Skip to main content

Encapsulation Systems in the Food Industry

  • Chapter
  • First Online:
Book cover Advances in Food Process Engineering Research and Applications

Part of the book series: Food Engineering Series ((FSES))

Abstract

Encapsulation is a useful tool to improve the delivery of bioactive and living cells into foods. Encapsulation aims to preserve the stability of the active compounds during processing and storage and to prevent undesirable interactions with the food matrix. In addition, encapsulation may be used to immobilise cells or enzymes in food processing applications, such as fermentation processes and metabolite production processes.

This chapter aims to provide an overview of commonly used processes to encapsulate food actives and numerous reasons for employing encapsulation technologies. The most widely used materials for the design of protective shells of encapsulates are presented (polysaccharides, their derivatives, plant exudates, marine extracts, proteins and lipids) with a special focus on requirements such as food-grade purity, biodegradability and the ability to form a barrier between the internal phase and its surroundings. A number of techniques are available for encapsulation in the food industry. Spray drying is the most extensively applied encapsulation technique on an industrial scale; the other encapsulates are prepared by, for example, spray-chilling, freeze-drying, melt extrusion, and melt injection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Augustin MA, Hemar Y (2009) Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev 38:902–912

    Article  CAS  Google Scholar 

  • Beatus Y, Raziel A, Rosenberg M, Kopelman IJ (1985) Spray-drying microencapsulation of paprika oleoresin. Lebensm Wiss Technol 18:28–34

    CAS  Google Scholar 

  • Beindorff CM, Zuidam NJ (2010) Microencapsulation of fish oil. In: Zuidam NJ, Nedovic VA (eds) Encapsulation technologies for food active ingredients and food processing. Springer, Dordrecht, pp 161–187

    Chapter  Google Scholar 

  • Bell LN (2001) Stability testing of nutraceuticals and functional foods. In: Wildman REC (ed) Handbook of nutraceuticals and functional foods. CRC Press, New York, pp 501–516

    Google Scholar 

  • Belscak-Cvitanovic A, Stojanovic R, Manojlovic V et al (2011) Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate-chitosan system enhanced with ascorbic acid by electrostatic extrusion. Food Res Int 44(4):1094–1101

    Article  CAS  Google Scholar 

  • Bilensoy E, Hincal AA (2009) Recent advances and future directions in amphiphilic cyclodextrin nanoparticles. Expert Opin Drug Deliv 6:1161–1173

    Article  CAS  Google Scholar 

  • Brownlie K (2007) Marketing perspective in encapsulation technologies in food applications. In: Lakkis JM (ed) Encapsulation and controlled release technologies in food systems. Blackwell, Iowa, pp 213–235

    Chapter  Google Scholar 

  • Burgain J, Gaiani C, Linder M, Scher J (2011) Encapsulation of probiotic living cells: from laboratory to industrial application. J Food Eng 104(4):467–483

    Article  CAS  Google Scholar 

  • Cai YZ, Corke H (2000) Production and properties of spray-dried Amaranthus betacyanin pigments. J Food Sci 65(6):1248–1252

    Article  CAS  Google Scholar 

  • Champagne CP, Fustier P (2007) Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol 18:184–190

    Article  CAS  Google Scholar 

  • Champagne CP, Girard F, Rodrigue N (1993) Production of concentrated suspensions of thermophilic lactic acid bacteria in calcium alginate beads. Int Dairy J 3(3):257–275

    Article  CAS  Google Scholar 

  • Conde-Petit B, Escher F, Nuessli J (2006) Structural features of starch-flavor complexation in food model systems. Trends Food Sci Technol 17(5):227–235

    Article  CAS  Google Scholar 

  • de Roos KB (2003) Effect of texture and microstructure on flavour retention and release. Int Dairy J 13:593–605

    Article  Google Scholar 

  • Deladino L, Anbinder PS, Navarro AS, Martino MN (2008) Encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohyd Polym 71:126–34

    Article  CAS  Google Scholar 

  • Desai KGH, Park HJ (2005) Recent developments in microencapsulation of food ingredients. Drying Technol 23:1361–1394

    Article  CAS  Google Scholar 

  • Desobry SS, Netto FM, Labuza TP (1997) Comparison of spray-drying, drum-drying, and freeze-drying for β-carotene encapsulation and preservation. J Food Sci 62(6):1158–1162

    Article  CAS  Google Scholar 

  • Dewettinck K, Huyghebaert A (1999) Fluidized bed coating in food technology. Trends Food Sci Technol 10:163–168

    Article  CAS  Google Scholar 

  • Diviès C, Cachon R, Cavin J-F, Prévost H (1994) Theme 4: immobilized cell technology in wine production. Crit Rev Biotechnol 14:135–153

    Article  Google Scholar 

  • Donhow IG, Fennema O (1993) Water vapour and oxygen permeability of wax films. J Am Oil Chem Soc 70:867–873

    Article  Google Scholar 

  • Fang Z, Bhandari B (2010) Encapsulation of polyphenols – a review. Trends Food Sci Technol 21(10):510–523

    Article  CAS  Google Scholar 

  • FAO/WHO (2006) Probiotics in food. Health and nutritionl properties and guidelines for evalution. FAO food and nutritional paper no 85. ISBN:92-5-105513-0

    Google Scholar 

  • Garg ML, Wood LG, Singh H, Moughan PJ (2006) Means of delivering recommended levels of long chain n-3 polyunsaturated fatty acids in human diets. J Food Sci 71(5):R66–R71

    Article  CAS  Google Scholar 

  • Gibbs BF, Kermasha S, Alli I, Mulligan CN (1999) Encapsulation in the food industry: a review. Int J Food Sci Nutr 50:213–224

    Article  CAS  Google Scholar 

  • Gouin S (2004) Microencapulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15:330–347

    Article  CAS  Google Scholar 

  • Harada A, Takashima Y, Yamaguchi H (2009) Cyclodextrin-based supramolecular polymers. Chem Soc Rev 38:875–882

    Article  CAS  Google Scholar 

  • Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM, Argüelles-Monal W (2002) Microencapsulation of astaxanthin in a chitosan matrix. Carbohydr Polym 56(1):41–45

    Article  Google Scholar 

  • Kailasapathy K (2009) Encapsulation technologies for functional foods and nutraceutical product development. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 4(6):1–19

    Google Scholar 

  • Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349

    Article  CAS  Google Scholar 

  • Kosaraju SL, Dath L, Lawrence A (2006) Preparation and characterisation of chitosan microspheres for antioxidant delivery. Carbohyd Polym 64:163–167

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21(4):377–397

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Manojlovic V, Nedovic VA (2010) Immobilization of microbial cells for alcoholic and malolactic fermentation of wine and cider. In: Zuidam NJ, Nedovic VA (eds) Encapsulation technologies for food active ingredients and food processing. Springer, Dordrecht, pp 327–344

    Chapter  Google Scholar 

  • Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 13(1):3–13

    Article  CAS  Google Scholar 

  • Lee JS, Cha DS, Park HJ (2004) Survival of freeze-dried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles. J Agric Food Chem 52:7300–7305

    Article  CAS  Google Scholar 

  • Lian WC, Hsiao HC, Chou CC (2002) Survival of bifidobacteria after spray drying. Int J Food Microbiol 74:79–86

    Article  Google Scholar 

  • Macedo MG, Champagne CP, Vuillemard JC, Lacroix C (1999) Establishment of bacteriophages in an immobilized cells system used for continuous inoculation of lactococci. Int Dairy J 9(7):437–445

    Article  Google Scholar 

  • Madene A, Jacquot M, Scher J, Desobry S (2006) Aroma encapsulation and controlled release – a review. Int J Food Sci Technol 41:1–21

    Article  CAS  Google Scholar 

  • Maillard M, Landuyt A (2008) Chocolate: an ideal carrier for probiotics. Agro Food Ind Hi-Tec 19(3):13–15

    CAS  Google Scholar 

  • Manojlovic V, Bugarski B, Nedovic V (2010) Immobilised cells. In: Flickinger MF (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, Hoboken, pp 1–18

    Google Scholar 

  • Manojlovic V, Nedovic V, Kailasapathy K, Zuidam NJ (2010) Encapsulation of probiotics for use in food products. In: Zuidam NJ, Nedovic VA (eds) Encapsulation technologies for food active ingredients and food processing. Springer, Dordrecht, p 269

    Chapter  Google Scholar 

  • McClements D, Lesmes U (2009) Structure-function relationships to guide rational design and fabrication of particulate food delivery systems. Trends Food Sci Technol 20(10):448–457

    Article  Google Scholar 

  • McMaster LD, Kokott SA (2005) Micro-encapsulation of Bifidobacterium lactis for incorporation into soft foods. World J Microbiol Biotechnol 21:723–728

    Article  Google Scholar 

  • Medina LM, Jordano J (1994) Survival of constitutive microflora in commercially fermented milk containing bifidobacteria during refrigerated storage. J Food Prot 56:731–733

    Google Scholar 

  • Mellema M, Van Benthum AJ, Boer B, Von Harras J, Visser A (2006) Wax encapsulation of water-soluble compounds for application in foods. J Microencapsul 23(7):729–740

    Article  CAS  Google Scholar 

  • Milanovic J, Manojlovic V, Levic S, Rajic N, Nedovic V, Bugarski B (2010) Microencapsulation of flavors in carnauba wax. Sensors 10(1):901–912

    Article  CAS  Google Scholar 

  • Nedovic VA, Obradovic B, Leskosek-Cukalovic I, Trifunovic O, Pesic R, Bugarski B (2001a) Electrostatic generation of alginate microbeads loaded with brewing yeast. Process Biochem 37:17–22

    Article  CAS  Google Scholar 

  • Nedovic VA, Obradovic B, Leskosek-Cukalovic I, Vunjak-Novakovic G (2001b) Immobilized yeast bioreactor systems for brewing – recent achievements. In: Hofman M, Thonart P (eds) Focus in biotechnolgy series engineering and manufacturing for biotechnology. Kluwer Academic, Dordrecht, pp 277–292

    Google Scholar 

  • Nedovic V, Manojlovic V, Leskosek-Cukalovic I, Bugarski B, Willaert R (2010) State of the art in immobilized/encapsulated cell technology in fermentation processes. In: Aguilera JM, Simpson R, Welti Chanes J, Bermudez-Aguirre D, Barbosa-Canovas G (eds) Food engineering interfaces, Food engineering series. Springer, New York, pp 119–47

    Chapter  Google Scholar 

  • Park JH, Ye M, Park K (2005) Biodegradable polymers for microencapsulation of drugs. Molecules 10:146–161

    Article  CAS  Google Scholar 

  • Parris N, Cooke PH, Hicks KB (2005) Encapsulation of essential oils in zein nanospherical particles. J Agric Food Chem 53:4788–4792

    Article  CAS  Google Scholar 

  • Petrovic T, Nedovic V, Dimitrijevic-Brankovic S, Bugarski B, Lacroix C (2007) Protection of probiotic microorganisms by microencapsulation. CI&CEQ 13(3):169–174

    Article  CAS  Google Scholar 

  • Popplewell LM, Porzio MA (2001) Fat-coated encapsulation compositions and method for preparing the same. US Patent no 6,245,366

    Google Scholar 

  • Porzio M (2004) Flavor encapsulation: a convergence of science and art. Food Technol 58(7):40–47

    CAS  Google Scholar 

  • Porzio MA (2007) Flavor delivery and product development. Food Technol 61(1):22–29

    Google Scholar 

  • Prüsse U, Bilancetti L, Bucko M et al (2008) Comparison of different technologies for alginate beads production. Chem Pap 62(4):364–374

    Article  Google Scholar 

  • Ribeiro HS, Schuchmann HP, Engel R, Walz E, Briviba K (2010) Encapsulation of carotenoids. In: Zuidam NJ, Nedovic VA (eds) Encapsulation technologies for food active ingredients and food processing. Springer, Dordrecht, pp 211–253

    Chapter  Google Scholar 

  • Schimidt PC (1997) Technological aspects of the development and production of plant extracts. Pharm Ind 59:69

    Google Scholar 

  • Shah NP (2000) Probiotic bacteria: selective enumeration and survival in dairy foods. J Dairy Sci 83:894–907

    Article  CAS  Google Scholar 

  • Shah N, Lankaputhra WEV, Britz ML, Kyle WSA (1995) Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in commercial yoghurt during refrigerated storage. Int Dairy J 5(5):515–521

    Article  Google Scholar 

  • Shahidi F, Han XQ (1993) Encapsulation of food ingredients. Crit Rev Food Sci Nutr 33(6):501–547

    Article  CAS  Google Scholar 

  • Shahidi F, Pegg RB (1995) Stabilized cooked cured-meat pigment. US Patent no 5,425,956

    Google Scholar 

  • Teixeira P, Castro H, Mohácsi-Farkas C, Kirby R (1997) Identification of sites of injury in Lactobacillus bulgaricus during heat stress. J Appl Microbiol 83:219–226

    Article  CAS  Google Scholar 

  • Truelstrup-Hansen L, Allan-Wojotas PM, Jin YL, Paulson AT (2002) Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol 19(1):35–45

    Article  Google Scholar 

  • Verbelen PJ, Nedovic VA, Manojlovic V et al (2010) Bioprocess intensification of beer fermentation using immobilised cells. In: Zuidam NJ, Nedovic VA (eds) Encapsulation technologies for food active ingredients and food processing. Springer, Dordrecht, pp 303–326

    Chapter  Google Scholar 

  • Vos P, Faas MM, Spasojevic M, Sikkema J (2010) Review: encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20(4):292–302

    Article  Google Scholar 

  • Wandrey C, Bartkowiak A, Harding SE (2010) Materials for encapsulation. In: Zuidam NJ, Nedovic VA (eds) Encapsulation technologies for food active ingredients and food processing. Springer, Dordrecht, pp 31–100

    Chapter  Google Scholar 

  • Willaert R, Nedovic VA (2006) Primary beer fermentation by immobilised yeast – a review on flavour formation and control strategies. J Chem Technol Biotechnol 81:1353–1367

    Article  CAS  Google Scholar 

  • Wilson N, Shah NP (2007) Microencapsulation of vitamins. ASEAN Food J 14(1):1–14

    Google Scholar 

  • Zuidam NJ, Heinrich J (2010) Encapsulation of aroma. In: Zuidam NJ, Nedovic VA (eds) Encapsulation technologies for food active ingredients and food processing. Springer, Dordrecht, pp 127–160

    Chapter  Google Scholar 

  • Zuidam NJ, Shimoni E (2010) Overview of microencapsulates for use in food products or processes and methods to make them. In: Zuidam NJ, Nedovic VA (eds) Encapsulation technologies for food active ingredients and food processing. Springer, Dordrecht, pp 3–31

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Nedović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nedović, V., Kalušević, A., Manojlović, V., Petrović, T., Bugarski, B. (2013). Encapsulation Systems in the Food Industry. In: Yanniotis, S., Taoukis, P., Stoforos, N., Karathanos, V. (eds) Advances in Food Process Engineering Research and Applications. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7906-2_13

Download citation

Publish with us

Policies and ethics