Skip to main content

In Vitro Three-Dimensional Cancer Culture Models

  • Chapter
  • First Online:

Abstract

The efficacy of chemotherapy drug candidates is conventionally investigated using 2D cancer cell cultures and in vivo animal models. It is crucial to determine signaling pathways, controlling cell proliferation, metabolism, differentiation, and apoptosis functions, which are not optimal to investigate in the monolayer 2D cell culture models. Further, accurate investigation of tumor growth and therapeutic drug efficacy in murine models is challenging because of technical constraints of in vivo imaging and requires euthanizing the animals. Therefore, alternative in vitro cancer models are needed to facilitate the transition of new chemotherapeutic drug candidates from bench to clinical trials. Recent technological advances in microfabrication and bioengineering have provided tools to develop in vitro 3D cancer models that mimic natural tissue microenvironment. This chapter highlights recent developments in in vitro 3D cancer models and their applications for studying the efficacy of the chemotherapeutic drug candidates. We discuss the methods and technologies to develop 3D cancer models including embedded and overlay cell culture, suspension culture, bioprinting, hanging drop, microgravity bioreactor, and magnetic levitation. We also discuss the extracellular matrix components and synthetic scaffolds used in vitro 3D cancer models.

Waseem Asghar and Hadi Shafiee contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Globocan 2008 (2010) International Agency for Research on Cancer (IARC), World Health Organization. http://globocan.iarc.fr/factsheets/populations/factsheet.asp?uno=900

  2. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1(1):46

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    CAS  PubMed  Google Scholar 

  4. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  5. Johansson N, Ahonen M, Kahari VM (2000) Matrix metalloproteinases in tumor invasion. Cell Mol Life Sci 57(1):5–15

    CAS  PubMed  Google Scholar 

  6. Calmels TPG, Mattot V, Wernert N, Vandenbunder B, Stehelin D (1995) Invasive tumors induce c-ets1 transcription factor expression in adjacent stroma. Biol Cell 84(1–2):53–61

    CAS  PubMed  Google Scholar 

  7. Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2(10):727–739

    CAS  PubMed  Google Scholar 

  8. Hortobagyi GN (2004) Opportunities and challenges in the development of targeted therapies. In: Seminars in oncology. Elsevier, 31(3):21–27

    Google Scholar 

  9. Abbott A (2003) Cell culture: biology’s new dimension. Nature 424(6951):870–872

    CAS  PubMed  Google Scholar 

  10. Wang F, Weaver VM, Petersen OW, Larabell CA, Dedhar S, Briand P, Lupu R, Bissell MJ (1998) Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci 95(25):14821–14826

    CAS  PubMed  Google Scholar 

  11. Liu H, Radisky DC, Wang F, Bissell MJ (2004) Polarity and proliferation are controlled by distinct signaling pathways downstream of pi3-kinase in breast epithelial tumor cells. J Cell Biol 164(4):603–612

    CAS  PubMed  Google Scholar 

  12. Weaver VM, Lelievre S, Lakins JN, Chrenek MA, Jones JCR, Giancotti F, Werb Z, Bissell MJ (2002) Beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2(3):205–216

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Durand RE, Olive PL (2001) Resistance of tumor cells to chemo-and radiotherapy modulated by the three-dimensional architecture of solid tumors and spheroids. Methods Cell Biol 64:211–233

    CAS  PubMed  Google Scholar 

  14. Kerbel RS (1994) Impact of multicellular resistance on the survival of solid tumors, including micrometastases. Invasion Metastasis 14(1–6):50

    PubMed  Google Scholar 

  15. Hauptmann S, Denkert C, Lohrke H, Tietze L, Ott S, Klosterhalfen B, Mittermayer C (1995) Integrin expression on colorectal tumor cells growing as monolayers, as multicellular tumor spheroids, or in nude mice. Int J Cancer 61(6):819–825

    CAS  PubMed  Google Scholar 

  16. Voskoglou-Nomikos T, Pater JL, Seymour L (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9(11):4227–4239

    PubMed  Google Scholar 

  17. Richmond A, Su Y (2008) Mouse xenograft models vs gem models for human cancer therapeutics. Dis Model Mech 1(2–3):78–82

    PubMed Central  PubMed  Google Scholar 

  18. Becher OJ, Holland EC (2006) Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res 66(7):3355–3359

    CAS  PubMed  Google Scholar 

  19. Olive KP, Tuveson DA (2006) The use of targeted mouse models for preclinical testing of novel cancer therapeutics. Clin Cancer Res 12(18):5277–5287

    CAS  PubMed  Google Scholar 

  20. Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7(9):654–658

    Google Scholar 

  21. Loudos G, Kagadis GC, Psimadas D (2011) Current status and future perspectives of in vivo small animal imaging using radiolabeled nanoparticles. Eur J Radiol 78(2):287–295

    PubMed  Google Scholar 

  22. Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM (2011) Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem 399(1):3–27

    CAS  PubMed  Google Scholar 

  23. Kagadis GC, Loudos G, Katsanos K, Langer SG, Nikiforidis GC (2010) In vivo small animal imaging: current status and future prospects. Med Phys 37:6421

    PubMed  Google Scholar 

  24. Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49(Suppl 2):113S–128S

    CAS  PubMed  Google Scholar 

  25. Boehm T, Folkman J, Browder T, O’Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390(6658):404–407

    CAS  PubMed  Google Scholar 

  26. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS, Folkman J (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60(7):1878–1886

    CAS  PubMed  Google Scholar 

  27. Eder JP Jr, Supko JG, Clark JW, Puchalski TA, Garcia-Carbonero R, Ryan DP, Shulman LN, Proper J, Kirvan M, Rattner B (2002) Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol 20(18):3772–3784

    CAS  PubMed  Google Scholar 

  28. Breslin S, O’Driscoll L (2013) Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 18(5–6):240–249

    CAS  PubMed  Google Scholar 

  29. Soares CP, Midlej V, Oliveira M, Benchimol M, Costa ML, Mermelstein C (2012) 2d and 3d-organized cardiac cells shows differences in cellular morphology, adhesion junctions, presence of myofibrils and protein expression. PLoS One 7(5):e38147

    PubMed Central  Google Scholar 

  30. Zhou S, Li F, Xiao J, Xiong W, Fang Z, Chen W, Niu P (2010) Isolation and identification of cancer stem cells from human osteosarcom by serum-free three-dimensional culture combined with anticancer drugs. J Huazhong Univ Sci Technolog Med Sci 30(1):81–84

    PubMed  Google Scholar 

  31. Linde N, Gutschalk CM, Hoffmann C, Yilmaz D, Mueller MM (2012) Integrating macrophages into organotypic co-cultures: a 3d in vitro model to study tumor-associated macrophages. PLoS One 7(7):e40058

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB, Laurie GW, Martin GR (1986) Basement membrane complexes with biological activity. Biochemistry 25(2):312–318

    CAS  PubMed  Google Scholar 

  33. Wang AZ, Ojakian GK, Nelson WJ (1990) Steps in the morphogenesis of a polarized epithelium. J Cell Sci 95:137–151

    PubMed  Google Scholar 

  34. Hsiao AY, Tung Y-C, Qu X, Patel LR, Pienta KJ, Takayama S (2012) 384 hanging drop arrays give excellent z-factors and allow versatile formation of co-culture spheroids. Biotechnol Bioeng 109(5):1293–1304

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Hsiao AY, Tung YC, Kuo CH, Mosadegh B, Bedenis R, Pienta KJ, Takayama S (2012) Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates. Biomed Microdevices 14(2):313–323

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Tung Y-C, Hsiao AY, Allen SG, Y-s T, Ho M, Takayama S (2011) High-throughput 3d spheroid culture and drug testing using a 384 hanging drop array. Analyst 136(3):473–478

    CAS  PubMed  Google Scholar 

  37. Lee WG, Ortmann D, Hancock MJ, Bae H, Khademhosseini A (2010) A hollow sphere soft lithography approach for long-term hanging drop methods. Tissue Eng Part C Methods 16(2):249–259

    CAS  PubMed  Google Scholar 

  38. Souza GR, Molina JR, Raphael RM, Ozawa MG, Stark DJ, Levin CS, Bronk LF, Ananta JS, Mandelin J, Georgescu M-M, Bankson JA, Gelovani JG, Killian TC, Arap W, Pasqualini R (2010) Three-dimensional tissue culture based on magnetic cell levitation. Nat Nanotechnol 5(4):291–296

    CAS  PubMed  Google Scholar 

  39. Lin R-Z, Chu W-C, Chiang C-C, Lai C-H, Chang H-Y (2008) Magnetic reconstruction of three-dimensional tissues from multicellular spheroids. Tissue Eng Part C Methods 14(3):197–205

    CAS  PubMed  Google Scholar 

  40. Tasoglu S, Kavaz D, Gurkan UA, Guven S, Chen P, Zheng R, Demirci U (2013) Paramagnetic levitational assembly of hydrogels. Adv Mater 25(8):1137–1143

    CAS  PubMed  Google Scholar 

  41. Xu F, Finley TD, Turkaydin M, Sung Y, Gurkan UA, Yavuz AS, Guldiken RO, Demirci U (2011) The assembly of cell-encapsulating microscale hydrogels using acoustic waves. Biomaterials 32(31):7847–7855

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Xu F, Wu CAM, Rengarajan V, Finley TD, Keles HO, Sung YR, Li BQ, Gurkan UA, Demirci U (2011) Three-dimensional magnetic assembly of microscale hydrogels. Adv Mater 23(37):4254–4260

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Barzegari A, Saei AA (2012) An update to space biomedical research: tissue engineering in microgravity bioreactors. BioImpacts 2(1):23–32

    PubMed Central  PubMed  Google Scholar 

  44. Maxson S, Orr D, Burg KJL (2011) Bioreactors for tissue engineering. Tissue engineering: from lab to clinic. Springer, Berlin

    Google Scholar 

  45. Chen HC, Hu YC (2006) Bioreactors for tissue engineering. Biotechnol Lett 28(18):1415–1423

    CAS  PubMed  Google Scholar 

  46. Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86

    CAS  PubMed  Google Scholar 

  47. Becker JL (2013) Cellular biotechnology operations support systems: evaluation of ovarian tumor cell growth and gene expression (cboss-01-ovarian). http://www.nasa.gov/mission_pages/station/research/experiments/248.html

  48. Jessup JM (2013) Cellular biotechnology operations support systems: use of NASA bioreactor to study cell cycle regulation: mechanisms of colon carcinoma metastasis in microgravity. http://www.nasa.gov/mission_pages/station/research/experiments/CBOSS-01-Colon.html

  49. Navran S (2008) The application of low shear modeled microgravity to 3-d cell biology and tissue engineering. In: El-Gewely MR (ed) Biotechnology annual review, vol 14. Elsevier, Amsterdam, pp 275–296

    Google Scholar 

  50. Begley CM, Kleis SJ (2002) Rwpv bioreactor mass transport: earth-based and in microgravity. Biotechnol Bioeng 80(4):465–476

    CAS  PubMed  Google Scholar 

  51. Barrila J, Radtke AL, Crabbé A, Sarker SF, Herbst-Kralovetz MM, Ott CM, Nickerson CA (2010) Organotypic 3d cell culture models: Using the rotating wall vessel to study host–pathogen interactions. Nat Rev Microbiol 8(11):791–801

    CAS  PubMed  Google Scholar 

  52. Freed LE, Langer R, Martin I, Pellis NR, Vunjak-Novakovic G (1997) Tissue engineering of cartilage in space. Proc Natl Acad Sci 94(25):13885–13890

    CAS  PubMed  Google Scholar 

  53. Grun B, Benjamin E, Sinclair J, Timms JF, Jacobs IJ, Gayther SA, Dafou D (2009) Three-dimensional in vitro cell biology models of ovarian and endometrial cancer. Cell Prolif 42(2):219–228

    CAS  PubMed  Google Scholar 

  54. Takeda M, Magaki T, Okazaki T, Kawahara Y, Manabe T, Yuge L, Kurisu K (2009) Effects of simulated microgravity on proliferation and chemosensitivity in malignant glioma cells. Neurosci Lett 463(1):54–59

    CAS  PubMed  Google Scholar 

  55. Grimm D, Bauer J, Kossmehl P, Shakibaei M, Schonberger J, Pickenhahn H, Schulze-Tanzil G, Vetter R, Eilles C, Paul M, Cogoli A (2002) Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J 16(2):604–606

    CAS  PubMed  Google Scholar 

  56. Han ZB, Ishizaki K, Nishizawa K, Kato T, Todo T, Ikenaga M (1999) A genetic effect of altered gravity: Mutations induced by simulated hypogravity and hypergravity in microsatellite sequences of human tumor cells. Mutat Res 426(1):1–10

    CAS  PubMed  Google Scholar 

  57. Hammer BE, Kidder LS, Williams PC, Xu WW (2009) Magnetic levitation of mc3t3 osteoblast cells as a ground-based simulation of microgravity. Microgravity Sci Technol 21(4):311–318

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Nishikawa M, Ohgushi H, Tamai N, Osuga K, Uemura M, Yoshikawa H, Myoui A (2005) The effect of simulated microgravity by three-dimensional clinostat on bone tissue engineering. Cell Transplant 14(10):829–835

    PubMed  Google Scholar 

  59. Xu F, Celli J, Rizvi I, Moon S, Hasan T, Demirci U (2011) A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 6(2):204–212

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Moon S, Ceyhan E, Gurkan UA, Demirci U (2011) Statistical modeling of single target cell encapsulation. PLoS One 6(7):e21580

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Ceyhan E, Xu F, Gurkan UA, Emre AE, Turali ES, El Assal R, Acikgenc A, Wu CM, Demirci U (2012) Prediction and control of number of cells in microdroplets by stochastic modeling. Lab on a Chip. doi:10.1039/C1032LC40523G

  62. Tasoglu S, Demirci U (2013) Bioprinting for stem cell research. Trends Biotechnol 31(1):10–19

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Demirci U, Khademhosseini A, Langer R, Blander J (2012) Microfluidic technologies for human health. World Scientific Publishing Company, Singapore

    Google Scholar 

  64. Tasoglu S, Gurkan UA, Wang A, Demirci U (2013) Manipulating biological agents and cells in microscale volumes for applications in medicine. Chem Soc Rev 13(42):5788–5808

    Google Scholar 

  65. Demirci U, Montesano G (2007) Cell encapsulating droplet vitrification. Lab Chip 7(11):1428–1433

    CAS  PubMed  Google Scholar 

  66. Demirci U, Montesano G (2007) Single cell epitaxy by acoustic picoliter droplets. Lab Chip 7:1139–1145

    CAS  PubMed  Google Scholar 

  67. Gurkan UA, Tasoglu S, Kavaz D, Demirel MC, Demirci U (2012) Emerging technologies for assembly of microscale hydrogels. Adv Healthc Mater 1(2):149–158

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Tasoglu S, Kaynak G, Szeri AJ, Demirci U, Muradoglu M (2010) Impact of a compound droplet on a flat surface: a model for single cell epitaxy. Phys Fluids 22(8)

    Google Scholar 

  69. Kistler SF (ed) (1993) Wettability. Dekker, New York

    Google Scholar 

  70. Muradoglu M, Tasoglu S (2010) A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls. Comput Fluids 39(4):615–625

    Google Scholar 

  71. Tasoglu S, Rohan LC, Katz DF, Szeri AJ (2013) Transient swelling, spreading and drug delivery by a dissolved anti-hiv microbicide-bearing film. Phys Fluids 25(3):031901–031916 (http://dx.doi.org/10.1063/1.4793598)

    Google Scholar 

  72. Szeri AJ, Park SC, Tasoglu S, Verguet S, Gorham A, Gao Y, Katz DF (2010) Epithelial coating mechanisms by semi-solid materials: application to microbicide gels. Biophys J 98(3):604

    Google Scholar 

  73. Tasoglu S, Peters JJ, Park SC, Verguet S, Katz DF, Szeri AJ (2011) The effects of inhomogeneous boundary dilution on the coating flow of an anti-HIV microbicide vehicle. Phys Fluids 23(9):093101

    Google Scholar 

  74. Takamatsu H, Rubinsky B (1999) Viability of deformed cells. Cryobiology 39(3):243–251

    CAS  PubMed  Google Scholar 

  75. Moon S, Hasan SK, Song YS, Xu F, Keles HO, Manzur F, Mikkilineni S, Hong JW, Nagatomi J, Haeggstrom E, Khademhosseini A, Demirci U (2010) Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C Methods 16(1):157–166

    CAS  PubMed  Google Scholar 

  76. Xu F, Moon SJ, Emre AE, Turali ES, Song YS, Hacking SA, Nagatomi J, Demirci U (2010) A droplet-based building block approach for bladder smooth muscle cell (smc) proliferation. Biofabrication 2(1):9

    Google Scholar 

  77. Moon S, Kim YG, Dong L, Lombardi M, Haeggstrom E, Jensen RV, Hsiao LL, Demirci U (2011) Drop-on-demand single cell isolation and total RNA analysis. PLoS One 6(3):e17455

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Samot J, Moon S, Shao L, Zhang X, Xu F, Song Y, Keles HO, Matloff L, Markel J, Demirci U (2011) Blood banking in living droplets. PLoS One 6(3):e17530

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Tasoglu S, Park SC, Peters JJ, Katz DF, Szeri AJ (2011) The consequences of yield stress on deployment of a non-newtonian anti-HIV microbicide gel. J Nonnewton Fluid Mech 166(19–20):1116–1122

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Tasoglu S, Katz DF, Szeri AJ (2012) Transient spreading and swelling behavior of a gel deploying an anti-HIV microbicide. Journal of Non-Newtonian Fluid Mechanics 187:36–42

    PubMed  Google Scholar 

  81. Tasoglu S, Szeri AJ, Katz DF (2011) Transport processes in vaginal films that release anti-HIV microbicide molecules. Biophys J 100(3):489

    Google Scholar 

  82. Kleinman HK, Martin GR (2005) Matrigel: Basement membrane matrix with biological activity. In: Seminars in cancer biology. Elsevier, 15(5):378–386

    Google Scholar 

  83. Fridman R, Kibbey MC, Royce LS, Zain M, Sweeney TM, Jicha DL, Yannelli JR, Martin GR, Kleinman HK (1991) Enhanced tumor growth of both primary and established human and murine tumor cells in athymic mice after coinjection with matrigel. J Natl Cancer Inst 83(11):769–774

    CAS  PubMed  Google Scholar 

  84. Webber MM, Bello D, Kleinman HK, Hoffman MP (1997) Acinar differentiation by non-malignant immortalized human prostatic epithelial cells and its loss by malignant cells. Carcinogenesis 18(6):1225–1231

    CAS  PubMed  Google Scholar 

  85. Shekhar MPV, Werdell J, Santner SJ, Pauley RJ, Tait L (2001) Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: Implications for tumor development and progression. Cancer Res 61(4):1320–1326

    CAS  PubMed  Google Scholar 

  86. Adnan OA-Y, Imran R, Conor LE, Jonathan PC, Tayyaba H (2009) Puramatrix encapsulation of cancer cells. J Vis Exp (34)

    Google Scholar 

  87. Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci 90(8):3334–3338

    CAS  PubMed  Google Scholar 

  88. Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16(18):1385–1393

    PubMed  Google Scholar 

  89. Weaver VM, Howlett AR, Langton-Webster B, Petersen OW, Bissell MJ (1995) The development of a functionally relevant cell culture model of progressive human breast cancer. In: Seminars in cancer biology. Elsevier, 6(3):175–184

    Google Scholar 

  90. Spancake KM, Anderson CB, Weaver VM, Matsunami N, Bissell MJ, White RL (1999) E7-transduced human breast epithelial cells show partial differentiation in three-dimensional culture. Cancer Res 59(24):6042–6045

    CAS  PubMed  Google Scholar 

  91. Gelain F, Bottai D, Vescovi A, Zhang S (2006) Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 1(1):e119

    PubMed Central  PubMed  Google Scholar 

  92. Kim MS, Yeon JH, Park J-K (2007) A microfluidic platform for 3-dimensional cell culture and cell-based assays. Biomed Microdevices 9(1):25–34

    CAS  PubMed  Google Scholar 

  93. Ranieri JP, Bellamkonda R, Bekos EJ, Vargo TG, Gardella JA, Aebischer P (2004) Neuronal cell attachment to fluorinated ethylene propylene films with covalently immobilized laminin oligopeptides YIGSR and IKVAV. II. J Biomed Mater Res 29(6):779–785

    Google Scholar 

  94. Knight CG, Morton LF, Peachey AR, Tuckwell DS, Farndale RW, Barnes MJ (2000) The collagen-binding a-domains of integrins alpha(1)beta(1) and alpha(2)beta(1) recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J Biol Chem 275(1):35–40

    CAS  PubMed  Google Scholar 

  95. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238(4826):491

    CAS  PubMed  Google Scholar 

  96. Nowakowski GS, Dooner MS, Valinski HM, Mihaliak AM, Quesenberry PJ, Becker PS (2004) A specific heptapeptide from a phage display peptide library homes to bone marrow and binds to primitive hematopoietic stem cells. Stem Cells 22(6):1030–1038

    CAS  PubMed  Google Scholar 

  97. Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci 99(15):9996–10001

    CAS  PubMed  Google Scholar 

  98. Davis ME, Motion JPM, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang S, Lee RT (2005) Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111(4):442–450

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Horii A, Wang X, Gelain F, Zhang S (2007) Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-d migration. PLoS One 2(2):e190

    PubMed Central  PubMed  Google Scholar 

  100. Barcellos-Hoff MH, Medina D (2005) New highlights on stroma-epithelial interactions in breast cancer. Breast Cancer Res 7(1):33–36

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Karp JM, Dalton PD, Shoichet MS (2003) Scaffolds for tissue engineering. MRS Bull 28(4):301–306

    CAS  Google Scholar 

  102. Asghar W, Kim YT, Ilyas A, Sankaran J, Wan Y, Iqbal SM (2012) Synthesis of nano-textured biocompatible scaffolds from chicken eggshells. Nanotechnology 23(47):475601–475609

    Google Scholar 

  103. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    CAS  PubMed  Google Scholar 

  104. Buurma B, Gu K, Rutherford RB (2003) Transplantation of human pulpal and gingival fibroblasts attached to synthetic scaffolds. Eur J Oral Sci 107(4):282–289

    Google Scholar 

  105. Asghar W, Islam M, Wadajkar AS, Wan Y, Ilyas A, Nguyen KT, Iqbal SM (2012) PLGA micro- and nanoparticles loaded into gelatin scaffold for controlled drug release. IEEE T Nanotech 11(3):546–553

    Google Scholar 

  106. Cunliffe D, Pennadam S, Alexander C (2004) Synthetic and biological polymers-merging the interface. Eur Polym J 40(1):5–25

    CAS  Google Scholar 

  107. Chen G, Sato T, Ushida T, Hirochika R, Shirasaki Y, Ochiai N, Tateishi T (2003) The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. J Biomed Mater Res A 67(4):1170–1180

    PubMed  Google Scholar 

  108. Sahoo SK, Panda AK, Labhasetwar V (2005) Characterization of porous PLGA/PLA microparticles as a scaffold for three dimensional growth of breast cancer cells. Biomacromolecules 6(2):1132–1139

    CAS  PubMed  Google Scholar 

  109. Fischbach C, Chen R, Matsumoto T, Schmelzle T, Brugge JS, Polverini PJ, Mooney DJ (2007) Engineering tumors with 3d scaffolds. Nat Methods 4(10):855–860

    CAS  PubMed  Google Scholar 

  110. Knight E, Murray B, Carnachan R, Przyborski S (2011) Alvetex®: polystyrene scaffold technology for routine three dimensional cell culture. Methods Mol Biol 695:323–340

    CAS  PubMed  Google Scholar 

  111. Caicedo-Carvajal CE, Liu Q, Remache Y, Goy A, Suh KS (2011) Cancer tissue engineering: a novel 3d polystyrene scaffold for in vitro isolation and amplification of lymphoma cancer cells from heterogeneous cell mixtures. J Tissue Eng 2(1)

    Google Scholar 

  112. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254

    CAS  PubMed  Google Scholar 

  113. Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, Friedl A, Keely PJ (2011) Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 178(3):1221–1232

    PubMed  Google Scholar 

  114. Kraning-Rush CM, Reinhart-King CA (2012) Controlling matrix stiffness and topography for the study of tumor cell migration. Cell Adh Migr 6(3):274–279

    PubMed  Google Scholar 

  115. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572

    CAS  PubMed  Google Scholar 

  116. Mak M, Reinhart-King CA, Erickson D (2011) Microfabricated physical spatial gradients for investigating cell migration and invasion dynamics. PLoS One 6(6):e20825

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Sahai E (2007) Illuminating the metastatic process. Nat Rev Cancer 7(10):737–749

    CAS  PubMed  Google Scholar 

  118. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Carey SP, Kraning-Rush CM, Williams RM, Reinhart-King CA (2012) Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials 33(16):4157–4165

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Provenzano PP, Inman DR, Eliceiri KW, Trier SM, Keely PJ (2008) Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys J 95(11):5374–5384

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4(1):38

    PubMed Central  PubMed  Google Scholar 

  122. Charest JM, Califano JP, Carey SP, Reinhart-King CA (2012) Fabrication of substrates with defined mechanical properties and topographical features for the study of cell migration. Macromol Biosci 12(1):12–20

    CAS  PubMed  Google Scholar 

  123. Kraning-Rush CM, Califano JP, Reinhart-King CA (2012) Cellular traction stresses increase with increasing metastatic potential. PLoS One 7(2):e32572

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Darling EM, Zauscher S, Block JA, Guilak F (2007) A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential? Biophys J 92(5):1784–1791

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88(5):3689–3698

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12):780–783

    CAS  PubMed  Google Scholar 

  127. Ramanujan S, Pluen A, McKee TD, Brown EB, Boucher Y, Jain RK (2002) Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys J 83(3):1650–1660

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Hegedus B, Marga F, Jakab K, Sharpe-Timms KL, Forgacs G (2006) The interplay of cell-cell and cell-matrix interactions in the invasive properties of brain tumors. Biophys J 91(7):2708–2716

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Qazi H, Shi ZD, Tarbell JM (2011) Fluid shear stress regulates the invasive potential of glioma cells via modulation of migratory activity and matrix metalloproteinase expression. PLoS One 6(5):e20348

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Binder DK, Berger MS (2002) Proteases and the biology of glioma invasion. J Neurooncol 56(2):149–158

    PubMed  Google Scholar 

  131. Rizvi I, Gurkan UA, Tasoglu S, Alagic N, Celli JP, Mensah LB, Mai Z, Demirci U, Hasan T (2013) Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc Natl Acad Sci USA doi: 10.1073/pnas.1216989110

    Google Scholar 

  132. Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3d. Cell 130(4):601–610

    CAS  PubMed  Google Scholar 

  133. Hutmacher DW (2010) Biomaterials offer cancer research the third dimension. Nat Mater 9(2):90–93

    CAS  PubMed  Google Scholar 

  134. Feder-Mengus C, Ghosh S, Reschner A, Martin I, Spagnoli GC (2008) New dimensions in tumor immunology: what does 3d culture reveal? Trends Mol Med 14(8):333–340

    CAS  PubMed  Google Scholar 

  135. Cheema U, Brown RA, Alp B, MacRobert AJ (2008) Spatially defined oxygen gradients and vascular endothelial growth factor expression in an engineered 3d cell model. Cell Mol Life Sci 65(1):177–186

    CAS  PubMed  Google Scholar 

  136. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated sdf-1/cxcl12 secretion. Cell 121(3):335–348

    CAS  PubMed  Google Scholar 

  137. Dong Z, Nor JE (2009) Transcriptional targeting of tumor endothelial cells for gene therapy. Adv Drug Deliv Rev 61(7–8):542–553

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563

    CAS  PubMed  Google Scholar 

  139. Studebaker AW, Storci G, Werbeck JL, Sansone P, Sasser AK, Tavolari S, Huang T, Chan MW, Marini FC, Rosol TJ, Bonafe M, Hall BM (2008) Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer Res 68(21):9087–9095

    CAS  PubMed  Google Scholar 

  140. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401

    CAS  PubMed  Google Scholar 

  141. Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5(15):1597–1601

    CAS  PubMed  Google Scholar 

  142. Anghelina M, Krishnan P, Moldovan L, Moldovan NI (2006) Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair-conversion of cell columns into fibrovascular bundles. Am J Pathol 168:529–541

    CAS  PubMed  Google Scholar 

  143. Ceyhan E, Xu F, Gurkan UA, Emre AE, Turali ES, El Assal R, Acikgenc A, Wu CAM, Demirci U (2012) Prediction and control of number of cells in microdroplets by stochastic modeling. Lab Chip 12(22):4884–4893

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Gurkan UA, Sung Y, El Assal R, Xu F, Trachtenberg A, Kuo W, Demirci U (2012) Bioprinting anisotropic stem cell microenvironment. J Tissue Eng Regen Med 6:366

    Google Scholar 

  145. Xu F, Sridharan B, Wang SQ, Gurkan UA, Syverud B, Demirci U (2011) Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation. Biomicrofluidics 5(2)

    Google Scholar 

  146. Xu F, Wu JH, Wang SQ, Durmus NG, Gurkan UA, Demirci U (2011) Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication 3(3):34101–34113

    Google Scholar 

  147. Gurkan UA, Fan Y, Xu F, Erkmen B, Urkac ES, Parlakgul G, Bernstein J, Xing W, Boyden ES, Demirci U (2013) Simple precision creation of digitally specified, spatially heterogeneous, engineered tissue architectures. Adv Mater 25(8):1192–1198

    CAS  PubMed  Google Scholar 

  148. Sekeroglu K, Gurkan UA, Demirci U, Demirel MC (2011) Transport of a soft cargo on a nanoscale ratchet. Appl Phys Lett 99(6)

    Google Scholar 

  149. Feng X, JinHui W, ShuQi W, Naside Gozde D, Umut Atakan G, Utkan D (2011) Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication 3(3):034101

    Google Scholar 

  150. Durmus NG, Tasoglu S, Demirci U (2013) Bioprinting: Functional droplet networks. Nat Mater 12(6):478–479.

    Google Scholar 

  151. Birgersdotter A, Sandberg R, Ernberg I (2005) Gene expression perturbation in vitro—a growing case for three-dimensional (3d) culture systems. Semin Cancer Biol 15(5):405–412

    PubMed  Google Scholar 

  152. Kimlin LC, Casagrande G, Virador VM (2013) In vitro three-dimensional (3d) models in cancer research: an update. Mol Carcinog 52(3):167–182

    PubMed  Google Scholar 

  153. Abu-Yousif AO, Rizvi I, Evans CL, Celli JP, Hasan T (2009) Puramatrix encapsulation of cancer cells. J Vis Exp (34)

    Google Scholar 

  154. Zhong W, Celli JP, Rizvi I, Mai Z, Spring BQ, Yun SH, Hasan T (2009) In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring. Br J Cancer 101(12):2015–2022

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Gurski LA, Petrelli NJ, Jia X, Farach-Carson MC (2010) 3d Matrices for anti-cancer drug testing and development. Oncology 1(2):20–25

    Google Scholar 

  156. Kim J (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15:365–377

    PubMed  Google Scholar 

  157. Miller BE, Miller FR, Heppner GH (1985) Factors affecting growth and drug sensitivity of mouse mammary tumor lines in collagen gel cultures. Cancer Res 45(9):4200–4205

    CAS  PubMed  Google Scholar 

  158. Martin KJ, Patrick DR, Bissell MJ, Fournier MV (2008) Prognostic breast cancer signature identified from 3d culture model accurately predicts clinical outcome across independent datasets. PLoS One 3(8):e2994

    PubMed Central  PubMed  Google Scholar 

  159. Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R (2004) The use of 3-d cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen 9(4):273–285

    CAS  PubMed  Google Scholar 

  160. Hancock JD, Lessnick SL (2008) A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle 7(2):250–256

    CAS  PubMed  Google Scholar 

  161. Teicher BA (2009) Acute and chronic in vivo therapeutic resistance. Biochem Pharmacol 77(11):1665–1673

    CAS  PubMed  Google Scholar 

  162. Bartholoma P, Reininger-Mack A, Zhang Z, Thielecke H, Robitzki A (2005) A more aggressive breast cancer spheroid model coupled to an electronic capillary sensor system for a high-content screening of cytotoxic agents in cancer therapy: 3-dimensional in vitro tumor spheroids as a screening model. J Biomol Screen 10(7):705–714

    CAS  PubMed  Google Scholar 

  163. Zhang X, Wang W, Yu W, Xie Y, Zhang X, Zhang Y, Ma X (2005) Development of an in vitro multicellular tumor spheroid model using microencapsulation and its application in anticancer drug screening and testing. Biotechnol Prog 21(4):1289–1296

    CAS  PubMed  Google Scholar 

  164. Schmeichel KL, Bissell MJ (2003) Modeling tissue-specific signaling and organ function in three dimensions. J Cell Sci 116(12):2377–2388

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW (2002) Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 115(1):39–50

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Demirbag B, Huri PY, Kose GT, Buyuksungur A, Hasirci V (2011) Advanced cell therapies with and without scaffolds. Biotechnol J 6(12)

    Google Scholar 

  167. Drewitz M, Helbling M, Fried N, Bieri M, Moritz W, Lichtenberg J, Kelm JM (2011) Towards automated production and drug sensitivity testing using scaffold-free spherical tumor microtissues. Biotechnol J 6(12):1488–1496

    CAS  PubMed  Google Scholar 

  168. Rodríguez-Dévora JI, Shi Z-d XT (2011) Direct assembling methodologies for high-throughput bioscreening. Biotechnol J 6(12)

    Google Scholar 

  169. Debnath J, Brugge JS (2005) Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5(9):675–688

    CAS  PubMed  Google Scholar 

  170. Yoshida D, Teramoto A (2007) The use of 3-d culture in peptide hydrogel for analysis of discoidin domain receptor 1-collagen interaction. Cell Adh Migr 1(2):92–98

    PubMed  Google Scholar 

  171. Cheng K, Lai Y, Kisaalita WS (2008) Three-dimensional polymer scaffolds for high throughput cell-based assay systems. Biomaterials 29(18):2802–2812

    CAS  PubMed  Google Scholar 

  172. Marrero B, Messina J, Heller R (2009) Generation of a tumor spheroid in a microgravity environment as a 3d model of melanoma. In Vitro Cell Dev Biol Anim 45(9):523–534

    PubMed Central  PubMed  Google Scholar 

  173. Smith SJ, Wilson M, Ward JH, Rahman CV, Peet AC, Macarthur DC, Rose F, Grundy RG, Rahman R (2012) Recapitulation of tumor heterogeneity and molecular signatures in a 3d brain cancer model with decreased sensitivity to histone deacetylase inhibition. PLoS One 7(12)

    Google Scholar 

  174. Tang J, Cui J, Chen R, Guo K, Kang X, Li Y, Gao D, Sun L, Xu C, Chen J, Tang Z, Liu Y (2011) A three-dimensional cell biology model of human hepatocellular carcinoma in vitro. Tumor Biol 32(3):469–479

    Google Scholar 

  175. Becker JL, Blanchard DK (2007) Characterization of primary breast carcinomas grown in three-dimensional cultures. J Surg Res 142(2):256–262

    CAS  PubMed  Google Scholar 

  176. Taga M, Yamauchi K, Odle J, Furian L, Sundaresan A, Ramesh GT, Pellis NR, Andrassy RJ, Kulkarni AD (2006) Melanoma growth and tumorigenicity in models of microgravity. Aviat Space Environ Med 77(11):1113–1116

    PubMed  Google Scholar 

  177. Rhee HW, Zhau HE, Pathak S, Multani AS, Pennanen S, Visakorpi T, Chung LWK (2001) Permanent phenotypic and genotypic changes of prostate cancer cells cultured in a three-dimensional rotating-wall vessel. In Vitro Cell Dev Biol Anim 37(3):127–140

    CAS  PubMed  Google Scholar 

  178. Chopra V, Dinh TV, Hannigan EV (1997) Three-dimensional endothelial-tumor epithelial cell interactions in human cervical cancers. Vitro Cellular & Developmental Biology-Animal 33(6):432–442

    CAS  Google Scholar 

  179. Qian A, Zhang W, Xie L, Weng Y, Yang P, Wang Z, Hu L, Xu H, Tian Z, Shang P (2008) Simulated weightlessness alters biological characteristics of human breast cancer cell line MCF-7. Acta Astronaut 63(7–10):947–958

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utkan Demirci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Asghar, W. et al. (2013). In Vitro Three-Dimensional Cancer Culture Models. In: Bae, Y., Mrsny, R., Park, K. (eds) Cancer Targeted Drug Delivery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7876-8_24

Download citation

Publish with us

Policies and ethics