Skip to main content

Nitrogen and Phosphorus Uptake and Utilization

  • Chapter
  • First Online:
Genetics and Genomics of Rice

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 5))

Abstract

Developing nutrient efficient rice cultivars is an increasingly important objective as the continually increasing population worldwide needs to be fed from the decreasing arable land and declining natural resources. To deal with the demand, vast improvements in cultivars with higher yield potential per unit area (super rice for example) have being targeted in breeding programs. Traditionally, breeding selection is done on fully fertilized plots with a focus on potential for higher yield, making current commercial rice cultivars relatively inefficient at accessing applied fertilizers. The plants may only take up 10–15 % of applied phosphorus (P) fertilizer in the first year, with subsequent uptake rarely exceeding 50 % [17]. To obtain a higher yield, a great quantity of nitrogen (N) fertilizer has been applied during the past 20 years. The statistical data indicate that rice yield increased 26.5 % from 4,888 kg/ha in 1982 to 6,185 kg/ha in 2002, but consumption of nitrogen fertilizer increased 106.5 % in China [10]. Phosphorus is a nonrenewable resource. The exploitation of economically viable sources of rock phosphate is estimated to peak within this century [9], resulting in prohibitive prices for P fertilizer for many primary producers, especially in developing countries, increasing rice production costs. In addition, overapplication of N fertilizer often reduces rice grain yield because plants grown under excess N conditions are more susceptible to lodging and pest damage. Thus, developing crops that are less dependent on the heavy application of fertilizers is essential for the sustainability of agriculture [52].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ai PH, Sun SB, Zhao JN, Fan XR, Xin WJ, Guo Q, Yu L, Shen QR, Wu P, Miller AJ et al (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809

    Article  PubMed  CAS  Google Scholar 

  2. Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011

    Article  PubMed  CAS  Google Scholar 

  3. Bari R, Pant BD, Stitt M, Scheible WR (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999

    Article  PubMed  CAS  Google Scholar 

  4. Boyle R, Lenton T, Watson A (2011) Symbiotic physiology promotes homeostasis in Daisyworld. J Theor Biol 274:170–182

    Article  PubMed  Google Scholar 

  5. Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  PubMed  CAS  Google Scholar 

  6. Cai HM, Xiao JH, Zhang QF, Lian XM (2010) Co-suppressed glutamine synthetase2 gene modifies nitrogen metabolism and plant growth in rice. Chin Sci Bull 55:823–833

    Article  CAS  Google Scholar 

  7. Chen JY, Ni J, Liu Y, Wu ZC, Wang YF, Bai YH, Gan J, Ping W (2011) OsPHF1 regulates localization of low- and high-affinity Pi transporters to plasma membrane and determine the Pi uptake and translocation in rice. Plant Physiol 157:269–278

    Article  PubMed  CAS  Google Scholar 

  8. Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    Article  PubMed  CAS  Google Scholar 

  9. Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19:292–305

    Article  Google Scholar 

  10. FAO (2011) http://www.fao.org/

  11. Feng HM, Fan XR, Yan M, Liu XQ, Miller AJ, Xu GH (2011) Multiple roles of nitrate transport accessory protein NAR2 in plants. Plant Signal Behav 6:1286–1289

    Article  PubMed  CAS  Google Scholar 

  12. Feng HM, Yan M, Fan XR, Li BZ, Shen QR, Miller AJ, Xu GH (2011) Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J Exp Bot 62:2319–2332

    Article  PubMed  CAS  Google Scholar 

  13. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio- Somoza I et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  PubMed  CAS  Google Scholar 

  14. Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  PubMed  CAS  Google Scholar 

  15. Fukumorita T, Chino M (1982) Sugar, amino acid and inorganic contents in rice phloem sap. Plant Cell Physiol 23:273–283

    CAS  Google Scholar 

  16. González E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17:3500–3512

    Article  PubMed  Google Scholar 

  17. Holford ICR (1997) Soil phosphorus: its measurement, and its uptake by plants. Aust J Soil Res 35:227–239

    Article  CAS  Google Scholar 

  18. Hou XL, Wu P, Jiao FC, Jia QJ, Chen HM, Yu J, Song XW, Yi KK (2005) Regulation of the expression of OsIPS1 and OsIPS2 in rice via systemic and local Pi signalling and hormones. Plant Cell Environ 28:353–364

    Article  CAS  Google Scholar 

  19. Hu B, Zhu CG, Li FY, Tang J, Wang YQ, Lin AH, Liu LC, Che RH, Chu CC (2011) LEAF TIP NECROSIS 1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiol 156:1101–1115

    Article  PubMed  CAS  Google Scholar 

  20. Huang CY, Shirley N, Genc Y, Shi B, Langridge P (2011) Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley. Plant Physiol 156:1217–1229

    Article  PubMed  CAS  Google Scholar 

  21. Ishiyama K, Inoue E, Tabuchi M, Yamaya T, Takahashi H (2004) Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol 45:1640–1647

    Article  PubMed  CAS  Google Scholar 

  22. Jia HF, Ren HY, Gu MG, Zhao JN, Sun SB, Zhang X, Chen JY, Wu P, Xu GH (2011) The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol 156:1164–1175

    Article  PubMed  CAS  Google Scholar 

  23. Katayama H, Mori M, Kawamura Y, Tanaka T, Mori M, Hasegawa H (2009) Production and characterization of transgenic rice plants carrying a high-affinity nitrate transporter gene (OsNRT2.1). Breed Sci 59:237–243

    Article  CAS  Google Scholar 

  24. Kirk GJD, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot 96:639–646

    Article  PubMed  CAS  Google Scholar 

  25. Kusano M et al (2011) Metabolomics data reveal a crucial role of cytosolic glutamine synthetase 1;1 in coordinating metabolic balance in rice. Plant J 66(3):456–466

    Article  PubMed  CAS  Google Scholar 

  26. Li BZ, Xin WJ, Sun SB, Shen QR, Xu GH (2006) Physiological and molecular responses of nitrogen-starved rice plants to re-supply of different nitrogen sources. Plant Soil 287:145–159

    Article  CAS  Google Scholar 

  27. Li YL, Fan XR, Shen QR (2008) The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant Cell Environ 31:73–85

    PubMed  Google Scholar 

  28. Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY et al (2008) Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol 147:732–746

    Article  PubMed  CAS  Google Scholar 

  29. Lin SI, Santi C, Jobet E, Lacut E, El Kholti N et al (2010) Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant Cell Physiol 51:2119–2131

    Article  PubMed  CAS  Google Scholar 

  30. Liu F, Wang ZY, Ren HY, Shen C, Li Y, Ling HQ, Wu C, Lian XM, Wu P (2010) OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. Plant J 62:508–517

    Article  PubMed  CAS  Google Scholar 

  31. Liu F, Chang XJ, Ye Y, Xie WB, Ping W, Lian XM (2011) Comprehensive sequence and whole-life-cycle expression profile analysis of the phosphate transporter gene family in rice. Mol Plant 4:1105–1112

    Article  PubMed  CAS  Google Scholar 

  32. Lu YE, Luo F, Yang M, Li XH, Lian XM (2011) Suppression of glutamate synthase genes significantly affects carbon and nitrogen metabolism in rice (Oryza sativa L.). Sci China Life Sci 54:651–663

    Article  PubMed  CAS  Google Scholar 

  33. Paszkowski U (2006) A journey through signaling in arbuscular mycorrhizal symbioses. New Phytol 172:35–46

    Article  PubMed  CAS  Google Scholar 

  34. Poirier Y, Bucher M (2002) Phosphate transport and homeostasis in Arabidopsis. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. The American Society of Plant Biologists, Rockville, MD, pp 1–35

    Google Scholar 

  35. Rose TJ, Pariasca-Tanaka J, Rose MJ, Fukuta Y, Wissuwa M (2010) Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice. Field Crop Res 119:154–160

    Article  Google Scholar 

  36. Rose TJ, Rose MT, Heuer S, Wissuwa M (2011) The frustration with utilization: why have improvements in internal phosphorus utilization efficiency in crops remained so elusive? Front Plant Nutr 2:73

    Google Scholar 

  37. Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants. Genes Dev 15:2122–2133

    Article  PubMed  CAS  Google Scholar 

  38. Shrawat AF, Carroll RT, Pauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6:722–732

    Article  PubMed  CAS  Google Scholar 

  39. Sonoda Y, Ikeda A, Satomi S, von-Wiren N, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1:1–1:3) in rice. Plant Cell Physiol 44:726–734

    Article  PubMed  CAS  Google Scholar 

  40. Sonoda Y, Ikeda A, Saiki S, Yamaya T, Yamaguchi J (2003) Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiol 44:1396–1402

    Article  PubMed  CAS  Google Scholar 

  41. Suenaga A, Moriya K, Sonoda Y, Ikeda A, von-Wiren N, Hayakawa T, Yamaguchi J, Yamaya T (2003) Constitutive expression of a novel type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol 44:206–211

    Article  PubMed  CAS  Google Scholar 

  42. Tabuchi M, Sugiyama T, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T (2005) Severe reduction in growth and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase 1;1. Plant J 42:641–655

    Article  PubMed  CAS  Google Scholar 

  43. Tabuchi M, Abiko T, Yamaya T (2007) Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot 58:2319–2327

    Article  PubMed  CAS  Google Scholar 

  44. Wang C, Ying S, Huang H, Li K, Wu P, Shou HX (2009) Involvement of OsSPX1 in phosphate homeostasis in rice. Plant J 57:895–904

    Article  PubMed  CAS  Google Scholar 

  45. Wang X, Shen J, Liao H (2010) Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci 179:302–306

    Article  CAS  Google Scholar 

  46. Wang ZY, Hu H, Huang HJ, Duan K, Wu ZC, Wu P (2009) Regulation of OsSPX1 and OsSPX3 on expressions of OsSPX domain genes and Pi-starvation signaling in rice. J Integr Plant Biol 51(7):663–674

    Article  PubMed  CAS  Google Scholar 

  47. Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321(1–2):409–430

    Article  CAS  Google Scholar 

  48. Wu ZC, Ren HY, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    Article  PubMed  CAS  Google Scholar 

  49. Yan M, Fan XR, Feng HM, Miller AJ, Shen QR, Xu GH (2011) Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ 34:1360–1372

    Article  PubMed  CAS  Google Scholar 

  50. Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138(4):2087–2096

    Article  PubMed  CAS  Google Scholar 

  51. Zhang QF (2007) Strategies for developing green super rice. Proc Natl Acad Sci U S A 104(42):16402–16409

    Article  PubMed  CAS  Google Scholar 

  52. Zhou J, Jiao FC, Wu ZC, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146: 1673–1686

    Article  PubMed  CAS  Google Scholar 

  53. Zhou Y, Cai H, Xiao J, Li X, Zhang Q, Lian X (2009) Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor Appl Genet 118:1381–1390

    Article  PubMed  CAS  Google Scholar 

  54. Zhu YY, Di TJ, Xu GH, Chen X, Zeng HQ, Yan F, Shen QR (2009) Adaptation of plasma membrane H+-ATPase of rice root to low pH as related to ammonium nutrition. Plant Cell Environ 99:415–421

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, P., Xu, G., Lian, X. (2013). Nitrogen and Phosphorus Uptake and Utilization. In: Zhang, Q., Wing, R. (eds) Genetics and Genomics of Rice. Plant Genetics and Genomics: Crops and Models, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7903-1_14

Download citation

Publish with us

Policies and ethics