Applications of the Calculus of Moving Surfaces

  • Pavel Grinfeld


The applications of the calculus of moving surfaces are remarkably broad. Of course, many of the applications come from problems in physics and engineering in which physical surfaces move. On the other hand, numerous applications come from problems in which, at least in the statement of the problem, there are no moving surfaces. There are at least three categories of such problems: shape optimization, boundary perturbation, and a third category illustrated by the proof of a version of the Gauss–Bonnet theorem.


Minimal Surface Dirichlet Boundary Condition Neumann Boundary Condition Geodesic Equation Fluid Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    L. Bewley. Tensor Analysis of Electric Circuits and Machines. Ronald Press, 1961.Google Scholar
  2. [2]
    A. Borisenko and I.E.Tarapov. Vector and Tensor Analysis with Applications. Dover Publications, New York, 1979.Google Scholar
  3. [3]
    S. Carroll. Spacetime and Geometry: An Introduction to General Relativity. Benjamin Cummings, 2003.Google Scholar
  4. [4]
    E. Cartan. Geometry of Riemannian Spaces. Math Science Pr, 1983.MATHGoogle Scholar
  5. [5]
    E. Cartan. Riemannian Geometry in an Orthogonal Frame: From Lectures Delivered by Elie Cartan at the Sorbonne in 1926–27. World Scientific Pub Co Inc, 2002.Google Scholar
  6. [6]
    I. Chavel. Riemannian Geometry: A Modern Introduction (Cambridge Studies in Advanced Mathematics). Cambridge University Press, 2006.CrossRefGoogle Scholar
  7. [7]
    E. Christoffel. Sul problema delle temperature stazionarie e la rappresentazione di una data superficie. Annali di Matematica Pura ed Applicata, 1(1):89–103, 1867. On the problem of stationary temperature and the representation of a given area.CrossRefMATHGoogle Scholar
  8. [8]
    D. Danielson. Vectors And Tensors In Engineering And Physics: Second Edition. Westview Press, 2003.Google Scholar
  9. [9]
    R. Descartes. The Geometry. Dover Publications, New York, 1954.Google Scholar
  10. [10]
    A. Einstein. Die grundlage der allgemeinen relativittstheorie. Ann. der Physik, 49:769–822, 1916.CrossRefMATHGoogle Scholar
  11. [11]
    Euclid. The Elements: Books I - XIII - Complete and Unabridged. Barnes & Noble, 2006.Google Scholar
  12. [12]
    L. Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti. Opera Omnia, 24(1), 1897.Google Scholar
  13. [13]
    I. Gelfand. Lectures on Linear Algebra. Dover Publications, New York, 1989.Google Scholar
  14. [14]
    J. W. GIbbs. Vector analysis: A text-book for the use of students of mathematics and physics. Dover Publications, 1960.MATHGoogle Scholar
  15. [15]
    I. Grattan-Guiness. From the calculus to set theory, 1630–1910: an introductory history. Princeton University Press, Princeton, 2000.Google Scholar
  16. [16]
    M. Grinfeld. Thermodynamic Methods in the Theory of Heterogeneous Systems. Longman, New York, NY, 1991.Google Scholar
  17. [17]
    P. Grinfeld. Exact nonlinear equations for fluid films and proper adaptations of conservation theorems from classical hydrodynamics. J. Geom. Symm. Phys., 16:1–21, 2009.MathSciNetMATHGoogle Scholar
  18. [18]
    P. Grinfeld. Hamiltonian dynamic equations for fluid films. Stud. Appl. Math., 125:223–264, 2010.MathSciNetMATHGoogle Scholar
  19. [19]
    P. Grinfeld. A variable thickness model for fluid films under large displacements. Phys. Rev. Lett., 105:137802, 2010.CrossRefGoogle Scholar
  20. [20]
    P. Grinfeld. A better calculus of moving surfaces. J. Geom. Symm. Phys., 26:61–69, 2012.MathSciNetMATHGoogle Scholar
  21. [21]
    J. Hadamard. Mmoire sur le problme d’analyse relatif l’quilibre des plaques elastiques encastres, Oeuvres, tome 2. Hermann, 1968.Google Scholar
  22. [22]
    P. Halmos. Finite-dimensional vector spaces. Springer-Verlag, New York, 1974.CrossRefMATHGoogle Scholar
  23. [23]
    F. Harley. Differential forms, with applications to the physical sciences. Academic Press, New York, 1963.Google Scholar
  24. [24]
    V. Katz. The history of stokes’ theorem. Helv. Phys. Acta. Supp., 52(3):146–156, 1979.MATHGoogle Scholar
  25. [25]
    L. Kollros. Albert einstein en suisse souvenirs. Helv. Phys. Acta. Supp., 4:271–281, 1956.Google Scholar
  26. [26]
    J. Lagrange. Essai d’une nouvelle mthode pour dterminer les maxima et les minima des formules intgrales indfinies. Miscellanea Taurinensia, 1761.Google Scholar
  27. [27]
    P. Lax. Linear algebra and its applications. Wiley-Interscience, Hoboken, N.J, 2007.MATHGoogle Scholar
  28. [28]
    T. Levi-Civita. The Absolute Differential Calculus (Calculus of Tensors). Dover Publications, 1977.Google Scholar
  29. [29]
    S. Lovett. Differential Geometry of Manifolds. A K Peters Ltd, 2010.MATHGoogle Scholar
  30. [30]
    J. Maxwell. Treatise on Electricity and Magnetism. Cambridge University Press, Cambridge, 2010.CrossRefGoogle Scholar
  31. [31]
    A. McConnell. Applications of Tensor Analysis. Dover Publications, New York, 1957.Google Scholar
  32. [32]
    F. Morgan. Riemannian Geometry: A Beginners Guide, Second Edition. A K Peters/CRC Press, 1998.Google Scholar
  33. [33]
    P. Nastasia and R. Tazzioli. Toward a scientific and personal biography of Tullio Levi-Civita. Historia Mathematica, 32(2):203–236, 2005.MathSciNetCrossRefGoogle Scholar
  34. [34]
    G. Ricci and T. Levi-Civita. Mthodes de calcul diffrentiel absolu et leurs applications. Mathematische Annalen, 54:125–201, 1900.MathSciNetCrossRefGoogle Scholar
  35. [35]
    B. Riemann. Ueber die hypothesen, welche der geometrie zu grunde liegen. Abhandlungen der Kniglichen Gesellschaft der Wissenschaften zu Gttingen, 13, 1867. On the hypotheses that lie at the foundation of geometry.Google Scholar
  36. [36]
    B. Riemann. Gesammelte Mathematische Werke. Unknown, 1919. The Collected Mathematical Works with commentary by Hermann Weyl.Google Scholar
  37. [37]
    B. Riemann. Sochineniya. GITTL, 1948. The Collected Mathematical Works with commentary by Hermann Weyl, in Russian.Google Scholar
  38. [38]
    W. Rudin. Principles of mathematical analysis. McGraw-Hill, New York, 1976.MATHGoogle Scholar
  39. [39]
    H. Schwarz. Sur une definition erronee de aire d’une surface courbe. Ges. Math. Abhandl, 2:309–311, 369–370, 1882.Google Scholar
  40. [40]
    J. Simmonds. A brief on Tensor Analysis. Springer, New York Berlin, 1994.CrossRefMATHGoogle Scholar
  41. [41]
    I. Sokolnikoff. Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua. Krieger Pub Co, 1990.Google Scholar
  42. [42]
    B. Spain. Tensor Calculus: a concise course. Dover Publications, Mineola, N.Y, 2003.Google Scholar
  43. [43]
    M. Spivak. Calculus on manifolds: a modern approach to classical theorems of advanced calculus. W.A. Benjamin, New York, 1965.MATHGoogle Scholar
  44. [44]
    G. Strang. Introduction to Linear Algebra, 4th edition. Wellesley-Cambridge Press, 2009.Google Scholar
  45. [45]
    T. Thomas. Plastic Flow and Fracture in Solids. Academic Press, New York, NY, 1961.MATHGoogle Scholar
  46. [46]
    T. Thomas. Concepts from Tensor Analysis And Differential Geometry. Academic Press, New York, 1965.MATHGoogle Scholar
  47. [47]
    H. Weyl. Space, Time, Matter. Dover Publications, 1952.Google Scholar
  48. [48]
    F. Zames. Surface area and the cylinder area paradox. The Two-Year College Mathematics Journal, 8(4):207–211, 1977.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Pavel Grinfeld
    • 1
  1. 1.Department of MathematicsDrexel UniversityPhiladelphiaUSA

Personalised recommendations