylesterase from four different tomato processing varieties. Food Res Int 39:440–448

    Google Scholar 

  • Roodenburg B, Morren J, Berg HE, de Haan SWH (2005) Metal release in a stainless steel pulsed electric field (PEF) system. Part I. Effect of diferent pulse shapes; theory and experimental method. Innov Food Sci Emerg Technol (in press)

    Google Scholar 

  • Rovere P (2002) Industrial-scale high pressure processing of foods. In: Hendrickx MEG, Knorr D (eds) Ultra high pressure treatments of foods. Kluwer Academic/Plenum Publishers, New York, pp 251–268

    Google Scholar 

  • Rumpold BA, Knorr D (2005) Effect of salts and sugars on pressure-induced gelatinisation of wheat, tapioca, and potato starches. Starch – Stärke 57:370–377

    CAS  Google Scholar 

  • Russel NJ, Colley M, Simpson RK, Trivett AJ, Evans RI (2000) Mechanism of action of pulsed high electric field (PHEF) on the membranes of food-poisoning bacteria is an ‘all-or-nothing’ effect. Int J Food Microbiol 55:133–136

    Google Scholar 

  • Rutscher A (2008) Characteristics of low-temperature plasmas under nonthermal conditions – a short summary. In: Hippler R, Kersten H, Schmidt M, Schoenbach KH (eds) Low temperature plasmas – fundamentals, technologies, and techniques. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 1–14

    Google Scholar 

  • Saulis G, Lape R, Praneviciute R, Mickevicius D (2005) Changes of the solution pH due to exposure by high-voltage electric pulses. Bioelectrochemistry 67:101–108

    CAS  Google Scholar 

  • Schlueter O (2004) Impact of high pressure – low temperature processes on cellular materials related to foods. Technische Universität Berlin, Berlin, p 172

    Google Scholar 

  • Schössler K, Jäger H, Knorr D (2012) Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. J Food Eng 108:103–110

    Google Scholar 

  • Schuten H, Gulfo-van Beusekom K, Pol I, Mastwijk H, Bartels P (2004) Enzymatic stability of PEF processed orange juice. Presented at safe consortium seminar: novel preservation technologies in relation to food safety. Brussels

    Google Scholar 

  • Sharma A, Yadav BS (2008) Resistant starch: physiological roles and food applications. Food Rev Int 24:193–234

    CAS  Google Scholar 

  • Sharma A, Yadav BS, Ritika BS (2008) Resistant starch: physiological roles and food applications. Food Rev Int 24:193–234

    CAS  Google Scholar 

  • Simal S, Benedito J, Sánchez ES, Rosselló C (1998) Use of ultrasound to increase mass transport rates during osmotic dehydration. J Food Eng 36:323–336

    Google Scholar 

  • Simpson RK, Whittington R, Earnshaw RG, Russell NJ (1999) Pulsed high electric field causes ‘all or nothing’ membrane damage in listeria monocytogenes and Salmonella typhimurium, but membrane H+-ATPase is not a primary target. Int J Food Microbiol 48:1–10

    CAS  Google Scholar 

  • Sinisterra JV (1992) Application of ultrasound to biotechnology: an overview. Ultrasonics 30:180–185

    CAS  Google Scholar 

  • Smeller L (2002) Pressure-temperature phase diagram of biomolecules. BBA – Biochimica et Biophysica Acta 1595:11–29

    CAS  Google Scholar 

  • Smeller L, Fidy J (2002) The enzyme horseradish peroxidase is less compressible at higher pressures. Biophys J 82:426–436

    CAS  Google Scholar 

  • Smelt JP, Hellemons JC, Patterson M (2001) Effects of high pressure on vegetative microorganisms. In: Hendrickx M, Knorr D (eds) Ultra high pressure treatments of foods. Kluwer, New York, pp 55–76

    Google Scholar 

  • Stojanovic J, Silva JL (2006) Influence of osmoconcentration, continuous high-frequency ultrasound and dehydration on properties and microstructure of rabbiteye blueberries. Dry Technol Int J 24:165–171

    Google Scholar 

  • Stute R, Klingler RW, Boguslawski S, Knorr D, Eshtiaghi MN (1996) Effects of high pressures treatment on starches. Starch – Starke 48:399–408

    CAS  Google Scholar 

  • Sui Q, Roginski H, Williams RPW, Versteeg C, Wan J (2010) Effect of pulsed electric field and thermal treatment on the physicochemical properties of lactoferrin with different iron saturation levels. Int Dairy J (in press), Corrected Proof

    Google Scholar 

  • Taiwo KA, Angersbach A, Knorr D (2002) Influence of high intensity electric field pulses and osmotic dehydration on the rehydration characteristics of apple slices at different temperatures. J Food Eng 52:185–192

    Google Scholar 

  • Tauscher B (1995) Pasteurization of food by hydrostatic high pressure: chemical aspects. Lebensmittel-Untersuchung und Forschung 200

    Google Scholar 

  • Ting E, Balasubramaniam VM, Raghubeer E (2002) Determining thermal effects in high pressure processing. J Food Technol 56:31–35

    Google Scholar 

  • Ting C-H, Kuo F-J, Lien C-C, Sheng C-T (2009) Use of ultrasound for characterising the gelation process in heat induced CaSO4 · 2H2O tofu curd. J Food Eng 93:101–107

    CAS  Google Scholar 

  • Tiwari BK, O’Donnell CP, Cullen PJ (2009) Effect of sonication on retention of anthocyanins in blackberry juice. J Food Eng 93:166–171

    CAS  Google Scholar 

  • Toepfl S (2006) Pulsed electric fields (PEF) for permeabilization of cell membranes in food- and bioprocessing – applications, process and equipment design and cost analysis. Ph.D. thesis, University of Technology, Berlin. 180 pp

    Google Scholar 

  • Toepfl S, Heinz V (2007) Application of pulsed electric fields to improve mass transfer in dry cured meat products. Fleischwirtschaft International 22:62–64

    Google Scholar 

  • Toepfl S, Mathys A, Heinz V, Knorr D (2006) Review: potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Rev Int 22:405–423

    CAS  Google Scholar 

  • Toepfl S, Heinz V, Knorr D (2007) High intensity pulsed electric fields applied for food preservation. Chem Eng Process 46:537–546

    CAS  Google Scholar 

  • Tryfona T, Bustard MT (2008) Impact of pulsed electric fields on corynebacterium glutamicum cell membrane permeabilization. J Biosci Bioeng 105:375–382

    CAS  Google Scholar 

  • Tsong TY (1990) Electrical modulation of membrane-proteins - enforced conformational oscillations and biological energy and signal transductions. Annu Rev Biophys Biophys Chem 19:83–106

    CAS  Google Scholar 

  • Tsong TY (1996) Electrically stimulated membrane breakdown. In: Lynch PT, Davey MR (eds) Electrical manipulation of cells. Chapman & Hall, New York, pp 15–36

    Google Scholar 

  • Ulmer HM, Herberhold H, Fahsel S, Gänzle MG, Winter R, Vogel RF (2002) Effects of pressure-induced membrane phase transitions on inactivation of HorA, an ATP-dependent multidrug resistance transporter, in Lactobacillus plantarum. Appl Environ Microbiol 68:1088–1095

    CAS  Google Scholar 

  • van den Bosch HFM, Morshuis PHF, Smit JJ (2002) Temperature distribution in fluids treated by Pulsed Electric Fields. Presented at international conference on dielectric liquids, Graz

    Google Scholar 

  • Van den Broeck I, Ludikhuyze L, Weemaes C, Van Loey A, Hendrickx M (1998) Kinetics for isobaric-isothermal degradation of l-ascorbic acid. J Agric Food Chem 46:2001–2006

    Google Scholar 

  • Van Loey A, Verachtert B, Hendrickx M (2001) Effects of high electric field pulses on enzymes. Trends Food Sci Technol 12:94–102

    Google Scholar 

  • Van Loey A, Verachtert B, Hendrickx M (2002) Effects of high electric field pulses on enzymes. Trends Food Sci Technol 12:94–102

    Google Scholar 

  • Vercammen A, Vivijs B, Luriquin I, Michiels C (2011) Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce. Int J Food Microbiol (in press)

    Google Scholar 

  • Vercet A, Burgos J, Crelier S, Lopez-Buesa P (2001) Inactivation of proteases and lipases by ultrasound. Innov Food Sci Emerg Technol 2:139–150

    CAS  Google Scholar 

  • Vercet A, Sánchez C, Burgos J, Montañés L, Lopez Buesa P (2002) The effects of manothermosonication on tomato pectic enzymes and tomato paste rheological properties. J Food Eng 53:273–278

    Google Scholar 

  • Villamiel M, de Jong P (2000) Influence of high-intensity ultrasound and heat treatment in continuous flow on Fat, proteins, and native enzymes of milk. J Agric Food Chem 48:472–478

    CAS  Google Scholar 

  • Vorobiev E, Lebovka N (eds) (2008) Electrotechnologies for extraction from plant foods and biomaterials. Springer, New York

    Google Scholar 

  • Wan J, Coventry J, Swiergon P, Sanguansri P, Versteeg C (2009) Advances in innovative processing technologies for microbial inactivation and enhancement of food safety – pulsed electric field and low-temperature plasma. Trends Food Sci Technol 20:414–424

    CAS  Google Scholar 

  • Weltmann K-D, Kindel E, Brandenburg R, Meyer C, Bussiahn R et al (2009) Atmospheric pressure plasma Jet for medical therapy: plasma parameters and risk estimation. Contrib Plasma Phys 49:631–640

    Google Scholar 

  • Winter R (1996) High pressure effects on the structure and mesophase behaviour of supramolecular lipid aggregates and model membrane systems. Prog Biotechnol 13:21–28

    CAS  Google Scholar 

  • Winter R, Jeworrek C (2009) Effect of pressure on membranes. Soft Matter 5:3157–3173

    CAS  Google Scholar 

  • Wu H, Hulbert GJ, Mount JR (2000) Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innov Food Sci Emerg Technol 1:211–218

    CAS  Google Scholar 

  • Wuytack EY, Boven S, Michiels CW (1998) Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressures. Appl Environ Microbiol 64:3220–3224

    CAS  Google Scholar 

  • Wuytack E, Phuong LDT, Aersten A, Reyns KMF, Marquenie D et al (2003) Comparison of sublethal injury induced in Salmonella enterica serovar Typhimurium by heat and by different nonthermal treatments. J Food Prot 66:31–37

    Google Scholar 

  • Xiong Z, Du T, Lu X, Cao Y, Pan Y (2011) How deep can plasma penetrate into a biofilm? Appl Phys Lett 98:221503-1-03-3

    Google Scholar 

  • Yang RJ, Li SQ, Zhang QH (2004) Effects of pulsed electric fields on the activity of enzymes in aqueous solution. J Food Sci 69:241–248

    Google Scholar 

  • Yaqub S, Anderson JG, MacGregor SJ, Rowan NJ (2004) Use of a fluorescent viability stain to assess lethal and sublethal injury in food-borne bacteria exposed to high-intensity pulsed electric fields. Lett Appl Microbiol 39:246–251

    CAS  Google Scholar 

  • Zeece M, Huppertz T, Kelly A (2008) Effect of high pressure treatment on in-vitro digestibility of beta-lactoglobulin. Innov Food Sci Emerg Technol 9:62–69

    CAS  Google Scholar 

  • Zenker M, Heinz V, Knorr D (2003) Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. J Food Prot 66:1642–1649

    CAS  Google Scholar 

  • Zhang G, Sofyan M, Hamaker BR (2008) Slowly digestible state of starch: mechanism of slow digestion property of gelatinized maize starch. J Agric Food Chem 56:4695–4702

    CAS  Google Scholar 

  • Zheng L, Sun D-W (2006) Innovative applications of power ultrasound during food freezing processes–a review. Trends Food Sci Technol 17:16–23

    CAS  Google Scholar 

  • Zimmermann U, Pilwat G, Riemann F (1974) Dielectric breakdown in cell membranes. Biophys J 14:881–899

    CAS  Google Scholar 

  • Zimmermann U, Pilwat G, Beckers F, Riemann F (1976) Effects of external electrical fields on cell membranes. Bioelectrochem Bioenerg 3:58–83

    CAS  Google Scholar 

  • Zipp A, Kauzmann W (1973) Pressure denaturation of metmyoglobin. Biochemistry 12:4217–4228

    CAS  Google Scholar 

  • Zou J-J, Liu C-J, Eliasson B (2004) Modification of starch by glow discharge plasma. Carbohydr Polym 55:23–26

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Economics and Technology (via AiF) and the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn), Project AiF 15610 N; by Bundesanstalt für Landwirtschaft und Ernährung (BLE), Project FriPlas, and Verbundprojekt Hochdrucktechnologie; by the German Federal Ministry of Education and Research, Project BioMed; by the Commission of the European Communities, Framework 6, Priority 5 “Food Quality and Safety,” Integrated Project NovelQ FP6-CT-2006-015710, and Framework 7 Project Ultraveg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Knorr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Knorr, D., Froehling, A., Jaeger, H., Reineke, K., Schlueter, O., Schoessler, K. (2013). Emerging Technologies for Targeted Food Processing. In: Yanniotis, S., Taoukis, P., Stoforos, N., Karathanos, V. (eds) Advances in Food Process Engineering Research and Applications. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7906-2_17

Download citation

Publish with us

Policies and ethics