Skip to main content

Complex Transport Around Tumor: Need for Realistic In Vitro Tumor Transport Model

  • Chapter
  • First Online:

Abstract

Successful targeted drug delivery requires to overcome various transport barriers around tumors. These transport barriers are associated with dynamic biological, chemical, and mechanical conditions of tumor microenvironment. Thus, new drug delivery vehicles need to be designed considering complex transport processes around tumors. However, currently available tumor models are limited to mimic this complex and dynamic environment, or only provide the end results without allowing systematic investigation of these complex transport processes. A new tumor model system is highly desired, which can address this twofold challenge of current tumor model systems—(1) realistic simulation of in vivo tumor microenvironment, and (2) capability of systematic evaluation of drug delivery vehicles. In this chapter, the transport processes around tumors relevant to targeted delivery are reviewed and research efforts to mimic these processes to evaluate drug delivery vehicles are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jain RK (1996) Delivery of molecules, particles and cells to solid tumors. Ann Biomed Eng 24:457–473

    Article  CAS  PubMed  Google Scholar 

  2. Florence AT (2007) Pharmaceutical nanotechnolgy: more than size. Int J Pharm 339:1–2

    Article  CAS  PubMed  Google Scholar 

  3. Ruenraroengsak P, Cook JM, Florence AT (2010) Nanosystem drug targeting: facing up to complex realities. J Control Release 141:265–276

    Article  CAS  PubMed  Google Scholar 

  4. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WCW (2010) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9:1909–1915

    Article  CAS  Google Scholar 

  6. Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, Popovic Z, Jain RK, Bawendi MG, Fukumura D (2011) Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci USA 108:2426–2431

    Article  CAS  PubMed  Google Scholar 

  7. Tong R, Hemmati HD, Langer R, Kohane DS (2012) Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J Am Chem Soc 134(21):8848–8855. doi:org/10.1021/ja211888a

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  9. Fang J, Nakamura H, Maeda H (2011) The epr effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151. doi:10.1016/j.addr.2010.04.009

    Article  CAS  PubMed  Google Scholar 

  10. Fu BM, Liu Y (2012) Microvascular transport and tumor cell adhesion in the microcirculation. Ann Biomed Eng. doi:10.1007/s10439-012-0561-0

    PubMed Central  Google Scholar 

  11. Baxter LT, Jain RK (1989) Transport of fluid and macromoleculres in tumors. I. Role of interstitial pressure and convection. Microvasc Res 37:77–104

    Article  CAS  PubMed  Google Scholar 

  12. Boucher Y, Baxter LT, Jain RK (1990) Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 50:4478–4484

    CAS  PubMed  Google Scholar 

  13. Heldin C-H, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4:806–813

    Article  CAS  PubMed  Google Scholar 

  14. Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60:2497–2503

    CAS  PubMed  Google Scholar 

  15. Brown E, Mckee TD, diTomaso E, Pluen A, Seed B, Boucher Y, Jain RK (2003) Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med 9:796–800

    Article  CAS  PubMed  Google Scholar 

  16. Grantab R, Sivananthan S, Tannock IF (2006) The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. Cancer Res 66(2):1033–1039

    Article  CAS  PubMed  Google Scholar 

  17. Egeblad M, Rasch MG, Weaver WM (2010) Dynamic interplay between the collaged scaffold and tumor evolution. Curr Opin Cell Biol 22:697–706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Narang AS, Varia S (2011) Role of tumor vascular architecture in drug delivery. Adv Drug Deliv Rev 63:640–658

    Article  CAS  PubMed  Google Scholar 

  19. Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE (2008) Preclinical studies to understand nanoparticle interaction with immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5:487–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bertrand N, Leroux J-C (2012) The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release 161:152–163

    Article  CAS  PubMed  Google Scholar 

  21. Bansal R, Post E, Proost JH, de Jager-Krikken A, Poelstra K, Parkash J (2011) Pegylation improves pharmacokinetic profile, liver uptake and efficacy of interferon gamma in liver fibrosis. J Control Release 154:233–240

    Article  CAS  PubMed  Google Scholar 

  22. Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141(3):320–327. doi:10.1016/j.jconrel.2009.10.014

    Article  CAS  PubMed  Google Scholar 

  23. Florence AT (2012) Targeting nanoparticles: the constraints of physical laws and physical barriers. J Control Release 164(2):115–124

    Article  CAS  PubMed  Google Scholar 

  24. Goodman TT, Olive PL, Pun SH (2007) Increased nanoparticle penetration in collagenase-treated multicellullar spheroids. Int J Nanomedicine 2(2):265–274

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Gentile F, Ferrari M, Decuzzi P (2008) The transport of nanoparticles in blood vessels: the effect of vessel permeability and blood rheology. Ann Biomed Eng 36(2):254–261. doi:10.1007/s10439-007-9423-6

    Article  PubMed  Google Scholar 

  26. Doshi N, Prabhakarpandian B, Rea-Ramsey A, Pant K, Sundaram S, Mitragotri S (2010) Flow and adhesion of drug carriers in blood vessels depend on their shape: a study using model synthetic microvascular networks. J Control Release 146(2):196–200. doi:10.1016/j.jconrel.2010.04.007

    Article  CAS  PubMed  Google Scholar 

  27. Hara T, Iriyama S, Makino K, Terada H, Ohya M (2010) Mathematical description of drug movement into tumor with epr effect and estimation of its configuration for dds. Colloids Surf B 75:42–46

    Article  CAS  Google Scholar 

  28. Goertz DE, Yu JL, Kerbel RS, Burns PN, Foster FS (2003) High frequency 3-d color flow imaging of the microcirculation. Ultrasound Med Biol 29:39–51

    Article  PubMed  Google Scholar 

  29. Feng D, Nagy JA, Pyne K, Hammel I, Dvorak HF, Dvorak AM (1999) Pathways of macromolecular extravasation across microvascular endothelium in response to vpf vegf and other vasoactive mediators. Microcirculation 6(1):23–44. doi:10.1038/sj.mn.7300055

    CAS  PubMed  Google Scholar 

  30. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the epr effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284. doi:10.1016/s0168-3659(99)00248-5

    Article  CAS  PubMed  Google Scholar 

  31. Yuan F (1998) Transvascular drug delivery in solid tumors. Semin Radiat Oncol 8:164–175

    Article  CAS  PubMed  Google Scholar 

  32. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55(17):3752–3756

    CAS  PubMed  Google Scholar 

  33. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95(8):4607–4612

    Article  CAS  PubMed  Google Scholar 

  34. Campbell RB (2002) Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res 62:6831–6836

    CAS  PubMed  Google Scholar 

  35. Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98(5):335–344. doi:10.1093/jnci/djj070

    Article  CAS  PubMed  Google Scholar 

  36. Monsky WL (2002) Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin Cancer Res 8:1008–1013

    CAS  PubMed  Google Scholar 

  37. Jo H, Dull RO, Hollis TM, Tarbell JM (1991) Endothelial albumin permeability is shear dependent, time-dependent and reversible. Am J Physiol 260(6):H1992–H1996

    CAS  PubMed  Google Scholar 

  38. Alberding JP, Baldwin AL, Barton JK, Wiley E (2004) Onset of pulsatile pressure causes transiently increased filtration through artery wall. Am J Physiol Heart Circ Physiol 286:H1827–H1835

    Article  CAS  PubMed  Google Scholar 

  39. Monsky W, Yuan F, Fukumura D, Torchilin V, Jain RK (1997) Topical superfusion of vascular endothelial growth factor increases tumor vessel endothelial pore size. Proc Annu Meet Am Assoc Cancer Res 38:52

    Google Scholar 

  40. Netti PA, Hamberg LM, Babich JW, Kierstead D, Graham W, Hunter GJ, Wolf GL, Fischman A, Boucher Y, Jain RK (1999) Enhancement of fluid filtration across tumor vessels: implication for delivery of macromoloecules. Proc Natl Acad Sci USA 96:3137–3142

    Article  CAS  PubMed  Google Scholar 

  41. Chauhan VP, Stylianopoulos T, Martin JD, Popovic Z, Chen O, Kamoun WS, Bawendi MG, Fukumura D, Jain RK (2012) Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7(6):383–388. doi:101038/nnano201245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  CAS  PubMed  Google Scholar 

  43. Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47:3039–3051

    CAS  PubMed  Google Scholar 

  44. Jain RK (1999) Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 01:241–263

    Article  CAS  Google Scholar 

  45. Butler TP, Grantham FH, Cullino PM (1975) Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res 35:3084–3088

    CAS  PubMed  Google Scholar 

  46. Jain RK, Baxter LT (1988) Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res 48:7022–7032

    CAS  PubMed  Google Scholar 

  47. Less JR, Posner MC, Boucher Y, Borochovitz D, Wolmark N, Jain RK (1992) Interstitial hypertension in human breast and colorectoral tumors. Cancer Res 52:6371–6374

    CAS  PubMed  Google Scholar 

  48. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21:418–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Boucher Y, Jain RK (1992) Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res 52:5110–5114

    CAS  PubMed  Google Scholar 

  50. DiResta GR, Lee J, Larson SM, Arbit E (1993) Characterization of neuroblastoma xenograft in rat flank. I. Growth, interstitial fluid pressure, and interstitial fluid velocity distribution profiles. Microvasc Res 46:158–177

    Article  CAS  PubMed  Google Scholar 

  51. Netti PA, Baxter LT, Boucher Y, Skalak R, Jain RK (1995) Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res 55:5451–5458

    CAS  PubMed  Google Scholar 

  52. Stohrer M, Boucher Y, Stangassinger M, Jain RK (2000) Oncotic pressure in solid tumors is elevated. Cancer Res 60:4251–4255

    CAS  PubMed  Google Scholar 

  53. Milosevic MF, Fyles AW, Hill RP (1999) The relationship between elevated interstitial fluid pressure and blood flow in tumors: a bioengineering analysis. Int J Radiat Oncol Biol Phys 43:1111–1123

    Article  CAS  PubMed  Google Scholar 

  54. Baxter LT, Jain RK (1990) Transport of fluid and macromolecules in tumors. II. Role of heterogenous perfusion and lymphatics. Microvasc Res 40:246–263

    Article  CAS  PubMed  Google Scholar 

  55. Pluen A, Boucher Y, Ramanujan S, Mckee TD, Gohongi T, diTomaso E, Brown EB, Izumi Y, Campbell RB, Berk DA, Jain RK (2001) Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc Natl Acad Sci USA 98:4628–4633

    Article  CAS  PubMed  Google Scholar 

  56. Ramanujan S, Pluen A, Mckee TD, Brown EB, Boucher Y, Jain RK (2002) Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys J 83:1650–1660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Alexandrakis G, Brown E, Tong RT, Mckee TD, Campbell RB, Boucher Y, Jain RK (2004) Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors. Nat Med 10:203–207

    Article  CAS  PubMed  Google Scholar 

  58. Griffon-Etienne G, Boucher Y, Brekken C, Suit HD, Jain RK (1999) Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res 59:3776–3782

    CAS  PubMed  Google Scholar 

  59. Rubin K, Sjoquist M, Gustafsson A-M, Isaksson B, Salvessen G, Reed RK (2000) Lowering of tumoral interstitial fluid pressure by prostaglandin e1 is paralleled by an increased uptake of cr-edta. Int J Cancer 86:636–643

    Article  CAS  PubMed  Google Scholar 

  60. Salnikov AV, Iversen VV, Koisti M, Sundberg C, Johansson L, Stuhr LB, Sjöquist M, Ahlström H, Reed RK, Rubin K (2003) Lowering of tumor interstitial fluid pressure specifically augments efficacy of chemotherapy. FASEB J 17:1756–1758

    CAS  PubMed  Google Scholar 

  61. Davies Cde L, Berk DA, Pluen A, Jain RK (2002) Comparison of igg diffusion and extracellular matrix composition in rhabdomyosarcomas grown in mice versus in vitro as spheroids reveals the role of host stromal cells. Br J Cancer 86:1639–1644

    Article  PubMed  Google Scholar 

  62. Clarke R, Leonessa F, Trock B (2005) Multidrug resistance/p-glycoprotein and breast cancer: review and meta-analysis. Semin Oncol 32:S9–S15

    Article  CAS  PubMed  Google Scholar 

  63. Hait WN, Yang JM (2005) Clinical management of recurrent breast cancer: development of multidrug resistance (mdr) and strategies to circumvent it. Semin Oncol 32:S16–S21

    Article  CAS  PubMed  Google Scholar 

  64. Stein U, Walther W, Lemm M, Naundorf H, Fichtner I (1997) Development and characterization of novel human multidrug resistant mammary carcinoma lines in vitro and in vivo. Int J Cancer 72:885–891

    Article  CAS  PubMed  Google Scholar 

  65. Wosikowski K, Regis JT, Robey R, Alvarez M, Buters JTM, Gudas JM, Bates SE (1995) Normal p53 status and function despite the development of drug resistance in human breast cancer cells. Cell Growth Differ 6:1395–1403

    CAS  PubMed  Google Scholar 

  66. Allikments R, Schrim LM, Hutchinson A, Romano-Spica V, Dean M (1966) Characterization of the human abc superfamily: isolation and mapping of 21 new genes using the expressed sequence tags database. Hum Mol Genet 5:1649–1655

    Article  Google Scholar 

  67. Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427

    Article  CAS  PubMed  Google Scholar 

  68. Mechetner E, Kyshtoobayeva A, Zonis S, Kim H, Stroup R, Garcia R, Parker R, Fruehauf JP (1998) Levels of multidrug resistance (mdr1) p-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res 4:389–398

    CAS  PubMed  Google Scholar 

  69. Daschner PJ, Ciolino HP, Plouzek CA, Yeh GC (1999) Increased ap-1 activity in drug resistant human breast cancer mcf-7 cells. Breast Cancer Res Treat 53:229–240

    Article  CAS  PubMed  Google Scholar 

  70. Vredenburg MR, Ojima I, Veith J, Pera P, Kee K, Cabral F, Sharma A, Kanter P, Greco WR, Bernacki RJ (2001) Effects of orally active taxanes on p-glycoprotein modulation and colon and breast carcinoma drug resistance. J Natl Cancer Inst 93:1234–1245

    Article  CAS  PubMed  Google Scholar 

  71. Jin J, Wang F-P, Wei H, Liu G (2005) Reversal of multidrug resistance of cancer through inhibition of p-glycoprotein by 5-bromoterandrine. Cancer Chemother Pharmacol 55:179–188

    Article  CAS  PubMed  Google Scholar 

  72. Chekhun VF, Kulik GI, Yurchenko OV, Tryndyak VP, Todor IN, Luniv LS, Tregubova NA, Pryzimirska TV, Montgomery B, Rusetskaya NV, Pogribny IP (2006) Role of DNA hypomethylation in the development of the resistance to doxorubicin in human mcf-7 breast adenocarcinoma cells. Cancer Lett 231:87–93

    Article  CAS  PubMed  Google Scholar 

  73. Muller M, Meijer C, Zaman GJR, Borst P, Scheper RJ, Mulder NH, de Veris EGE, Jansen PLM (1994) Overexpression of the gene encoding the multidrug resistance-associated protein results in increased atp-dependent glutathione s-conjugate transport. Proc Natl Acad Sci USA 91:13033–13037

    Article  CAS  PubMed  Google Scholar 

  74. Filipits M, Suchomel RW, Dekan G, Haider K, Valdimarsson G, Depisch D, Pirker R (1996) Mrp and mdr1 gene expression in pirmary breast carcinomas. Clin Cancer Res 2:1231–1237

    CAS  PubMed  Google Scholar 

  75. de Jong MC, Slootstra JW, Scheffer GL, Schroeijers AB, Puijk WC, Dinkelberg R, Kool M, Broxterman HJ, Meloen RH, Scheper RJ (2001) Peptide transport by the multidrug resistance protein mrp1. Cancer Res 61:2552–2557

    PubMed  Google Scholar 

  76. Aszalos A, Thompson K, Yin JJ, Ross DD (1999) Combination of p-glycoprotein blockers, verapamil, psc833 and cremophor act differently on the multidrug resistance associated protein (mrp) and on p-glycoprogein (pgp). Anticancer Res 19:1053–1064

    CAS  PubMed  Google Scholar 

  77. Ferreira MJ, Gyemant N, Madureira AM, Tanaka M, Koos K, Didziapetris R, Molnar J (2005) The effects of jatrophane derivatives on the reversion of mdr1- and mrp-mediated multidrug resistance in the mda-mb-231 (htb-26) cell line. Anticancer Res 25:4173–4178

    CAS  PubMed  Google Scholar 

  78. de Bruin M, Miyake K, Litman T, Robey R, Bates SE (1999) Reversal of resistance by gf120918 in cell lines expressing the abc half-transporter, mxr. Cancer Lett 146:117–126

    Article  PubMed  Google Scholar 

  79. Robey R, Medina-Perez WY, Nishiyama K, Lahusen T, Miyake K, Litman T, Senderowicz AM, Ross DD, Bates SE (2001) Overexpression of the atp-binding cassette half-transporter, abcg2 (mxr/bcrp/abcp1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res 7:145–152

    CAS  PubMed  Google Scholar 

  80. Litman T, Brangi M, Hudson E, Fetsch P, Abati A, Ross DD, Miyake K, Resau JH, Bates SE (2000) The multidrug-resistant phenotype associated with overexpression of the new abc half-transporter, mxr (abcg2). J Cell Sci 113:2011–2021

    CAS  PubMed  Google Scholar 

  81. Singhal SS, Yadav S, Singhal J, Zajac E, Awasthi YC, Awasthi S (2005) Depletion of rlip76 sensitizes lung cancer cells to doxorubicin. Biochem Pharmacol 70:481–488

    Article  CAS  PubMed  Google Scholar 

  82. Dalton WS (2003) The tumor microenvironment: focus on myeloma. Cancer Treat Rev 29:11–19

    Article  CAS  PubMed  Google Scholar 

  83. Jean C, Gravelle P, Fournie J-J, Laurent G (2011) Influence of stress on extracellular matrix and integrin biology. Oncogene 30:2697–2706

    Article  CAS  PubMed  Google Scholar 

  84. Katragadda S, Budda B, Anand BS, Mitra AK (2005) Role of efflux pumps and metabolising enzymes in drug delivery. Expert Opin Drug Deliv 2:683–705

    Article  CAS  PubMed  Google Scholar 

  85. Yanase K, Tsukahara S, Mitsuhashi J, Sugimoto Y (2006) Functional snps of the breast cancer resistance protein – therapeutic effects and inhibitor development. Cancer Lett 234:73–80

    Article  CAS  PubMed  Google Scholar 

  86. Chambers SK, Hait WN, Kacinski BM (1989) Enhancement of anthracycline growth inhibition in parent and multidrug-resistant chinese hamster ovary cells by cyclosporin a and its analogues. Cancer Res 49:6275–6279

    CAS  PubMed  Google Scholar 

  87. Ford JM, Yang JM, Hait WN (1991) Effect of buthionine sulfoximine on toxicitiy of verapamil and doxorubicin to multidrug resistant cells and to mice. Cancer Res 51:67–72

    CAS  PubMed  Google Scholar 

  88. Hait WN, Choudhury S, Srimatkandada S (1993) Sensitivity of k562 human chronic myelogenous leukemia blast cells transfected with a human multidrug resistance cdna to cytotoxicity drugs and differentiating agents. J Clin Invest 91:2207–2215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Hait WN, Gesmonde JF, Murren JR (1993) Terfenadine (seldane): a new drug for restoring sensitivity to multidrug resistant cancer cells. Biochem Pharmacol 45:401–406

    Article  CAS  PubMed  Google Scholar 

  90. Yang JM, Goldenberg S, Gottesman MM (1994) Characteristics of p338/vmdrc.04, a simple, sensitive model for studying p-glycoprotein antagonists. Cancer Res 54:730–737

    CAS  PubMed  Google Scholar 

  91. Mano Y, Suzuki H, Terasaki T (1997) Kinetic analysis of the diposition of mrk16, an anti-p-glycoprotein monoclonal antibody, in tumors: comparison between in vitro and in vivo disposition. J Pharmacol Exp Ther 283:391–401

    CAS  PubMed  Google Scholar 

  92. Naito M, Tsuge H, Kuroko C (1993) Enhancement of cellular accumulation of cyclosporine by anit-p-glycoprotein monoclonla antibody mrk-16 and synergistic modulation of multidrug resistance. J Natl Cancer Inst 85:311–316

    Article  CAS  PubMed  Google Scholar 

  93. Hendrich AB, Michalak K (2003) Lipids as a target for drugs modulating multidrug resistance of cancer cells. Curr Drug Targets 4:23–30

    Article  CAS  PubMed  Google Scholar 

  94. Callaghan R, Stafford A, Epand RM (1993) Increased accumulation of drugs in a multidrug resistanct cell line by alteration of membrane biophysical properties. Biochim Biophys Acta 1175:277–282

    Article  CAS  PubMed  Google Scholar 

  95. Sinicrope FA, Dudeja PK, Bissonnette BM, Safa AR, Brasitus TA (1992) Modulation of p-glycoprotein-mediated drug transport by alterations in lipid fluidity of rat liver canalicular membrane vesicles. J Biol Chem 267:24995–25002

    CAS  PubMed  Google Scholar 

  96. Breuzard G, Piot O, Angiboust JF, Manfait M, Candeil L, Del Rio M, Millot JM (2005) Changes in adsorption and permeability of mitoxantrone on plasma membrane of bcrp/mxr resistant cells. Biochem Biophys Res Commun 329:64–70

    Article  CAS  PubMed  Google Scholar 

  97. Tijerina M, Fowers KD, Kopeckova P, Kopecek J (2000) Chronic exposure of human ovarian carcinoma cells to free or hpma copolymer-bound mesochlorin e6 does not induce p-glycoprotein-mediated multidrug resisance. Biomaterials 21:2203–2210

    Article  CAS  PubMed  Google Scholar 

  98. Orth P, Schnappinger D, Hillen W, Saenger W, Hinriches W (2000) Structural basis of gene regulation by the retracycline inducible tet repressor-operator system. Nat Struct Biol 7:215–219

    Article  CAS  PubMed  Google Scholar 

  99. Cheng J-Z, Sharma R, Yang Y, Singhal SS, Sharma A, Saini MK, Singh SV, Zimniak P, Awasthi S, Awasthi YC (2001) Accelerated metabolism and exclusion of 4-hydroxynonenal through induction of rlip76 and hgst5.8 is an early adaptive response of cells to heat and oxidative stress. J Biol Chem 276:41213–41223

    Article  CAS  PubMed  Google Scholar 

  100. Szabo D, Keyzer H, Kaiser HE, Molnar J (2000) Reversal of multidrug resistance of tumor cells. Anticancer Res 20:4261–4274

    CAS  PubMed  Google Scholar 

  101. Liu Y, Cho C-W, Yan X, Henthorn TK, Lillehei KO, Cobb WN, Ng K (2001) Ultrasound-induced hyperthermia increases cellular uptake and cytotoxicity of p-glycoprotein substrates in multi-drug resistant cells. Pharm Res 18:1225–1261

    Article  Google Scholar 

  102. Liu Y, Lillehei KO, Cobb WN, Christians U, Ng K (2001) Overcoming mdr by ultrasound-induced hyperthermia and p-glycoprotein modulation. Biochem Biophys Res Commun 289:62–68

    Article  CAS  PubMed  Google Scholar 

  103. Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    Article  CAS  PubMed  Google Scholar 

  104. Teicher BA (2006) Tumor models for efficacy determination. Mol Cancer Ther 5(10):2435–2443. doi:10.1158/1535-7163.MCT-06-0391

    Article  CAS  PubMed  Google Scholar 

  105. Kim JB (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15(5):365–377. doi:10.1016/j.semcancer.2005.05.002

    Article  PubMed  Google Scholar 

  106. Fischbach C, Chen R, Matsumoto T, Schmelzle T, Brugge JS, Polverini PJ, Mooney DJ (2007) Engineering tumors with 3d scaffolds. Nat Methods 4(10):855–860. doi:10.1038/nmeth1085

    Article  CAS  PubMed  Google Scholar 

  107. Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3d. Cell 130(4):601–610. doi:10.1016/j.cell.2007.08.006

    Article  CAS  PubMed  Google Scholar 

  108. Chang TT, Hughes-Fulford M (2009) Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes. Tissue Eng Part A 15(3):559–567

    Article  CAS  PubMed  Google Scholar 

  109. Dufau I, Frongia C, Sicard F, Dedieu L, Cordelier P, Ausseil F, Ducommun B, Valette A (2012) Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics: application to the gemcitabine/chk1 inhibitor combination in pancreatic cancer. BMC Cancer 12:15. doi:101186/1471-2407-12-15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Swartz MA, Lund AW (2012) Lymphatic and interstitial flow in the tumour microenviornment: linking mechanobiology with immunity. Nat Rev Cancer 12:210–219

    Article  CAS  PubMed  Google Scholar 

  111. Ng CP, Swartz MA (2003) Fibroblast alignment under interstitial fluid flow using a novel 3-d tissue culture model. Am J Physiol Heart Circ Physiol 284:H1771–H1777

    CAS  PubMed  Google Scholar 

  112. Hogenesch H, Nikitin AY (2012) Challenges in pre-clinical testing of anti-cancer drugs in cell culture and in animal models. J Control Release 164(2):183–186. doi:101016/jjconrel201202031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Becher OJ, Holland EC (2006) Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res 66(7):3355–3358. doi:10.1158/0008-5472.can-05-3827

    Article  CAS  PubMed  Google Scholar 

  114. Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7(9):645–658. doi:10.1038/nrc2192

    Article  CAS  PubMed  Google Scholar 

  115. Damia G, D’Incalci M (2009) Contemporary pre-clinical development of anticancer agents – what are the optimal preclinical models? Eur J Cancer 45:2768–2781

    Article  CAS  PubMed  Google Scholar 

  116. Wlodkowic D, Cooper JM (2010) Tumors on chips: oncology meets microfluidics. Curr Opin Chem Biol 14:556–567

    Article  CAS  PubMed  Google Scholar 

  117. Huh D, Hamilton GA, Ingber DE (2011) From 3d cell culture to organs-on-chips. Trends Cell Biol 21:745–754

    Article  CAS  PubMed  Google Scholar 

  118. Song JW, Gu W, Futai N, Warner KA, Nor JE, Takayama S (2005) Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Anal Chem 77(13):3993–3999

    Article  CAS  PubMed  Google Scholar 

  119. Verkman AS (2004) Drug discovery and epithelial physiology. Curr Opin Nephrol Hypertens 13(5):563–568

    Article  CAS  PubMed  Google Scholar 

  120. Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for cns axonal injury, regeneration and transport. Nat Methods 2(8):599–605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Wozniak MA, Modzelewska K, Kwong L, Keely PJ (2004) Focal adhesion regulation of cell behavior. Biochim Biophys Acta 5:2–3

    Google Scholar 

  122. Blewitt MJ, Willits RK (2007) The effect of soluble peptide sequences on neurite extension on 2d collagen substrates and within 3d collagen gels. Ann Biomed Eng 35(12):2159–2167

    Article  PubMed  Google Scholar 

  123. Torisawa YS, Shiku H, Yasukawa T, Nishizawa M, Matsue T (2005) Multi-channel 3-d cell culture device integrated on a silicon chip for anticancer drug sensitivity test. Biomaterials 26(14):2165–2172

    Article  CAS  PubMed  Google Scholar 

  124. Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev 8(October):839–845

    Article  CAS  Google Scholar 

  125. Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC (2010) Bioengineered 3d platform to explore cell-ecm interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 31(32):8494–8506. doi:10.1016/j.biomaterials.2010.07.064

    Article  CAS  PubMed  Google Scholar 

  126. Hsiao AY, Torisawa YS, Tung YC, Sud S, Taichman RS, Pienta KJ, Takayama S (2009) Microfluidic system for formation of pc-3 prostate cancer co-culture spheroids. Biomaterials 30(16):3020–3027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Huang CP, Lu J, Seon H, Lee AP, Flanagan LA, Kim HY, Putnam AJ, Jeon NL (2009) Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9:1740–1748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Walsh CL, Babin BM, Kasinskas RW, Foster JA, McGarry MJ (2009) A multipurpose microfluidics device designed to mimic microenviornment gradients and develop targeted cancer therapeutics. Lab Chip 9:545–554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Haessler U, Kalinin Y, Swartz MA, Wu M (2009) An agarose-based microfluidic platform with a gradient buffer for 3d chemotaxis studies. Biomed Microdevices 11(4):827–835

    Article  CAS  PubMed  Google Scholar 

  130. Kim S, Kim HJ, Jeon NL (2010) Biological applications of microfluidic gradient devices. Integr Biol 2(11–12):584–603

    Article  CAS  Google Scholar 

  131. Torisawa YS, Mosadegh B, Bersano-Begey T, Steele JM, Luker KE, Luker GD, Takayama S (2010) Microfluidic platform for chemotaxis in gradients formed by cxcl12 source-sink cells. Integr Biol 2(11–12):680–686

    Article  CAS  Google Scholar 

  132. Polacheck WJ, Charest JL, Kamm RD (2011) Interstitial flow influences direction of tumor cell migraion through competing mechanisms. Proc Natl Acad Sci USA 108:11115–11120

    Article  CAS  PubMed  Google Scholar 

  133. Ghajar CM, Bissell MJ (2010) Tumor engineering: the other face of tissue engineering. Tissue Eng Part A 16:2153–2156

    Article  PubMed  Google Scholar 

  134. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668

    Article  CAS  PubMed  Google Scholar 

  135. Kim H, Huh D, Hamilton GA, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–2174

    Article  CAS  PubMed  Google Scholar 

  136. Ingber DE (2006) Can cancer be reversed by engineering the tumor microenvironment? Semin Cancer Biol 18:356–364

    Article  CAS  Google Scholar 

  137. Lopez JI, Mouw JK, Weaver WM (2008) Biomechanical regulation of cell orientation and fate. Oncogene 27:6981–6993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Kwak B, Park K, Han B (2013) Tumor-on-chip: simulation of complex transport around tumor. Proceedings of the ASME 2013 2nd global congress on nanoengineering for medicine & biology, NEMB 2013-93314

    Google Scholar 

  139. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6:583–592

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Altug Ozcelikkale, Angela Seawright, Bongseop Kawk, Seungman Park, and Soham Ghosh for their great help during literature search and review. This work was partially supported by grants from the National Science Foundation, CBET-1009465, and Purdue Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bumsoo Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Han, B. (2013). Complex Transport Around Tumor: Need for Realistic In Vitro Tumor Transport Model. In: Bae, Y., Mrsny, R., Park, K. (eds) Cancer Targeted Drug Delivery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7876-8_25

Download citation

Publish with us

Policies and ethics