Advertisement

The Wild Relative of Rice: Genomes and Genomics

  • Paul L. Sanchez
  • Rod A. Wing
  • Darshan S. Brar
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 5)

Abstract

The wild species of the genus Oryza serve as a virtually untapped reservoir of genetic diversity that can be used to improve the world’s most important food crop—rice. The genus is composed of two domesticated (O. sativa and O. glaberrima) and 22 wild species and represents between 15 and 25 million years of evolutionary diversification.

Keywords

Wild Species Introgression Line International Rice Research Institute Acid Sulfate Soil Rice Yellow Mottle Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported in part by the following USA National Science Foundation Grants #MCB1026200, DBI0822284, IOS0638541, DBI0321678, and the Bud Antle Endowed Chair for Excellence to RAW. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. DSB would like to thank IRRI’s wide hybridization team and NARES partners for their support in the project.

References

  1. 1.
    Ali ML, Sanchez PL, Yu S et al (2010) Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa L.). Rice 3(4):218–234CrossRefGoogle Scholar
  2. 2.
    Amante-Bordeos A, Sitch LA, Nelson R, Dalmacio RD, Oliva NP, Aswidinnoor H, Leung H (1992) Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice. Theor Appl Genet 84:345–354Google Scholar
  3. 3.
    Ammiraju JS, Fan C, Yu Y, Song X, Cranston KA, Pontaroli AC, Lu F, Sanyal A, Jiang N, Rambo T et al (2010) Spatio-temporal patterns of genome evolution in allotetraploid species of the genus Oryza. Plant J 63:430–442CrossRefGoogle Scholar
  4. 4.
    Ammiraju JS, Lu F, Sanyal A, Yu Y, Song X, Jiang N, Pontaroli AC, Rambo T, Currie J, Collura K et al (2008) Dynamic evolution of Oryza genomes is revealed by comparative genomic analysis of a genus-wide vertical data set. Plant Cell 20:3191–3209PubMedCrossRefGoogle Scholar
  5. 5.
    Ammiraju JS, Luo M, Goicoechea JL, Wang W, Kudrna D, Mueller C, Talag J, Kim H, Sisneros NB, Blackmon B et al (2006) The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 16:140–147PubMedCrossRefGoogle Scholar
  6. 6.
    Ammiraju JS, Song X, Luo M, Sisneros N, Angelova A, Kudrna D, Kim HR, Yu Y, Goicoechea JL, Lorieux M et al (2010) The Oryza BAC resource: a genus-wide and genome scale tool for exploring rice genome evolution and leveraging useful genetic diversity from wild relatives. Breed Sci 60:536–543CrossRefGoogle Scholar
  7. 7.
    Ammiraju JS, Zuccolo A, Yu Y, Song X, Piegu B, Chevalier F, Walling JG, Ma J, Talag J, Brar DS et al (2007) Evolutionary dynamics of an ancient retrotransposon family provides insights into evolution of genome size in the genus Oryza. Plant J 52:342–351PubMedCrossRefGoogle Scholar
  8. 8.
    Bimpong IK (2005) Evaluation of Oryza sativa x O. glaberrima derived progenies for resistance to root knot nematode and identification of introgressed alien chromosome segments using SSR markers. MSc Thesis, University of the Philippines, Los Baños (UPLB), Laguna (unpublished)Google Scholar
  9. 9.
    Bimpong IK (2009) Identification and mapping of QTLs for drought tolerance introgressed from Oryza glaberrima Steud. into indica rice (O. sativa L.). PhD Thesis, University of the Philippines, Los Baños (UPLB), Laguna (unpublished)Google Scholar
  10. 10.
    Bimpong IK, Serraj R, Chin JH, Ramos J, Mendoza EMT, Hernandez JE, Mendioro MS, Brar DS (2011) Identification of QTLs for drought related traits in alien introgression lines derived from crosses of rice (Oryza sativa cv.IR64) and O. glaberrima under low land moisture stress. J Plant Biol 54:237–250CrossRefGoogle Scholar
  11. 11.
    Brar DS, Dalmacio R, Elloran R, Aggarwal R, Angeles R, Khush GS (1996) Gene transfer and molecular characterization of introgression from wild Oryza species into rice. In: Rice genetics, vol 3. IRRI, Manila, Philippines, pp 477–486Google Scholar
  12. 12.
    Brar DS, Elloran R, Khush GS (1991) Interspecific hybrids produced through embryo rescue between cultivated and eight wild species of rice. Rice Genet Newsl 8:91–93Google Scholar
  13. 13.
    Brar DS, Elloran RM, Talag JD, Abbasi F, Khush GS (1997) Cytogenetic and molecular characterization of an intergeneric hybrid between Oryza sativa L. and Porteresia coarctata (Roxb.) Tateoka. Rice Genet Newsl 14:43–44Google Scholar
  14. 14.
    Brar DS, Khush GS (1986) Wide hybridization and chromosome manipulation in cereals. In: Evans DH, Sharp WR, Ammirato PV (eds) Handbook of plant cell culture, vol 4, Techniques and applications. Macmillan, New York, pp 221–263Google Scholar
  15. 15.
    Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35:35–47PubMedCrossRefGoogle Scholar
  16. 16.
    Brar DS, Khush GS (2002) Transferring genes from wild species into rice. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CABI, Wallingford, pp 197–217Google Scholar
  17. 17.
    Brar DS, Khush GS (2006) Cytogenetic manipulation and germplasm enhancement of rice (Oryza sativa L.). In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering and crop improvement. CRC Press, Boca Raton, FL, pp 115–158CrossRefGoogle Scholar
  18. 18.
    Brar DS, Singh K (2011) Oryza. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals. Springer, Berlin, pp 321–365CrossRefGoogle Scholar
  19. 19.
    Cheema KK, Grewal NK, Vikal Y, Das A, Sharma R, Lore JS, Bhatia D, Mahajan R, Gupta V, Singh K (2008) A novel bacterial blight resistance gene from Oryza nivara mapped to 38 Kbp region on chromosome 4L and transferred to O. sativa L. Genet Res 90:397–407CrossRefGoogle Scholar
  20. 20.
    Doi K, Iwata N, Yoshimura A (1997) The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of japonica rice (O. sativa L.). Rice Genet Newsl 14:39–41Google Scholar
  21. 21.
    Doi K, Sobrizal, Ikeda K, Sanchez PL, Kurakazu T, Nagai Y, Yoshimura A (2002) Developing and evaluating rice chromosome segment substitution lines In: Proceedings of the international rice research conference, Beijing, pp 289–296, 16–19 Sept 2002Google Scholar
  22. 22.
    Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218CrossRefGoogle Scholar
  23. 23.
    Fujita D, Doi K, Yoshimura A, Yasui H (2003) Mapping new resistance gene for green rice leafhopper introgressed from Oryza rufipogon Griff. into cultivated rice, Oryza sativa L. Rice Genet Newsl 20:79Google Scholar
  24. 24.
    Fujita D, Doi K, Yoshimura A, Yasui H (2004) Introgression of a resistance gene for green leafhopper from Oryza nivara into cultivated rice, Oryza sativa L. Rice Genet Newsl 21:64Google Scholar
  25. 25.
    Ge S, Sang T, Lu BR et al (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci U S A 96(25):14400–14405PubMedCrossRefGoogle Scholar
  26. 26.
    Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100PubMedCrossRefGoogle Scholar
  27. 27.
    Gutiérrez AG, Carabalí SJ, Giraldo OX, Martínez CP, Correa F, Prado G, Tohme J, Lorieux M (2010) Identification of a rice stripe necrosis virus resistance locus and yield component QTLs using Oryza sativa × O. glaberrima introgression lines. BMC Plant Biol 10(1):6PubMedCrossRefGoogle Scholar
  28. 28.
    Hirabayashi H, Kaji R, Okamoto M, Ogawa T, Brar DS, Angeles ER, Khush GS (2003) Mapping QTLs for brown planthopper (BPH) resistance introgressed from O. officinalis in rice. In: Khush GS, Brar DS, Hardy B (eds) Advances in rice genetics. International Rice Research Institute, Manila, pp 268–270Google Scholar
  29. 29.
    Holt C, Yandell M (2011) MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12:491PubMedCrossRefGoogle Scholar
  30. 30.
    Huang Z, He G, Shu L, Li X, Zhang Q (2001) Identification and mapping of two brown planthopper resistance genes in rice. Theor Appl Genet 102: 929–934CrossRefGoogle Scholar
  31. 31.
    Hurwitz BL, Kudrna D, Yu Y, Sebastian A, Zuccolo A, Jackson SA, Ware D, Wing RA, Stein L (2010) Rice structural variation: a comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza. Plant J 63(6):990–1003PubMedCrossRefGoogle Scholar
  32. 32.
    Imai I, McCouch SR, McClung AM (2011) NILs associated with yield enhancement of Oryza sativa x O. rufipogon cross. In: Plant & animals genomes XIX conference, Town & Country Convention Center, San Diego, CAGoogle Scholar
  33. 33.
    International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  34. 34.
    Ishii T, Brar DS, Multani DS, Khush GS (1994) Molecular tagging of genes for brown planthopper resistance and earliness introgressed from Oryza australiensis into cultivated rice, O. sativa. Genome 37:217–221PubMedCrossRefGoogle Scholar
  35. 35.
    Jelodar NB, Blackhall NW, Hartman TPV, Brar DS, Khush GS, Davey MR, Cocking EC, Power JB (1999) Intergeneric somatic hybrids of rice [Oryza sativa L. (+) Porteresia coarctata (Roxb.) Tateoka]. Theor Appl Genet 99:570–577PubMedCrossRefGoogle Scholar
  36. 36.
    Jena KK, Jeung JU, Lee JH, Choi HC, Brar DS (2006) High-resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theor Appl Genet 112:288–297PubMedCrossRefGoogle Scholar
  37. 37.
    Jena KK, Khush GS (1990) Introgression of genes from Oryza offficinalis Well ex Watt to cultivated rice, O. sativa L. Theor Appl Genet 80:737–745CrossRefGoogle Scholar
  38. 38.
    Jeung JU, Kim BR, Cho YC, Han SS, Moon HP, Lee YT, Jena KK (2007) A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet 115:1163–1177PubMedCrossRefGoogle Scholar
  39. 39.
    Jones MP, Dingkuhn M, Aluko GK, Semon M (1997) Interspecific Oryza sativa L. x O. glaberrima Steud. progenies in upland rice improvement. Euphytica 92:237–246CrossRefGoogle Scholar
  40. 40.
    Khush GS (1977) Disease and insect resistance in rice. Adv Agron 29:265–341CrossRefGoogle Scholar
  41. 41.
    Kim H, Hurwitz B, Yu Y, Collura K, Gill N, SanMiguel P, Mullikin JC, Maher C, Nelson W, Wissotski M et al (2008) Construction, alignment and analysis of twelve framework physical maps that represent the ten genome types of the genus Oryza. Genome Biol 9(2):R45PubMedCrossRefGoogle Scholar
  42. 42.
    Kimball JA, Moon S, McCouch SR, McClung AM (2009) Oryza rufipogon introgressions improve yield in the U.S. cultivar Jefferson. In: Proceedings of the sixth international rice genetics symposium, Manila, 16–19 Nov 2009Google Scholar
  43. 43.
    Kurakazu T, Sobrizal, Ikeda K, Sanchez PL, Doi K, Angeles ER, Khush GS, Yoshimura A (2001) Oryza meridionalis chromosomal segment introgression lines in cultivated rice, O. sativa L. Rice Genet Newsl 18:81–82Google Scholar
  44. 44.
    Lin SC, Yuan LP (1980) Hybrid rice breeding in China. In: Innovative approaches to rice breeding. International Rice Research Institute, Manila, Philippines pp 35–51Google Scholar
  45. 45.
    Lu F, Ammiraju JS, Sanyal A, Zhang S, Song R, Chen J, Li G, Sui Y, Song X, Cheng Z, de Oliveira AC, Bennetzen JL, Jackson SA, Wing RA, Chen M (2009) Proc Natl Acad Sci U S A 106(6):2071–2076PubMedCrossRefGoogle Scholar
  46. 46.
    Matsushita S, Kurakazu T, Sobrizal, Doi K, Yoshimura A (2003) Mapping genes for awn in rice using Oryza meridionalis introgression lines. Rice Genet Newsl 20:17Google Scholar
  47. 47.
    McCouch SR, Sweeny M, Li J, Jiang H, Thomson M, Septiningsih E, Edwards J, Moncada P, Xiao J, Garris A, Tai T, Martinez C, Tohme J, Sugiono M, McClung A, Yuan LP, Ahn SN (2007) Through the genetic bottleneck: O. rufipogon as a source of trait enhancing alleles for O. sativa. Euphytica 154:317–399CrossRefGoogle Scholar
  48. 48.
    Moncada P, Martinez CP, Borrero J, Chatel M, Gauch H Jr, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa x Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52CrossRefGoogle Scholar
  49. 49.
    Multani DS, Jena KK, Brar DS, delos Reyes BC, Angeles ER, Khush GS (1994) Development of monosomic alien addition lines and introgression of genes from Oryza australiensis Domin. to cultivated rice O. sativa L. Theor Appl Genet 88:102–109CrossRefGoogle Scholar
  50. 50.
    Multani DS, Khush GS, Delos Reyes BG, Brar DS (2003) Alien genes introgression and development of monosomic alien additional lines from Oryza latifolia Desv. to rice. Theor Appl Genet 107:395–405PubMedCrossRefGoogle Scholar
  51. 51.
    Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT (2003) Identification and mapping of the QTL for aluminum tolerance introgressed from new source, Oryza rufipogon Griff. into indica rice, (Oryza sativa L.). Theor Appl Genet 106:583–593PubMedGoogle Scholar
  52. 52.
    Parker J (2011) The 9 billion-people question. The Economist, 24 Feb 2011Google Scholar
  53. 53.
    Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA et al (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269PubMedCrossRefGoogle Scholar
  54. 54.
    Rahman ML, Jiang W, Chu SH, Qiao Y, Ham T-H, Woo M-O, Lee J, Khanam MS, Chin J-H, Jeung J-U, Brar DS, Jena KK, Koh H-J (2009) High-resolution mapping of two rice brown planthopper resistance genes, Bph20(t) and Bph21(t), originating from Oryza minuta. Theor Appl Genet 119:1237–1246PubMedCrossRefGoogle Scholar
  55. 55.
    Ram T, Majumder ND, Krishnaveni D, Ansari MM (2007) Rice variety Dhanarasi, an example of improving yield potential and disease resistance by introgressing gene(s) from wild species (O. rufipogon). Curr Sci 92:987–992Google Scholar
  56. 56.
    Ram T, Majumder ND, Mishra B, Ansari MM, Padmavathi G (2007) Introgression of broad spectrum blast resistance gene(s) into cultivated rice (Oryza sativa ssp indica) from wild rice, O. rufipogon. Curr Sci 92:225–230Google Scholar
  57. 57.
    Rangel PN, Brondani RPV, Rangel PHN, Brondani C (2008) Agronomic and molecular characterization of introgression lines from the interspecific cross Oryza sativa (BG90-2) × Oryza glumaepatula (RS-16). Genet Mol Res 7:184–195PubMedCrossRefGoogle Scholar
  58. 58.
    Sanchez PL, Kurakazu T, Hirata C, Sobrizal, Yoshimura A (2002) Identification and mapping of seed shattering genes using introgression lines from wild rice species. Rice Genet Newsl 19:78Google Scholar
  59. 59.
    Sanchez PL, Sobrizal, Ikeda K, Yasui H, Yoshimura A (2001) RFLP mapping of genes controlling heading date found in Oryza glumaepatula Steud. introgression lines in rice. Rice Genet Newsl 18:57Google Scholar
  60. 60.
    Septiningsih EM, Prasetiyano J, Lubis E, Tai TH, Tjurbayat T, Moeljopawiro S et al (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432PubMedCrossRefGoogle Scholar
  61. 61.
    Sitch LA (1990) Incompatibility barriers operating in crosses of Oryza sativa with related species and genera. In: Gustafson JP (ed) Genetic manipulation in plant improvement II. Plenum Press, New York, pp 77–94CrossRefGoogle Scholar
  62. 62.
    Sobrizal, Ikeda K, Sanchez PL, Doi K, Angeles ER, Khush GS, Yoshimura A (1996) Development of Oryza glumaepatula introgression lines in rice, O. sativa L. Rice Genet Newsl 16:107–108Google Scholar
  63. 63.
    Sobrizal, Yoshimura A (2002) Mapping of genes for slender kernel using Oryza glumaepatula introgression lines in rice. Rice Genet Newsl 19:40Google Scholar
  64. 64.
    Tan L, Liu F, Xue W, Wang G, Ye S, Zhu Z, Fu Y, Wang X, Sun C (2007) Development of Oryza rufipogon and O. sativa introgression lines and assessment for yield-related quantitative trait loci. J Integr Plant Biol 49:871–884CrossRefGoogle Scholar
  65. 65.
    Thomson MJ, Tai TH, McClung AM, Lai X-H, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493PubMedCrossRefGoogle Scholar
  66. 66.
    Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK, Sun CQ (2006) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet 112:570–580PubMedCrossRefGoogle Scholar
  67. 67.
    Tung C-W, Zhao K, Wright M, Ali ML, Jung J, Kimball J, Tyagi W, Thomson MJ, McNally K, Leung H, Kim H, Ahn SN, Reynolds A, Scheffler B, Eizenga G, McClung A, Bustamante C, McCouch SR (2010) Development of a research platform for dissecting phenotype-genotype associations in rice (Oryza spp.). Rice 3:205–217CrossRefGoogle Scholar
  68. 68.
    Vaughan DA (1994) The wild relatives of rice: a genetic resources handbook. International Rice Research Institute, Manila, p 137Google Scholar
  69. 69.
    Wing RA, Kim HR, Goicoexhea JL, Yu Y, Kudrna D, Zuccolo A, Ammiraju JSS, Luo M, Nelson W, Ma J, SanMiguel P, Hurwitz B, Ware D, Brar D, Mackill DJ, Soderlund C, Stein L, Jackson S (2007) The Oryza map alignment project (OMAP): a new resource for 700 comparative genome studies within Oryza. In: Upadhyaya NM (ed) Rice functional genomics: challenges, progress and prospects. Springer, New York, pp 395–409CrossRefGoogle Scholar
  70. 70.
    Xiao J, Grandillo S, Ahn SN, McCouch SR, Tanksley SD, Li J, Yuan L (1996) Genes from wild rice improve yield. Nature 384:223–224CrossRefGoogle Scholar
  71. 71.
    Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909PubMedGoogle Scholar
  72. 72.
    Xie X, Song MH, Jin F, Ahn SN, Suh JP, Hwang H-G, McCouch SR (2006) Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theor Appl Genet 113:885–894PubMedCrossRefGoogle Scholar
  73. 73.
    Yoon DB, Kang KH, Kim HJ, Ju HG, Kwon SJ, Suh JP, Jeong OY, Ahn SN (2006) Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo. Theor Appl Genet 112:1052–1062PubMedCrossRefGoogle Scholar
  74. 74.
    Yoshimura A, Nagayama H, Sobrizal et al (2010) Introgression lines of rice (Oryza sativa L.) carrying a donor genome from the wild species, O. glumaepatula Steud. and O. meridionalis Ng. Breed Sci 60(5): 597–603CrossRefGoogle Scholar
  75. 75.
    Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang Q (2007) Strategies for developing Green Super Rice. Proc Natl Acad Sci U S A 104:16402–16409PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Paul L. Sanchez
    • 1
  • Rod A. Wing
    • 2
  • Darshan S. Brar
    • 3
    • 4
  1. 1.School of Plant Sciences, Arizona Genomics Institute (AGI)The University of ArizonaTucsonUSA
  2. 2.The Arizona Genomics Institute, School of Plant Sciences & Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA
  3. 3.Punjab Agricultural University (PAU)LudhianaIndia
  4. 4.International Rice Research Institute (IRRI)Los BañosPhilippines

Personalised recommendations