Skip to main content

Panicle Development

  • Chapter
  • First Online:

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 5))

Abstract

Rice evolved a diversified determinate inflorescence (also called panicle), and rice panicle development includes high orderly and complex biological events including the formation of lateral branches and spikelet organs. Understanding the mechanism of rice panicle morphogenesis is of importance in fundamental biology and helpful for crop improvement. In this chapter, we summarize the recent understanding of genetic regulators in determining rice panicle development ranging from the initiation of inflorescence, specification of lateral branches, spikelet organs, and reproductive cell formation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Itoh J, Nonomura K, Ikeda K et al (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46(1):23–47

    Article  PubMed  CAS  Google Scholar 

  2. Yuan Z, Gao S, Xue DW et al (2009) RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiol 149(1):235–244

    Article  PubMed  CAS  Google Scholar 

  3. Zhang D, Wilson Z (2009) Stamen specification and anther development in rice. Chin Sci Bull 54(14):2342–2353

    Article  CAS  Google Scholar 

  4. Kim SL, Lee S, Kim HJ, Nam HG, An G (2007) OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol 145(4):1484–1494

    Article  PubMed  CAS  Google Scholar 

  5. Yoshida H, Nagato Y (2011) Flower development in rice. J Exp Bot 62(14):4719–4730

    Article  PubMed  CAS  Google Scholar 

  6. Endo-Higashi N, Izawa T (2011) Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol 52(6):1083–1094

    Article  PubMed  CAS  Google Scholar 

  7. Izawa T, Takahashi Y, Yano M (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol 6(2):113–120

    Article  PubMed  CAS  Google Scholar 

  8. Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135(4):767–774

    Article  PubMed  CAS  Google Scholar 

  9. Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316(5827):1033–1036

    Article  PubMed  CAS  Google Scholar 

  10. Yano M, Katayose Y, Ashikari M et al (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12(12):2473–2484

    PubMed  CAS  Google Scholar 

  11. Doi K, Izawa T, Fuse T et al (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18(8):926–936

    Article  PubMed  CAS  Google Scholar 

  12. Itoh H, Nonoue Y, Yano M, Izawa T (2010) A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet 42(7):635–638

    Article  PubMed  CAS  Google Scholar 

  13. Xue W, Xing Y, Weng X et al (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40(6):761–767

    Article  PubMed  CAS  Google Scholar 

  14. Lee S, Kim J, Han J-J, Han M-J, An G (2004) Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38(5):754–764

    Article  PubMed  CAS  Google Scholar 

  15. Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G (2009) OsMADS50 and OsMADS56 function antagonistically in regulating LD-dependent flowering in rice. Plant Cell Environ 32(10):1412–1427

    Article  PubMed  CAS  Google Scholar 

  16. Ingram GC, Goodrich J, Wilkinson MD, Simon R, Haughn GW, Coen ES (1995) Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell 7(9):1501–1510

    PubMed  CAS  Google Scholar 

  17. Thompson BE, Hake S (2009) Translational biology: from Arabidopsis flowers to grass inflorescence architecture. Plant Physiol 149(1):38–45

    Article  PubMed  CAS  Google Scholar 

  18. Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano HY (2004) The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development 131(22):5649–5657

    Article  PubMed  CAS  Google Scholar 

  19. Bommert P, Lunde C, Nardmann J et al (2005) thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132(6):1235–1245

    Article  PubMed  CAS  Google Scholar 

  20. Chu H, Qian Q, Liang WQ et al (2006) The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiol 142(3):1039–1052

    Article  PubMed  CAS  Google Scholar 

  21. Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, Hirano HY (2006) Conservation and diversification of meristem maintenance mechanism in Oryza sativa: function of the FLORAL ORGAN NUMBER2 gene. Plant Cell Physiol 47(12):1591–1602

    Article  PubMed  CAS  Google Scholar 

  22. Chu H, Zhang D (2007) The shoot apical meristem size regulated by FON4 in rice. Plant Signal Behav 2(2):115–116

    Article  PubMed  Google Scholar 

  23. Zhang X, Zong J, Liu J, Yin J, Zhang D (2010) Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar. J Integr Plant Biol 52(11):1016–1026

    Article  PubMed  CAS  Google Scholar 

  24. Dai M, Hu Y, Zhao Y, Liu H, Zhou DX (2007) A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Plant Physiol 144(1):380–390

    Article  PubMed  CAS  Google Scholar 

  25. Nardmann J, Werr W (2006) The shoot stem cell niche in angiosperms: expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution. Mol Biol Evol 23(12):2492–2504

    Article  PubMed  CAS  Google Scholar 

  26. Barazesh S, McSteen P (2008) Hormonal control of grass inflorescence development. Trends Plant Sci 13(12):656–662

    Article  PubMed  CAS  Google Scholar 

  27. Kurakawa T, Ueda N, Maekawa M et al (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445(7128):652–655

    Article  PubMed  CAS  Google Scholar 

  28. Ashikari M, Sakakibara H, Lin S et al (2005) Cytokinin oxidase regulates rice grain production. Science 309(5735):741–745

    Article  PubMed  CAS  Google Scholar 

  29. Wang Y, Li J (2005) The plant architecture of rice (Oryza sativa). Plant Mol Biol 59(1):75–84

    Article  PubMed  CAS  Google Scholar 

  30. Furutani I, Sukegawa S, Kyozuka J (2006) Genome-wide analysis of spatial and temporal gene expression in rice panicle development. Plant J 46(3):503–511

    Article  PubMed  CAS  Google Scholar 

  31. Johnson C, Kasprzewska A, Tennessen K et al (2009) Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19(8):1429–1440

    Article  PubMed  CAS  Google Scholar 

  32. Rao NN, Prasad K, Kumar PR, Vijayraghavan U (2008) Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci U S A 105(9):3646–3651

    Article  PubMed  CAS  Google Scholar 

  33. Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130(16):3841–3850

    Article  PubMed  CAS  Google Scholar 

  34. Komatsu M, Maekawa M, Shimamoto K, Kyozuka J (2001) The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol 231(2):364–373

    Article  PubMed  CAS  Google Scholar 

  35. Zhu QH, Hoque MS, Dennis ES, Upadhyaya NM (2003) Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L). BMC Plant Biol 3:6

    Article  PubMed  Google Scholar 

  36. Tabuchi H, Zhang Y, Hattori S et al (2011) LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell 23(9):3276–3287

    Article  PubMed  CAS  Google Scholar 

  37. Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465

    Article  PubMed  CAS  Google Scholar 

  38. Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80

    Article  PubMed  CAS  Google Scholar 

  39. McSteen P (2009) Hormonal regulation of branching in grasses. Plant Physiol 149(1):46–55

    Article  PubMed  CAS  Google Scholar 

  40. Reinhardt D, Pesce ER, Stieger P et al (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426(6964):255–260

    Article  PubMed  CAS  Google Scholar 

  41. Gallavotti A, Yang Y, Schmidt RJ, Jackson D (2008) The Relationship between auxin transport and maize branching. Plant Physiol 147(4):1913–1923

    Article  PubMed  CAS  Google Scholar 

  42. Heisler MG, Ohno C, Das P et al (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15(21):1899–1911

    Article  PubMed  CAS  Google Scholar 

  43. Oikawa T, Kyozuka J (2009) Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice. Plant Cell 21(4):1095–1108

    Article  PubMed  CAS  Google Scholar 

  44. Greb T, Clarenz O, Schafer E et al (2003) Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev 17(9):1175–1187

    Article  PubMed  CAS  Google Scholar 

  45. Li X, Qian Q, Fu Z et al (2003) Control of tillering in rice. Nature 422(6932):618–621

    Article  PubMed  CAS  Google Scholar 

  46. Samach A, Klenz JE, Kohalmi SE, Risseeuw E, Haughn GW, Crosby WL (1999) The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J 20(4):433–445

    Article  PubMed  CAS  Google Scholar 

  47. Wilkinson M, Haughn G (1995) UNUSUAL FLORAL ORGANS controls meristem identity and organ primordia fate choice in Arabidopsis. Plant Cell 7:1485–1499

    PubMed  CAS  Google Scholar 

  48. Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y (2007) Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J 51(6):1030–1040

    Article  PubMed  CAS  Google Scholar 

  49. Ikeda K, Nagasawa N, Nagato Y (2005) ABERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice. Dev Biol 282(2):349–360

    Article  PubMed  CAS  Google Scholar 

  50. Zhang W, Xu Z, Chen W, Zhang L, Jin X, Wu X (2002) The research progress on erect panicle type of rice. J Shengyang Agric Univ 33(6):471–475

    CAS  Google Scholar 

  51. Huang X, Qian Q, Liu Z et al (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41(4):494–497

    Article  PubMed  CAS  Google Scholar 

  52. Yan CJ, Zhou JH, Yan S et al (2007) Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.). Theor Appl Genet 115(8):1093–1100

    Article  PubMed  CAS  Google Scholar 

  53. Yi X, Zhang Z, Zeng S et al (2011) Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (Oryza sativa L.). J Genet Genomics 38(5): 217–223

    Article  PubMed  CAS  Google Scholar 

  54. Zhou Y, Zhu J, Li Z et al (2009) Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 183(1):315–324

    Article  PubMed  CAS  Google Scholar 

  55. Zhu K, Tang D, Yan C et al (2010) Erect panicle2 encodes a novel protein that regulates panicle erectness in indica rice. Genetics 184(2):343–350

    Article  PubMed  CAS  Google Scholar 

  56. Qiao Y, Piao R, Shi J et al (2011) Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet 122(7):1439–1449

    Article  PubMed  Google Scholar 

  57. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353(6339):31–37

    Article  PubMed  CAS  Google Scholar 

  58. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405(6783):200–203

    Article  PubMed  CAS  Google Scholar 

  59. Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4(1):75–85

    Article  PubMed  CAS  Google Scholar 

  60. Liu C, Xi W, Shen L, Tan C, Yu H (2009) Regulation of floral patterning by flowering time genes. Dev Cell 16(5):711–722

    Article  PubMed  CAS  Google Scholar 

  61. Malcomber ST, Kellogg EA (2004) Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell 16(7):1692–1706

    Article  PubMed  CAS  Google Scholar 

  62. Malcomber ST, Kellogg EA (2005) SEPALLATA gene diversification: brave new whorls. Trends Plant Sci 10(9):427–435

    Article  PubMed  CAS  Google Scholar 

  63. Zahn LM, Kong H, Leebens-Mack JH et al (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169(4):2209–2223

    Article  PubMed  CAS  Google Scholar 

  64. Arora R, Agarwal P, Ray S et al (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242–262

    Article  PubMed  CAS  Google Scholar 

  65. Gao X, Liang W, Yin C et al (2010) The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol 153(2):728–740

    Article  PubMed  CAS  Google Scholar 

  66. Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J (2010) PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol 51(1):47–57

    Article  PubMed  CAS  Google Scholar 

  67. Li M, Tang D, Wang K et al (2011) Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J 9(9):1002–1013

    Article  PubMed  CAS  Google Scholar 

  68. Li S, Qian Q, Fu Z et al (2009) Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J 58(4):592–605

    Article  PubMed  CAS  Google Scholar 

  69. Hong JP, Byun MY, Koo DH et al (2007) Suppression of RICE TELOMERE BINDING PROTEIN 1 results in severe and gradual developmental defects accompanied by genome instability in rice. Plant Cell 19(6):1770–1781

    Article  PubMed  CAS  Google Scholar 

  70. Bommert P, Satoh-Nagasawa N, Jackson D, Hirano HY (2005) Genetics and evolution of inflorescence and flower development in grasses. Plant Cell Physiol 46(1):69–78

    Article  PubMed  CAS  Google Scholar 

  71. Zanis MJ (2007) Grass spilelet genetics and duplicate gene comparisions. Int J Plant Sci 168(1):93–110

    Article  CAS  Google Scholar 

  72. Li H, Xue D, Gao Z et al (2009) A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice. Plant J 57(4):593–605

    Article  PubMed  CAS  Google Scholar 

  73. Arber A (1934) The gramineae: a study of cereal, bamboo, and grass. Cambridge University Press, Cambridge, UK

    Google Scholar 

  74. Takeoka Y, Shimizu M, Wada T (1993) Panicles. In: Matsuo T, Hoshikawa K (eds) Science of the rice plant morphology, vol 1. Food and Agriculture Policy Research Center, Tokyo, pp 295–338

    Google Scholar 

  75. Hong L, Qian Q, Zhu K et al (2010) ELE restrains empty glumes from developing into lemmas. J Genet Genomics 37(2):101–115

    Article  PubMed  CAS  Google Scholar 

  76. Yoshida A, Suzaki T, Tanaka W, Hirano HY (2009) The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proc Natl Acad Sci U S A 106(47):20103–20108

    PubMed  CAS  Google Scholar 

  77. Lee DY, Lee J, Moon S, Park SY, An G (2007) The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J 49(1):64–78

    Article  PubMed  CAS  Google Scholar 

  78. Lee DY, An G (2012) Two AP2 family genes, supernumerary bract (SNB) and Osindeterminate spikelet 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. Plant J 69(3):445–461

    Article  PubMed  CAS  Google Scholar 

  79. Zhu QH, Upadhyaya NM, Gubler F, Helliwell CA (2009) Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol 9:149

    Article  PubMed  CAS  Google Scholar 

  80. Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol 41(6):710–718

    Article  PubMed  CAS  Google Scholar 

  81. Kater MM, Dreni L, Colombo L (2006) Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57(13):3433–3444

    Article  PubMed  CAS  Google Scholar 

  82. Preston JC, Kellogg EA (2006) Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). Genetics 174(1):421–437

    Article  PubMed  CAS  Google Scholar 

  83. Prusinkiewicz P, Erasmus Y, Lane B, Harder LD, Coen E (2007) Evolution and development of inflorescence architectures. Science 316(5830):1452–1456

    Article  PubMed  CAS  Google Scholar 

  84. Reinheimer R, Zuloaga FO, Vegetti AC, Pozner R (2009) Diversification of inflorescence development in the PCK clade (Poaceae: Panicoideae: Paniceae). Am J Bot 96(3):549–564

    Article  PubMed  Google Scholar 

  85. Ciaffi M, Paolacci AR, Tanzarella OA, Porceddu E (2011) Molecular aspects of flower development in grasses. Sex Plant Reprod 30:247–282

    Article  CAS  Google Scholar 

  86. Abebe T, Skadsen RW, Kaeppler HF (2004) Cloning and identification of highly expressed genes in barley lemma and palea. Crop Sci 44:942–950

    Article  CAS  Google Scholar 

  87. Ikeda K, Nagasawa N, Nagato Y (2004) Developmental course of inflorescence and spikelet in rice. Breed Sci 54:147–156

    Article  Google Scholar 

  88. Prasad K, Parameswaran S, Vijayraghavan U (2005) OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs. Plant J 43(6):915–928

    Article  PubMed  CAS  Google Scholar 

  89. Wang N, Sang XC, Li YF et al (2010) Identification and gene mapping of a novel mutant supernumerary lodicules (snl) in rice. J Integr Plant Biol 52(3):265–272

    Article  PubMed  CAS  Google Scholar 

  90. Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360(6401):273–277

    Article  PubMed  CAS  Google Scholar 

  91. Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6(9):1211–1225

    PubMed  CAS  Google Scholar 

  92. Kobayashi K, Yasuno N, Sato Y et al (2012) Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. Plant Cell 24(5):1848–1859

    Article  PubMed  CAS  Google Scholar 

  93. Agrawal GK, Abe K, Yamazaki M, Miyao A, Hirochika H (2005) Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Mol Biol 59(1):125–135

    Article  PubMed  CAS  Google Scholar 

  94. Chen ZX, Wu JG, Ding WN, Chen HM, Wu P, Shi CH (2006) Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice. Planta 223(5):882–890

    Article  PubMed  CAS  Google Scholar 

  95. Jeon JS, Jang S, Lee S et al (2000) leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12(6):871–884

    PubMed  CAS  Google Scholar 

  96. Li H, Liang W, Jia R et al (2010) The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Res 20(3):299–313

    Article  PubMed  CAS  Google Scholar 

  97. Ohmori S, Kimizu M, Sugita M et al (2009) MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice. Plant Cell 21(10):3008–3025

    Article  PubMed  CAS  Google Scholar 

  98. Li H, Liang W, Yin C, Zhu L, Zhang D (2011) Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. Plant Physiol 156(1):263–274

    Article  PubMed  CAS  Google Scholar 

  99. Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16(2):500–509

    Article  PubMed  CAS  Google Scholar 

  100. Jin Y, Luo Q, Tong H et al (2011) An AT-hook gene is required for palea formation and floral organ number control in rice. Dev Biol 359(2):277–288

    Article  PubMed  CAS  Google Scholar 

  101. Luo Q, Zhou K, Zhao X et al (2005) Identification and fine mapping of a mutant gene for palealess spikelet in rice. Planta 221(2):222–230

    Article  PubMed  CAS  Google Scholar 

  102. Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell 5(3):569–579

    Article  PubMed  CAS  Google Scholar 

  103. Nagasawa N, Miyoshi M, Sano Y et al (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130(4):705–718

    Article  PubMed  CAS  Google Scholar 

  104. Whipple CJ, Ciceri P, Padilla CM, Ambrose BA, Bandong SL, Schmidt RJ (2004) Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131(24):6083–6091

    Article  PubMed  CAS  Google Scholar 

  105. Kang HG, Jeon JS, Lee S, An G (1998) Identification of class B and class C floral organ identity genes from rice plants. Plant Mol Biol 38(6):1021–1029

    Article  PubMed  CAS  Google Scholar 

  106. Yao SG, Ohmori S, Kimizu M, Yoshida H (2008) Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development. Plant Cell Physiol 49(5):853–857

    Article  PubMed  CAS  Google Scholar 

  107. Xiao H, Tang J, Li Y et al (2009) STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice. Plant J 59(5):789–801

    Article  PubMed  CAS  Google Scholar 

  108. Kramer EM, Jaramillo MA, Di Stilio VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166(2):1011–1023

    Article  PubMed  CAS  Google Scholar 

  109. Zahn LM, Leebens-Mack JH, Arrington JM et al (2006) Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events. Evol Dev 8(1):30–45

    Article  PubMed  CAS  Google Scholar 

  110. Dreni L, Pilatone A, Yun D et al (2011) Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy. Plant Cell 23(8):2850–2863

    Article  PubMed  CAS  Google Scholar 

  111. Hu L, Liang W, Yin C et al (2011) Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell 23(2):515–533

    Article  PubMed  CAS  Google Scholar 

  112. Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G, Hirano HY (2006) Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 18(1): 15–28

    Article  PubMed  CAS  Google Scholar 

  113. Dreni L, Jacchia S, Fornara F et al (2007) The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant J 52(4):690–699

    Article  PubMed  CAS  Google Scholar 

  114. Yamaki S, Nagato Y, Kurata N, Nonomura K (2011) Ovule is a lateral organ finally differentiated from the terminating floral meristem in rice. Dev Biol 351(1):208–216

    Article  PubMed  CAS  Google Scholar 

  115. Prasad K, Sriram P, Kumar CS, Kushalappa K, Vijayraghavan U (2001) Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Dev Genes Evol 211(6):281–290

    Article  PubMed  CAS  Google Scholar 

  116. Cui R, Han J, Zhao S et al (2010) Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J 61(5):767–781

    Article  PubMed  CAS  Google Scholar 

  117. Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29(3):464–489

    Article  PubMed  CAS  Google Scholar 

  118. Theissen G, Becker A, Di Rosa A et al (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42(1):115–149

    Article  PubMed  CAS  Google Scholar 

  119. Reinheimer R, Kellogg EA (2009) Evolution of AGL6-like MADS box genes in grasses (Poaceae): ovule expression is ancient and palea expression is new. Plant Cell 21(9):2591–2605

    Article  PubMed  CAS  Google Scholar 

  120. Rijpkema AS, Zethof J, Gerats T, Vandenbussche M (2009) The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Plant J 60(1):1–9

    Article  PubMed  CAS  Google Scholar 

  121. Schauer SE, Schluter PM, Baskar R et al (2009) Intronic regulatory elements determine the divergent expression patterns of AGAMOUS-LIKE6 subfamily members in Arabidopsis. Plant J 59(6):987–1000

    Article  PubMed  CAS  Google Scholar 

  122. Liu B, Chen Z, Song X et al (2007) Oryza sativa dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell 19(9):2705–2718

    Article  PubMed  CAS  Google Scholar 

  123. Sun Q, Zhou DX (2008) Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. Proc Natl Acad Sci U S A 105(36):13679–13684

    Article  PubMed  CAS  Google Scholar 

  124. Chang F, Wang Y, Wang S, Ma H (2011) Molecular control of microsporogenesis in Arabidopsis. Curr Opin Plant Biol 14(1):66–73

    Article  PubMed  CAS  Google Scholar 

  125. Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434

    Article  PubMed  CAS  Google Scholar 

  126. Mercier R, Grelon M (2008) Meiosis in plants: ten years of gene discovery. Cytogenet Genome Res 120(3–4):281–290

    Article  PubMed  CAS  Google Scholar 

  127. Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16(Suppl):S46–60

    PubMed  CAS  Google Scholar 

  128. Singh MB, Bhalla PL (2007) Control of male germ-cell development in flowering plants. Bioessays 29(11):1124–1132

    Article  PubMed  CAS  Google Scholar 

  129. Wilson ZA, Zhang DB (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60(5):1479–1492

    Article  PubMed  CAS  Google Scholar 

  130. Zhang D, Luo X, Zhu L (2011) Cytological analysis and genetic control of rice anther development. J Genet Genomics 38(9):379–390

    Article  PubMed  CAS  Google Scholar 

  131. Fujita M, Horiuchi Y, Ueda Y et al (2010) Rice expression atlas in reproductive development. Plant Cell Physiol 51(12):2060–2081

    Article  PubMed  CAS  Google Scholar 

  132. Hobo T, Suwabe K, Aya K et al (2008) Various spatiotemporal expression profiles of anther-expressed genes in rice. Plant Cell Physiol 49(10):1417–1428

    Article  PubMed  CAS  Google Scholar 

  133. Huang MD, Wei FJ, Wu CC, Hsing YI, Huang AH (2009) Analyses of advanced rice anther transcriptomes reveal global tapetum secretory functions and potential proteins for lipid exine formation. Plant Physiol 149(2):694–707

    Article  PubMed  CAS  Google Scholar 

  134. Jiao Y, Tausta SL, Gandotra N et al (2009) A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 41(2):258–263

    Article  PubMed  CAS  Google Scholar 

  135. Suwabe K, Suzuki G, Takahashi H et al (2008) Separated transcriptomes of male gametophyte and tapetum in rice: validity of a laser microdissection (LM) microarray. Plant Cell Physiol 49(10):1407–1416

    Article  PubMed  CAS  Google Scholar 

  136. Tang X, Zhang ZY, Zhang WJ et al (2010) Global gene profiling of laser-captured pollen mother cells indicates molecular pathways and gene subfamilies involved in rice meiosis. Plant Physiol 154(4):1855–1870

    Article  PubMed  CAS  Google Scholar 

  137. Wang Z, Liang Y, Li C et al (2005) Microarray analysis of gene expression involved in anther development in rice (Oryza sativa L.). Plant Mol Biol 58(5):721–737

    Article  PubMed  CAS  Google Scholar 

  138. Wei LQ, Xu WY, Deng ZY, Su Z, Xue Y, Wang T (2010) Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics 11:338

    Article  PubMed  CAS  Google Scholar 

  139. Matsui T, Omasa K, Horie T (1999) Mechanism of anther dehiscence in rice (Oryza sativa L.). Ann Bot 84:501–506

    Article  Google Scholar 

  140. Huysmans S, El-Ghazaly G, Smets E (1998) Orbicules in angiosperms: morphology, function, distribution, and relation with tapetum types. Bot Rev 64(3):240–272

    Article  Google Scholar 

  141. Furness C, Rudall P (2001) The tapetum in basal angiosperms: early diversity. Int J Plant Sci 162(2):375–392

    Article  Google Scholar 

  142. Furness CA, Rudall PJ (1998) The tapetum and systematics in monocotyledons. Bot Rev 64:201–239

    Article  Google Scholar 

  143. Wu SS, Platt KA, Ratnayake C, Wang TW, Ting JT, Huang AH (1997) Isolation and characterization of neutral-lipid-containing organelles and globuli-filled plastids from Brassica napus tapetum. Proc Natl Acad Sci U S A 94(23):12711–12716

    Article  PubMed  CAS  Google Scholar 

  144. Li H, Pinot F, Sauveplane V et al (2010) Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22:173–190

    Article  PubMed  CAS  Google Scholar 

  145. Li H, Zhang D (2010) Biosynthesis of anther cuticle and pollen exine in rice. Plant Signal Behav 5(9):1121–1123

    Article  PubMed  CAS  Google Scholar 

  146. Nonomura K, Miyoshi K, Eiguchi M et al (2003) The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell 15(8):1728–1739

    Article  PubMed  CAS  Google Scholar 

  147. Wang Y, Wang YF, Zhang DB (2006) Identification of the rice (Oryza sativa L.) mutant msp1-4 and expression analysis of its UDT1 and GAMYB genes. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 32(5):527–534

    PubMed  CAS  Google Scholar 

  148. Zhao X, de Palma J, Oane R et al (2008) OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers. Plant J 54(3):375–387

    Article  PubMed  CAS  Google Scholar 

  149. Aya K, Ueguchi-Tanaka M, Kondo M et al (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21(5):1453–1472

    Article  PubMed  CAS  Google Scholar 

  150. Kaneko M, Inukai Y, Ueguchi-Tanaka M et al (2004) Loss-of-function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development. Plant Cell 16(1):33–44

    Article  PubMed  CAS  Google Scholar 

  151. Liu Z, Bao W, Liang W, Yin J, Zhang D (2010) Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. J Integr Plant Biol 52(7):670–678

    Article  PubMed  CAS  Google Scholar 

  152. Jung KH, Han MJ, Lee YS et al (2005) Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell 17(10):2705–2722

    Article  PubMed  CAS  Google Scholar 

  153. Nonomura K, Nakano M, Fukuda T et al (2004) The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell 16(4): 1008–1020

    Article  PubMed  CAS  Google Scholar 

  154. Nonomura K, Nakano M, Eiguchi M, Suzuki T, Kurata N (2006) PAIR2 is essential for homologous chromosome synapsis in rice meiosis I. J Cell Sci 119(Pt 2):217–225

    Article  PubMed  CAS  Google Scholar 

  155. Yuan W, Li X, Chang Y et al (2009) Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. Plant J 59(2):303–315

    Article  PubMed  CAS  Google Scholar 

  156. Nonomura K, Morohoshi A, Nakano M et al (2007) A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19(8):2583–2594

    Article  PubMed  CAS  Google Scholar 

  157. Zhang L, Tao J, Wang S, Chong K, Wang T (2006) The rice OsRad21-4, an orthologue of yeast Rec8 protein, is required for efficient meiosis. Plant Mol Biol 60(4):533–554

    Article  PubMed  CAS  Google Scholar 

  158. Wang M, Wang K, Tang D et al (2010) The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice. Plant Cell 22(2):417–430

    Article  PubMed  CAS  Google Scholar 

  159. Zhou S, Wang Y, Li W et al (2011) Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. Plant Cell 23(1):111–129

    Article  PubMed  CAS  Google Scholar 

  160. Li N, Zhang DS, Liu HS et al (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18(11):2999–3014

    Article  PubMed  CAS  Google Scholar 

  161. Zhang DS, Liang WQ, Yuan Z et al (2008) Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant 1(4):599–610

    Article  PubMed  CAS  Google Scholar 

  162. Li H, Yuan Z, Vizcay-Barrena G et al (2011) PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol 156(2):615–630

    Article  PubMed  CAS  Google Scholar 

  163. Niu N, Liang W, Yang X, Jin W, Wilson ZA, Hu J, Zhang D (2013) EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun 4:1445

    Article  PubMed  CAS  Google Scholar 

  164. Li X, Gao X, Wei Y et al (2011) Rice APOPTOSIS INHIBITOR5 coupled with two DEAD-box adenosine 5'-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell 23(4):1416–1434

    Article  PubMed  CAS  Google Scholar 

  165. Jung KH, Han MJ, Lee DY et al (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18(11):3015–3032

    Article  PubMed  CAS  Google Scholar 

  166. Shi J, Tan H, Yu XH et al (2011) Defective pollen wall is required for anther and microspore development in rice and encodes a Fatty acyl carrier protein reductase. Plant Cell 23(6):2225–2246

    Article  PubMed  CAS  Google Scholar 

  167. Zhu L, Shi JX, Zhao GC, Zhang DB, Liang WQ (2013) Post-meiotic deficient anther1 (PDA1) encodes an ABC transporter required for the development of anther cuticle and pollen exine in rice. Journal of Plant Biology 56(1):59–68

    Article  CAS  Google Scholar 

  168. Zhang D, Liang W, Yin C, Zong J, Gu F (2010) OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol 154(1):149–162

    Article  PubMed  CAS  Google Scholar 

  169. Zhang H, Liang W, Yang X et al (2010) Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell 22(3):672–689

    Article  PubMed  CAS  Google Scholar 

  170. Zhu QH, Ramm K, Shivakkumar R, Dennis ES, Upadhyaya NM (2004) The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol 135(3):1514–1525

    Article  PubMed  CAS  Google Scholar 

  171. Han MJ, Jung KH, Yi G, Lee DY, An G (2006) Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol 47(11):1457–1472

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dabing Zhang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, D., Yuan, Z., An, G., Dreni, L., Hu, J., Kater, M.M. (2013). Panicle Development. In: Zhang, Q., Wing, R. (eds) Genetics and Genomics of Rice. Plant Genetics and Genomics: Crops and Models, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7903-1_19

Download citation

Publish with us

Policies and ethics