Skip to main content

Genome Mapping, Markers and QTLs

  • Chapter
  • First Online:
Genetics and Genomics of Rice

Abstract

The majority of important agronomic traits in rice are quantitatively inherited in rice. Many quantitative trait loci (QTLs) regulate trait phenotypes in concert, which introduces complexities in genetic analyses. With the advent of molecular markers and construction of genetic linkage maps, QTL mapping has progressed considerably since 1990. Thousands of QTLs have been reported for yield-related traits in rice. Some major QTLs have been cloned on the basis of primary QTL results. The favorable alleles of QTLs can be directly explored in rice breeding through marker-aided selection. The markers linked to target QTLs and functional markers derived from well-characterized genes/QTLs are ideal tools for directional selection owing to their stability and low cost. This chapter will review the progress of rice markers and QTLs over the last 2 decades and evaluate the prospects for the genetic improvement of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collard BCY, Jahufer MZZ, Brouwer J, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142(1):169–196

    Article  CAS  Google Scholar 

  2. Yu S, Li J, Xu C et al (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A 94(17):9226–9231

    Article  PubMed  CAS  Google Scholar 

  3. Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang Q (2000) Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet 101(5):823–829

    Article  CAS  Google Scholar 

  4. Xing Y, Tan Y, Hua J, Sun X, Xu C, Zhang Q (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105(2):248–257

    PubMed  CAS  Google Scholar 

  5. Bai X, Luo L, Yan W, Kovi MR, Zhan W, Xing Y (2010) Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet 11(1):16

    Article  PubMed  CAS  Google Scholar 

  6. Liu T, Shao D, Kovi MR, Xing Y (2010) Mapping and validation of quantitative trait loci for spikelets per panicle and 1,000-grain weight in rice (Oryza sativa L.). Theor Appl Genet 120(5):933–942

    Article  PubMed  CAS  Google Scholar 

  7. Xiao J, Li J, Grandillo S et al (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150(2): 899–909

    PubMed  CAS  Google Scholar 

  8. Thomson M, Tai T, McClung A et al (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107(3):479–493

    Article  PubMed  CAS  Google Scholar 

  9. Moncada P, Martinez C, Borrero J et al (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102(1):41–52

    Article  CAS  Google Scholar 

  10. Allard RW (1956) Formulas and tables to facilitate the calculation of recombination values in heredity. University of California, Berkeley

    Google Scholar 

  11. Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124(3): 735–742

    PubMed  CAS  Google Scholar 

  12. Paterson AH, Damon S, Hewitt JD et al (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127(1):181–197

    PubMed  CAS  Google Scholar 

  13. Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15(8):1795–1806

    Article  PubMed  CAS  Google Scholar 

  14. Goddard M (2000) Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics 155(1):421–430

    PubMed  Google Scholar 

  15. Ross-Ibarra J, Tenaillon M, Gaut BS (2009) Historical divergence and gene flow in the genus Zea. Genetics 181(4):1399–1413

    Article  PubMed  CAS  Google Scholar 

  16. Flint-Garcia SA, Thornsberry JM, Buckler ES IV (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54(1):357–374

    Article  PubMed  CAS  Google Scholar 

  17. Posada D, Crandall KA, Holmes EC (2002) Recombination in evolutionary genomics. Annu Rev Genet 36(1):75–97

    Article  PubMed  CAS  Google Scholar 

  18. Yalcin B, Flint J, Mott R (2005) Using progenitor strain information to identify quantitative trait nucleotides in outbred mice. Genetics 171(2):673–681

    Article  PubMed  CAS  Google Scholar 

  19. Churchill GA, Airey DC, Allayee H et al (2004) The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36(11): 1133–1137

    Article  PubMed  CAS  Google Scholar 

  20. Kover PX, Valdar W, Trakalo J et al (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5(7):e1000551

    Article  PubMed  CAS  Google Scholar 

  21. Evola SV, Burr FA, Burr B (1986) The suitability of restriction fragment length polymorphisms as genetic markers in maize. Theor Appl Genet 71(6):765–771

    Article  CAS  Google Scholar 

  22. de Vicente MC, Fulton T (2003) Using molecular marker technology in studies on plant genetic diversity. Illus. Nelly Giraldo. IPGRI, Rome/Institute for Genetic Diversity, Ithaca, NY. ISBN 92-9043.

    Google Scholar 

  23. Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314(6006):67–73

    Article  PubMed  CAS  Google Scholar 

  24. Akkaya MS, Bhagwat AA, Cregan PB (1992) Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132(4):1131–1139

    PubMed  CAS  Google Scholar 

  25. Yang GP, Saghai Maroof MA, Xu CG, Zhang Q, Biyashev RM (1994) Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet 245(2):187–194

    Article  PubMed  CAS  Google Scholar 

  26. Sasaki T, Matsumoto T, Yamamoto K et al (2002) The genome sequence and structure of rice chromosome 1. Nature 420(6913):312–316

    Article  PubMed  CAS  Google Scholar 

  27. Feng Q, Zhang Y, Hao P et al (2002) Sequence and analysis of rice chromosome 4. Nature 420(6913):316–320

    Article  PubMed  CAS  Google Scholar 

  28. Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565):79–92

    Article  PubMed  CAS  Google Scholar 

  29. Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296(5565):92–100

    Article  PubMed  CAS  Google Scholar 

  30. McCouch SR, Teytelman L, Xu Y et al (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9(6):199

    Article  PubMed  CAS  Google Scholar 

  31. Shen YJ, Jiang H, Jin JP et al (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135(3):1198–1205

    Article  PubMed  CAS  Google Scholar 

  32. Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14(9):1812–1819

    Article  PubMed  CAS  Google Scholar 

  33. Thomson MJ, Zhao K, Wright M et al (2012) High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform. Mol Breed 29(4):1–12

    Article  CAS  Google Scholar 

  34. Yamamoto T, Nagasaki H, Yonemaru J et al (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11(1):267

    Article  PubMed  CAS  Google Scholar 

  35. Nagasaki H, Ebana K, Shibaya T, Yonemaru J, Yano M (2010) Core single-nucleotide polymorphisms-a tool for genetic analysis of the Japanese rice population. Breed Sci 60(5):648–655

    Article  Google Scholar 

  36. Zhao K, Wright M, Kimball J et al (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5(5):e10780

    Article  PubMed  CAS  Google Scholar 

  37. Tung CW, Zhao K, Wright MH et al (2010) Development of a research platform for dissecting phenotype-genotype associations in rice (Oryza spp.). Rice 3(4):205–217

    Google Scholar 

  38. McCouch SR, Zhao K, Wright M et al (2010) Development of genome-wide SNP assays for rice. Breed Sci 60(5):524–535

    Article  Google Scholar 

  39. Huang X, Feng Q, Qian Q et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19(6):1068–1076

    Article  PubMed  CAS  Google Scholar 

  40. Huang X, Wei X, Sang T et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967

    Article  PubMed  CAS  Google Scholar 

  41. Huang X, Zhao Y, Wei X et al (2011) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44(1):32–39

    Article  PubMed  CAS  Google Scholar 

  42. Fan C, Yu S, Wang C, Xing Y (2009) A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet 118(3):465–472

    Article  PubMed  CAS  Google Scholar 

  43. McCouch S, Kochert G, Yu Z et al (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76(6):815–829

    Article  CAS  Google Scholar 

  44. Huang N, McCouch S, Mew T, Parco A, Guiderdoni E (1994) Development of an RFLP map from a doubled haploid population in rice. Rice Genet Newslett 11:134–137

    Google Scholar 

  45. Lin HX, Qian HR, Zhuang JY et al (1996) RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor Appl Genet 92(8):920–927

    Article  CAS  Google Scholar 

  46. Lu C, Shen L, Tan Z et al (1996) Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor Appl Genet 93(8):1211–1217

    Article  CAS  Google Scholar 

  47. Xiao J, Li J, Yuan L, Tanksley S (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92(2):230–244

    Article  CAS  Google Scholar 

  48. Li Z, Pinson S, Stansel J, Park W (1995) Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet 91(2):374–381

    CAS  Google Scholar 

  49. Lin X, Zhang D, Xie Y, Gao H, Zhang Q (1996) Identifying and mapping a new gene for bacterial blight resistance in rice based on RFLP markers. Phytopathology 86(11):1156–1159

    Article  CAS  Google Scholar 

  50. Yoshimura S, Yoshimura A, Iwata N et al (1995) Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breed 1(4):375–387

    Article  CAS  Google Scholar 

  51. Yu Z, Mackill D, Bonman J, Tanksley S (1991) Tagging genes for blast resistance in rice via linkage to RFLP markers. Theor Appl Genet 81(4):471–476

    Article  Google Scholar 

  52. Hirabayashi H, Ogawa T (1995) RFLP mapping of Bph-1 (brown planthopper resistance gene) in rice. Breed Sci 45:369–371

    CAS  Google Scholar 

  53. Huang N, Angeles E, Domingo J et al (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95(3):313–320

    Article  CAS  Google Scholar 

  54. Harushima Y, Yano M, Shomura A et al (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148(1):479–494

    PubMed  CAS  Google Scholar 

  55. Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44(3):397–401

    PubMed  CAS  Google Scholar 

  56. Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44(3): 388–396

    PubMed  CAS  Google Scholar 

  57. Kantety RV, Zeng X, Bennetzen JL, Zehr BE (1995) Assessment of genetic diversity in dent and popcorn (Zea mays L.) inbred lines using inter-simple sequence repeat (ISSR) amplification. Mol Breed 1(4):365–373

    Article  CAS  Google Scholar 

  58. Godwin ID, Aitken EAB, Smith LW (1997) Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18(9):1524–1528

    Article  PubMed  CAS  Google Scholar 

  59. Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalski JA (1995) Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci U S A 92(17):7759–7763

    Article  PubMed  CAS  Google Scholar 

  60. Nagaoka T, Ogihara Y (1997) Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet 94(5):597–602

    Article  CAS  Google Scholar 

  61. Condit R, Hubbell SP (1991) Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome 34(1):66–71

    Article  PubMed  CAS  Google Scholar 

  62. Wu KS, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241(1):225–235

    Article  PubMed  CAS  Google Scholar 

  63. La Rota M, Kantety RV, Yu JK, Sorrells ME (2005) Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics 6(1):23

    Article  PubMed  CAS  Google Scholar 

  64. Grover A, Aishwarya V, Sharma P (2007) Biased distribution of microsatellite motifs in the rice genome. Mol Genet Genomics 277(5):469–480

    Article  PubMed  CAS  Google Scholar 

  65. Van Os H, Andrzejewski S, Bakker E et al (2006) Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map. Genetics 173(2):1075–1087

    Article  PubMed  CAS  Google Scholar 

  66. Xie W, Feng Q, Yu H et al (2010) Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci U S A 107(23):10578–10583

    Article  PubMed  CAS  Google Scholar 

  67. Tao Q, Chang YL, Wang J et al (2001) Bacterial artificial chromosome-based physical map of the rice genome constructed by restriction fingerprint analysis. Genetics 158(4):1711–1724

    PubMed  CAS  Google Scholar 

  68. Inoue T, Zhong H, Miyao A et al (1994) Sequence-tagged sites (STSs) as standard landmarkers in the rice genome. Theor Appl Genet 89(6):728–734

    Article  CAS  Google Scholar 

  69. Kurata N, Umehara Y, Tanoue H, Sasaki T (1997) Physical mapping of the rice genome with YAC clones. Plant Mol Biol 35(1):101–113

    Article  PubMed  CAS  Google Scholar 

  70. Taylor DR, Ingvarsson PK (2003) Common features of segregation distortion in plants and animals. Genetica 117(1):27–35

    Article  PubMed  CAS  Google Scholar 

  71. Howden R, Park SK, Moore JM, Orme J, Grossniklaus U, Twell D (1998) Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics 149(2):621–631

    PubMed  CAS  Google Scholar 

  72. Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105(4):622–628

    Article  PubMed  CAS  Google Scholar 

  73. Yan JB, Tang H, Huang YQ, Zheng YL, Li JS (2003) Genetic analysis of segregation distortion of molecular markers in maize F2 population. Acta Genetica Sinica 30(10):913–918

    PubMed  CAS  Google Scholar 

  74. Kumar S, Gill BS, Faris JD (2007) Identification and characterization of segregation distortion loci along chromosome 5B in tetraploid wheat. Mol Genet Genomics 278(2):187–196

    Article  PubMed  CAS  Google Scholar 

  75. Yamanaka N, Ninomiya S, Hoshi M et al (2001) An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res 8(2):61–72

    Article  PubMed  CAS  Google Scholar 

  76. Lin S, Ikehashi H, Yanagihara S, Kawashima A (1992) Segregation distortion via male gametes in hybrids between Indica and Japonica or wide-compatibility varieties of rice (Oryza sativa L.). Theor Appl Genet 84(7):812–818

    Google Scholar 

  77. Xu Y, Zhu L, Xiao J, Huang N, McCouch S (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253(5):535–545

    Article  PubMed  CAS  Google Scholar 

  78. Zhang L, Wang S, Li H et al (2010) Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet 121(6): 1071–1082

    Article  PubMed  Google Scholar 

  79. Vogl C, Xu S (2000) Multipoint mapping of viability and segregation distorting loci using molecular markers. Genetics 155(3):1439–1447

    PubMed  CAS  Google Scholar 

  80. Harushima Y, Kurata N, Yano M et al (1996) Detection of segregation distortions in an indica-japonica rice cross using a high-resolution molecular map. Theor Appl Genet 92(2):145–150

    Article  CAS  Google Scholar 

  81. Kreike C, Stiekema W (1997) Reduced recombination and distorted segregation in a Solanum tuberosum (2x) × S. spegazzinii (2x) hybrid. Genome 40(2):180–187

    Article  PubMed  CAS  Google Scholar 

  82. Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard JH (2004) QTL mapping of grain quality traits from the interspecific cross Oryza sativa × O. glaberrima. Theor Appl Genet 109(3):630–639

    Article  PubMed  CAS  Google Scholar 

  83. Haupt W, Fischer TC, Winderl S, Fransz P, Torres-Ruiz RA (2001) The centromere1 (CEN1) region of Arabidopsis thaliana: architecture and functional impact of chromatin. Plant Cell 27(4):285–296

    CAS  Google Scholar 

  84. Xing Y, Tang W, Xue W, Xu C, Zhang Q (2008) Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theor Appl Genet 116(6):789–796

    Article  PubMed  CAS  Google Scholar 

  85. Xue W, Xing Y, Weng X et al (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40(6):761–767

    Article  PubMed  CAS  Google Scholar 

  86. Chen M, Presting G, Barbazuk WB et al (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14(3):537–545

    Article  PubMed  CAS  Google Scholar 

  87. Fan C, Xing Y, Mao H et al (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112(6):1164–1171

    Article  PubMed  CAS  Google Scholar 

  88. Wan X, Wan J, Jiang L et al (2006) QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet 112(7):1258–1270

    Article  PubMed  CAS  Google Scholar 

  89. Li J, Thomson M, McCouch SR (2004) Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168(4):2187–2195

    Article  PubMed  CAS  Google Scholar 

  90. Li JX, Yu SB, Xu CG et al (2000) Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theor Appl Genet 101(1):248–254

    CAS  Google Scholar 

  91. Mao H, Sun S, Yao J et al (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci U S A 107(45):19579–19584

    Article  PubMed  CAS  Google Scholar 

  92. Shomura A, Izawa T, Ebana K et al (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40(8):1023–1028

    Article  PubMed  CAS  Google Scholar 

  93. Weng J, Gu S, Wan X et al (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18(12):1199–1209

    Article  PubMed  CAS  Google Scholar 

  94. Lu C, Shen L, He P et al (1997) Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled-haploid population. Theor Appl Genet 94(1):145–150

    Article  PubMed  CAS  Google Scholar 

  95. Wang L, Wang A, Huang X et al (2011) Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theor Appl Genet 122(2):1–14

    Article  Google Scholar 

  96. Septiningsih E, Prasetiyono J, Lubis E et al (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107(8):1419–1432

    Article  PubMed  CAS  Google Scholar 

  97. Li ZK, Luo LJ, Mei HW et al (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158(4):1737–1753

    PubMed  CAS  Google Scholar 

  98. Li Z, Pinson SR, Park WD, Paterson AH, Stansel JW (1997) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145(2):453–465

    PubMed  CAS  Google Scholar 

  99. Xie X, Jin F, Song MH et al (2008) Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet 116(5):613–622

    Article  PubMed  Google Scholar 

  100. Onishi K, Horiuchi Y, Ishigoh-Oka N et al (2007) A QTL cluster for plant architecture and its ecological significance in Asian wild rice. Breed Sci 57(1):7–16

    Article  Google Scholar 

  101. Wan X, Wan J, Su C et al (2004) QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines. Theor Appl Genet 110(1):71–79

    Article  PubMed  CAS  Google Scholar 

  102. Ashikari M, Sakakibara H, Lin S et al (2005) Cytokinin oxidase regulates rice grain production. Science 309(5735):741–745

    Article  PubMed  CAS  Google Scholar 

  103. Kojima S, Takahashi Y, Kobayashi Y et al (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43(10): 1096–1105

    Article  PubMed  CAS  Google Scholar 

  104. Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135(4):767–774

    Article  PubMed  CAS  Google Scholar 

  105. Wall JD, Pritchard JK (2003) Haplotype blocks and linkage disequilibrium in the human genome. Nat Rev Genet 4(8):587–597

    Article  PubMed  CAS  Google Scholar 

  106. Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6(2):95–108

    Article  PubMed  CAS  Google Scholar 

  107. Aranzana MJ, Kim S, Zhao K et al (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1(5):e60

    Article  PubMed  CAS  Google Scholar 

  108. Buckler ES, Holland JB, Bradbury PJ et al (2009) The genetic architecture of maize flowering time. Science 325(5941):714–718

    Article  PubMed  CAS  Google Scholar 

  109. Tian F, Bradbury PJ, Brown PJ et al (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43(2):159–162

    Article  PubMed  CAS  Google Scholar 

  110. Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17(2):155–160

    Article  PubMed  CAS  Google Scholar 

  111. Zhao K, Tung CW, Eizenga GC et al (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    Article  PubMed  CAS  Google Scholar 

  112. Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K (2009) Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci U S A 106(11):4555–4560

    Article  PubMed  CAS  Google Scholar 

  113. Yan WH, Wang P, Chen HX et al (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4(2):319

    Article  PubMed  CAS  Google Scholar 

  114. Shi W, Yang Y, Chen S, Xu M (2008) Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breed 22(2):185–192

    Article  CAS  Google Scholar 

  115. Yang J, Wang J, Cao Q, Chen ZD, Zhong WG (2009) Development and application of a functional marker for wide compatibility gene S5-n of rice. Acta Agron Sin 35(11):2000–2007

    Article  CAS  Google Scholar 

  116. Yang J, Wang J, Cao Q, Chen ZD, Tang LH, Zhong WG (2009) Development of a functional marker to red pericarp gene in weedy rice (Oryza sativa L. f. spontaneous). Mol Plant Breed 7(4):721–726

    CAS  Google Scholar 

  117. Sweeney MT, Thomson MJ, Pfeil BE, McCouch S (2006) Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 18(2):283–294

    Article  PubMed  CAS  Google Scholar 

  118. Wang C, Chen S, Yu S (2011) Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice. Theor Appl Genet 122(5):1–9

    Article  Google Scholar 

  119. Jiang Y, Cai Z, Xie W, Long T, Yu H, Zhang Q (2011) Rice functional genomics research: progress and implications for crop genetic improvement. Biotechnol Adv 30(5):1059–1070

    Article  PubMed  CAS  Google Scholar 

  120. Yang W, Huang C, Liu Q (2012) Development of an automatic control system for pot-grown rice inspection based on programmable logic controller. Comput Comput Technol Agric V 112–118

    Google Scholar 

  121. Yano M, Katayose Y, Ashikari M et al (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12(12):2473–2484

    PubMed  CAS  Google Scholar 

  122. Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci U S A 98(14):7922–7927

    Article  PubMed  CAS  Google Scholar 

  123. Doi K, Izawa T, Fuse T et al (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18(8):926–936

    Article  PubMed  CAS  Google Scholar 

  124. Wei X, Xu J, Guo H et al (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153(4):1747–1758

    Article  PubMed  CAS  Google Scholar 

  125. Matsubara K, Yamanouchi U, Nonoue Y et al (2011) Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J 66(4):603–612

    Article  PubMed  CAS  Google Scholar 

  126. Wu C, You C, Li C et al (2008) RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci U S A 105(35): 12915–12920

    Article  PubMed  CAS  Google Scholar 

  127. Matsubara K, Yamanouchi U, Wang ZX, Minobe Y, Izawa T, Yano M (2008) Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1. Plant Physiol 148(3):1425–1435

    Article  PubMed  CAS  Google Scholar 

  128. Saito H, Okumoto Y, Yoshitake Y et al (2011) Complete loss of photoperiodic response in the rice mutant line X61 is caused by deficiency of phytochrome chromophore biosynthesis gene. Theor Appl Genet 122(1):109–118

    Article  PubMed  CAS  Google Scholar 

  129. Kurakawa T, Ueda N, Maekawa M et al (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445(7128): 652–655

    Article  PubMed  CAS  Google Scholar 

  130. Huang X, Qian Q, Liu Z et al (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41(4):494–497

    Article  PubMed  CAS  Google Scholar 

  131. Qiao Y, Piao R, Shi J et al (2011) Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet 122(7):1439–1449

    Article  PubMed  Google Scholar 

  132. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39(5):623–630

    Article  PubMed  CAS  Google Scholar 

  133. Li Y, Fan C, Xing Y et al (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43(12):1266–1269

    Article  PubMed  CAS  Google Scholar 

  134. Wang E, Wang J, Zhu X et al (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40(11):1370–1374

    Article  PubMed  CAS  Google Scholar 

  135. Li X, Qian Q, Fu Z et al (2003) Control of tillering in rice. Nature 422(6932):618–621

    Article  PubMed  CAS  Google Scholar 

  136. Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci U S A 99(13):9043–9048

    Article  PubMed  CAS  Google Scholar 

  137. Ashikari M, Sasaki A, Ueguchi-Tanaka M et al (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breed Sci 52(2):143–150

    Article  CAS  Google Scholar 

  138. Monna L, Kitazawa N, Yoshino R et al (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9(1):11–17

    Article  PubMed  CAS  Google Scholar 

  139. Jiao Y, Wang Y, Xue D et al (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42(6):541–544

    Article  PubMed  CAS  Google Scholar 

  140. Yu B, Lin Z, Li H et al (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52(5):891–898

    Article  PubMed  CAS  Google Scholar 

  141. Li P, Wang Y, Qian Q et al (2007) LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 17(5):402–410

    PubMed  CAS  Google Scholar 

  142. Nakagawa M, Shimamoto K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29(6):743–750

    Article  PubMed  CAS  Google Scholar 

  143. She KC, Kusano H, Koizumi K et al (2010) A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell 22(10):3280–3294

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhong Xing Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, B., Han, Z., Xing, Y. (2013). Genome Mapping, Markers and QTLs. In: Zhang, Q., Wing, R. (eds) Genetics and Genomics of Rice. Plant Genetics and Genomics: Crops and Models, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7903-1_4

Download citation

Publish with us

Policies and ethics