Skip to main content

Current Knowledge in Hygienic Design: Can We Minimise Fouling and Speed Cleaning?

  • Chapter
  • First Online:
Advances in Food Process Engineering Research and Applications

Part of the book series: Food Engineering Series ((FSES))

Abstract

Fouling of process plants from food fluids is a major practical problem that lowers plant efficiency and endangers product safety. As a result, frequent process plant cleaning is needed, and cleaning-in-place (CIP) protocols are well developed. It is less clear whether they are optimal, however. Recent progress in fouling and cleaning research is reviewed. Advances in computational modelling and nanotechnology may enable developments in modelling cleanability at the design stage and in developing surfaces that resist fouling and speed cleaning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar N, Bowen J, Asteriadou K, Robbins PT, Zhang Z, Fryer PJ (2010) Matching the nano- to the meso- scale: measuring deposit surface interactions with atomic force microscopy and micromanipulation. Food Bioprod Process 88:341–348

    Article  CAS  Google Scholar 

  • Asteriadou K, Hasting T, Bird M, Melrose J (2007) Predicting cleaning of equipment using computational fluid dynamics. J Food Process Eng 30(1):88–105

    Article  Google Scholar 

  • Augustin W, Fuchs T, Föste H, Schöler M, Majschak J-P, Scholl S (2010) Pulsed flow for enhanced cleaning in food processing. Food Bioprod Process 88:384–391

    Article  Google Scholar 

  • Baier RE (1980) Adsorption of microorganisms to surfaces. Wiley, New York, Substrate Influences on Adhesion of Microorganisms and Their Resultant New Surface Properties

    Google Scholar 

  • Benning R, Petermeier H, Delgado A, Hinrichs J, Kulozik U, Becker T (2003) Process design for improved fouling behaviour in dairy heat exchangers using a hybrid modelling approach. Food Bioprod Process 81(C3):266–274

    Article  Google Scholar 

  • Bird MR, Fryer PJ (1991) An experimental study of the cleaning of surfaces fouled by whey proteins. Food Bioprod Process 69:13–21

    Google Scholar 

  • Blel W, Le Gentil-Lelievre C, Benezech T, Legrand J, Legentilhomme P (2009a) Application of turbulent pulsating flows to the bacterial removal during a cleaning in place procedure. Part 1: experimental analysis of wall shear stress in a cylindrical pipe. J Food Eng 90(4):422–432

    Article  Google Scholar 

  • Blel W, Legentilhomme P, Benezech T, Legrand J, Le Gentil-Lelievre C (2009b) Application of turbulent pulsating flows to the bacterial removal during a cleaning in place procedure. Part 2: effects on cleaning efficiency. J Food Eng 90:433–440

    Article  Google Scholar 

  • Boulange-Petermann L (1996) Processes of bioadhesion on stainless steel surfaces and cleanability: a review with special reference to the food industry. Biofouling 10(4):275–300

    Article  CAS  Google Scholar 

  • Burfoot D, Middleton K (2009) Effects of operating conditions of high pressure washing on the removal of biofilms from stainless steel surfaces. J Food Eng 90(3):350–357

    Article  Google Scholar 

  • Changani SD, Belmarbeiny MT, Fryer PJ (1997) Engineering and chemical factors associated with fouling and cleaning in milk processing. Exp Therm Fluid Sci 14(4):392–406

    Article  CAS  Google Scholar 

  • Christian GK (2003) Removal of food deposits by fluid flow. Ph.D. thesis, University of Birmingham

    Google Scholar 

  • Christian GK, Fryer PJ (2006) The effect of pulsing cleaning chemicals on the cleaning of whey protein deposits. Food Bioprod Process 84:320–328

    Article  Google Scholar 

  • Christian GK, Changani SD, Fryer PJ (2002) The effect of adding minerals on fouling from whey protein concentrate: development of a model fouling fluid for a plate heat exchanger. Food Bioprod Process 80(4):231–239

    Article  CAS  Google Scholar 

  • Cole PA, Asteriadou K, Robbins PT, Owen EG, Montague GA, Fryer PJ (2010) Comparison of cleaning of toothpaste from surfaces and pilot scale pipework. Food Bioprod Process 88:392–400

    Article  Google Scholar 

  • Coletti F, Ishiyama EM, Paterson WR, Wilson DI, Macchietto S (2010) Impact of deposit aging and surface roughness on thermal fouling: distributed model. AIChE J 56:3257–3273

    Article  CAS  Google Scholar 

  • De Jong P, Te Giffel MC, Kiezebrink EA (2002a) Prediction of the adherence, growth and release of microorganisms in production chains. Int J Food Microbiol 74(1–2):13–25

    Article  Google Scholar 

  • De Jong P, Te Giffel MC, Straatsma H, Vissers MMM (2002b) Reduction of fouling and contamination by predictive kinetic models. Int Dairy J 12(2–3):285–292

    Article  Google Scholar 

  • Eide MH, Homleid JP, Mattsson B (2003) Life cycle assessment (LCA) of cleaning-in-place processes in dairies. Lebensm Wiss Technol 36:303–314

    Article  CAS  Google Scholar 

  • Epstein N (1981) Thinking about heat transfer fouling: a 5×5 matrix. Heat Transf Eng 4(1):43–56

    Article  CAS  Google Scholar 

  • Fernandez-Torres MJ, Fitzgerald AM, Paterson WR, Wilson DI (2001) A theoretical study of freezing fouling: limiting behaviour based on a heat and mass transfer analysis. Chem Eng Process 40(4):335–344

    Article  CAS  Google Scholar 

  • Fryer PJ, Asteriadou K (2009) A prototype cleaning map: a classification of industrial cleaning processes. Trends Food Sci Technol 20(6–7):255–262

    Article  CAS  Google Scholar 

  • Fryer PJ, Christian GK, Liu W (2006) How hygiene happens; the physics and chemistry of cleaning. Int J Dairy Technol 59:76–84

    Article  CAS  Google Scholar 

  • Ghnimi S, Flach-Malaspina N, Dresch M, Delaplace G, Maingonnat JF (2008) Design and performance evaluation of an ohmic heating unit for thermal processing of highly viscous liquids. Chem Eng Res Des 86:626–632

    Article  CAS  Google Scholar 

  • Ghnimi S, Zaid I, Maingonnat JF, Delaplace G (2009) Axial temperature profile of ohmically heated fluid jet: analytical model and experimental validation. Chem Eng Sci 64:3188–3196

    Article  CAS  Google Scholar 

  • Gillham CR, Fryer PJ, Hasting APM, Wilson DI (1999) Cleaning-in-place of whey protein fouling deposits: mechanisms controlling cleaning. Food Bioprod Process 77(C2):127–136

    Article  CAS  Google Scholar 

  • Gillham CR, Fryer PJ, Hasting APM, Wilson DI (2000) Enhanced cleaning of whey protein soils using pulsed flows. J Food Eng 46(3):199–209

    Article  Google Scholar 

  • Goode KR, Asteriadou K, Fryer PJ, Robbins PT, Picksley P (2010) Characterising the cleaning mechanisms of yeast and the implications for cleaning in place (CIP). Food Bioprod Process 88:365–374

    Article  CAS  Google Scholar 

  • Grassi B, Strazza D, Poesio P (2008) Experimental validation of theoretical models in two-phase high-viscosity ratio liquid-liquid flows in horizontal and slightly inclined pipes. Int J Multiphase Flow 34(10):950–965

    Article  CAS  Google Scholar 

  • Gu T, Albert F, Augustin W, Chew YMJ, Mayer M, Paterson WR, Scholl S, Sheikh I, Wang K, Wilson DI (2011) Application of fluid dynamic gauging to annular test apparatuses for studying fouling and cleaning. Exp Therm Fluid Sci 35:509–520

    Article  Google Scholar 

  • Henningsson M, Regner M, Ostergren K, Tragardh C, Dejmek P (2007) CFD simulation and ERT visualization of the displacement of yoghurt by water on industrial scale. J Food Eng 80(1):166–175

    Article  Google Scholar 

  • Jensen BBB, Friis A, Benezech T, Legentilhomme P, Lelievre CL (2005) Local wall shear stress variations predicted by computational fluid dynamics for hygienic design. Food Bioprod Process 83(C1):53–60

    Article  Google Scholar 

  • Kananeh AB, Scharnbeck E, Kuck UD, Rabiger N (2010) Reduction of milk fouling inside gasketed plate heat exchanger using nano-coatings. Food Bioprod Process 88(4):349–356

    Article  CAS  Google Scholar 

  • Kern DQ, Seaton RE (1959) A theoretical analysis of thermal surface fouling. Br Chem Eng 4:258–262

    Google Scholar 

  • Liu W, Christian GK, Zhang Z, Fryer PJ (2002) Development and use of a micromanipulation technique for measuring the force required to disrupt and remove fouling deposits. Food Bioprod Process 80(C4):286–291

    Article  Google Scholar 

  • Liu W, Fryer PJ, Zhang Z, Zhao Q, Liu Y (2006a) Identification of cohesive and adhesive effects in the cleaning of food fouling deposits. Innov Food Sci Emerg Technol 7(4):263–269

    Article  CAS  Google Scholar 

  • Liu W, Christian GK, Zhang Z, Fryer PJ (2006b) Direct measurement of the force required to disrupt and remove fouling deposits of whey protein concentrate. Int Dairy J 16(2):164–172

    Article  CAS  Google Scholar 

  • Liu W, Zhang Z, Fryer PJ (2006c) Identification and modelling of different removal modes in the cleaning of a model food deposit. Chem Eng Sci 61(22):7528–7534

    Article  CAS  Google Scholar 

  • Mercade-Prieto R, Chen XD (2006) Dissolution of whey protein concentrate gels in alkali. AIChE J 52(2):792–803

    Article  CAS  Google Scholar 

  • Mercade-Prieto R, Falconer RJ, Paterson WR, Wilson DI (2007) Swelling and dissolution of beta-lactoglobulin gels in alkali. Biomacromolecules 8(2):469–476

    Article  CAS  Google Scholar 

  • Mercade-Prieto R, Paterson WR, Chen XD, Wilson DI (2008) Diffusion of NaOH into a protein gel. Chem Eng Sci 63(10):2763–2772

    Article  CAS  Google Scholar 

  • Müller-Steinhagen H, Malayeri RR, Watkinson AP (2011) at www.heatexchanger-fouling.com

  • Palabiyik I, Olunloyo B, Fryer PJ, Robbins PT (2014) Flow regimes in the emptying of pipes filled with viscoelastic material. Chem Engng Res Des. (in press)

    Google Scholar 

  • Park Y-B, Im H, Im M, Choi Y-K (2011) Self-cleaning effect of highly water-repellent microshell structures for solar cell applications. J Mater Chem 21:633–636

    Article  CAS  Google Scholar 

  • Petermeier H, Benning R, Delgado A, Kulozik U, Hinrichs J, Becker T (2002) Hybrid model of the fouling process in tubular heat exchangers for the dairy industry. J Food Eng 55(1):9–17

    Article  Google Scholar 

  • Roach P, Shirtcliffe NJ, Newton MI (2008) Progess in superhydrophobic surface development. Soft Matter 4:224–240

    Article  CAS  Google Scholar 

  • Rosenhahn A, Ederth T, Pettitt ME (2008) Advanced nanostructures for the control of biofouling: the Fp6 Eu integrated project ambio. Biointerphases 3(1):IR1–IR5

    Article  Google Scholar 

  • Rosmaninho R, Melo LF (2008) Protein-calcium phosphate interactions in fouling of modified stainless-steel surfaces by simulated milk. Int Dairy J 18(1):72–80

    Article  CAS  Google Scholar 

  • Rosmaninho R, Santos O, Nylander T, Paulsson M, Beuf M, Benezech T, Yiantsios S, Andritsos N, Karabelas A, Rizzo G, Müller-Steinhagen H, Melo LF (2007) Modified stainless steel surfaces targeted to reduce fouling – evaluation of fouling by milk components. J Food Eng 80:1176–1187

    Article  CAS  Google Scholar 

  • Rosmaninho R, Rizzo G, Müller-Steinhagen H, Melo LF (2008) Deposition from a milk mineral solution on novel heat transfer surfaces under turbulent flow conditions. J Food Eng 85:29–41

    Article  Google Scholar 

  • Sahu KC, Valluri P, Spelt PDM, Matar OK (2007) Linear instability of pressure-driven channel flow of a newtonian and a herschel-bulkley fluid. Phys Fluids 19(12):11–122101

    Google Scholar 

  • Saikhwan P, Geddert T, Augustin W, Scholl S, Paterson WR, Wilson DI (2006) Effect of surface treatment on cleaning of a model food soil. Surf Coat Technol 201(3–4):943–951

    Article  CAS  Google Scholar 

  • Schutyser MI, Straatsma J, Keijzer PM, Verschueren M, De Jong P (2008) A new web-based modelling tool (Websim-Milq) aimed at optimisation of thermal treatments in the dairy industry. Int J Food Microbiol 128(1):153–157

    Article  CAS  Google Scholar 

  • Simmons MJH, Jayaraman P, Fryer PJ (2007) The effect of temperature and shear rate upon the aggregation of whey protein and its implications for milk fouling. J Food Eng 79(2):517–528

    Article  CAS  Google Scholar 

  • Simmons MJH, Alberini F, Tsoligkas AN, Gargiuli J, Parker DJ, Fryer PJ, Robinson S (2012) Development of a hydrodynamic model for the UV-C treatment of turbid food fluids in a novel ‘SurePure turbulator™’ swirl-tube reactor. Innov Food Sci Emerg Tech 14:122–134

    Article  CAS  Google Scholar 

  • Sui Y, Gao X, Wang Z, Gao C (2012) Antifouling and antibacterial improvement of surface-functionalized poly(vinylidene fluoride) membrane prepared via dihydroxyphenylalanine-initiated atom transfer radical graft polymerizations. J Membr Sci 394:107–119

    Article  Google Scholar 

  • Taborek J, Palen JW, Aoki T, Ritter RB, Knudsen JG (1972) Fouling – major unresolved problem in heat transfer. Chem Eng Prog 68(2):59–67

    CAS  Google Scholar 

  • Taghavi SM, Alba K, Moyers-Gonzalez M, Frigaard IA (2012) Incomplete fluid–fluid displacement of yield stress fluids in near-horizontal pipes: experiments and theory. J Non-Newton Fluid Mech 167–168:59–74

    Article  Google Scholar 

  • Tamime AV (2008) Cleaning-in-place: dairy, food and beverage operations. Wiley-Blackwell, London

    Book  Google Scholar 

  • Wallhäußer E, Hussein WB, Hussein MA, Hinrichs J, Becker TM (2011) On the usage of acoustic properties combined with an artificial neural network – a new approach of determining presence of dairy fouling. J Food Eng 103(4):449–456

    Article  Google Scholar 

  • Wilson DI (2005) Challenges in cleaning: recent developments and future prospects. Heat Transf Eng 26(1):51–59

    Article  CAS  Google Scholar 

  • Yoo JY, Chen XD, Mercade-Prieto R, Wilson DI (2007) Dissolving heat-induced protein gel cubes in alkaline solutions under natural and forced convection conditions. J Food Eng 79(4):1315–1321

    Article  CAS  Google Scholar 

  • Yu Q, Zhang Y, Wang H, Brash J, Chen H (2011) Anti-fouling bioactive surfaces. Acta Biomater 7:1550–1557

    Article  CAS  Google Scholar 

  • Zhao Q, Liu Y, Wang C, Wang S, Muller-Steinhagen H (2005) Effect of surface free energy on the adhesion of biofouling and crystalline fouling. Chem Eng Sci 60(17):4858–4865

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Birmingham work discussed in this paper includes results from the ZEAL project TP//ZEE/6/1/21191, which involves Alfa Laval, Cadbury, Ecolab, Newcastle University, Scottish & Newcastle, GEA Process Engineering, Unilever UK Central Resources, Imperial College of Science Technology and Medicine, GlaxoSmithKline, Bruker Optics and the University of Birmingham. The project is co-funded by the Technology Strategy Board’s Collaborative Research and Development programme, following open competition. For more information visit http://www.innovateuk.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Fryer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fryer, P.J., Robbins, P.T., Asteriadou, I.K. (2013). Current Knowledge in Hygienic Design: Can We Minimise Fouling and Speed Cleaning?. In: Yanniotis, S., Taoukis, P., Stoforos, N., Karathanos, V. (eds) Advances in Food Process Engineering Research and Applications. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7906-2_12

Download citation

Publish with us

Policies and ethics