Skip to main content

Role of the SHP2 Protein Tyrosine Phosphatase in Cardiac Metabolism

  • Chapter
  • First Online:

Abstract

The heart relies heavily on oxidation and requires an integrally responsive metabolic function to maintain cardiac homeostasis. There is increasing evidence that it is this loss of metabolic flexibility that ultimately leads to cardiac dysfunction in disease conditions such as diabetes, ischemic heart disease, hypertrophic cardiomyopathy (HCM), and heart failure.

The SH2 domain-containing protein tyrosine phosphatase (PTP), Src homology protein 2 (SHP2), encoded by the PTPN11 gene, is the first PTP to be directly implicated in cardiac disease (Nat Genet, 29(4):465–468, 2001; J Med Genet 39(8):571–574, 2002; J Med Genet 40(9):704–708, 2003) and is the first identified PTP found to have a critical role in adult cardiac function (Circulation 117(11):1423–1435, 2008; Mol Cell Biol 29(2):378–388, 2009). Indeed, differing mutations within SHP2 elicit distinct biochemical properties of the enzyme, each manifesting in a unique panoply of cardiac defects, including HCM.

Given the already identified key role for SHP2 in the heart, it is likely that SHP2 plays a significant role in cardiac metabolism as well. However, while the critical signaling pathways necessary for metabolic function in the heart overlap significantly with those known to be controlled by SHP2, a direct role for SHP2 in cardiac metabolism has not yet been elucidated. Here, we will discuss what is known about the functional role for SHP2 in the heart, how mutations in SHP2 can affect cardiac disease progression, and what direct or indirect mechanisms may exist for SHP2 regulation of cardiac metabolism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AMPK:

Adenosine monophosphate-activated protein kinase

ATP:

Adenosine triphosphate

CHDs:

Congenital heart defects

CICR:

Calcium-induced calcium release

CM:

Cardiomyocyte

Db/Db:

Diabetes/diabetes

DCM:

Dilated cardiomyopathy

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular regulated kinase

ET-1:

Endothelin-1

ETC:

Electron transport chain

Ex3−/− :

Exon 3 deleted

FA:

Free fatty acids

FAK:

Focal adhesion kinase

FOXO:

Forkhead box transcription factors

FRS-2:

Fibroblast growth factor receptor substrate-2

GAB-1:

GRB2 associated binder-1

GLUT-1:

Glucose transporter type-1

GLUT-4:

Glucose transporter type-4

GOF:

Gain-of-function

GPCR:

G-protein coupled receptor

GSK3β:

Glycogen synthase kinase 3β

HB-EGF:

Heparin binding-epidermal growth factor

HCM:

Hypertrophic cardiomyopathy

HF:

Heart failure

IGF:

Insulin-like growth factor

IGFR:

Insulin-like growth factor receptor

IR:

Insulin receptor

IRS-1:

Insulin receptor substrate-1

JAK:

Janus kinases

LS:

Leopard syndrome

MAPK:

Mitogen-activated protein kinase

MEFs:

Mouse embryonic fibroblasts

MKK6:

Mitogen-activated protein kinase kinase 6

MMPs:

Metalloproteases

mTOR:

Mammalian target of Rapamycin

NADH:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

NF-kB:

Nuclear factor B

NOS:

Nitric oxide synthase

NRVMs:

Neonatal rat ventricular myocytes

NS:

Noonan syndrome

Ob/Ob:

Obesity/obesity

OxPhos:

Oxidative phosphorylation

PDGF:

Platelet-derived growth factor

PI3K:

Phosphatidylinositol 3-kinase

PKC:

Protein kinase C

PTEN:

Phosphatase and tensin homolog deleted on chromosome ten

PTP:

Protein tyrosine phosphatase

PTPN11:

Protein tyrosine phosphatase non-receptor type-11

pY:

Phosphotyrosyl peptide

RhoA:

Ras homolog gene family, member A

ROS:

Reactive oxygen species

RTKs:

Receptor tyrosine kinases

SFK:

SRC family kinase

SH2:

Src homology 2

SHP2:

Src homology protein 2

STAT:

Signal transducer activator of transcription

T-tubule:

Transverse tubule

UT-II:

Urotensin-II

References

  1. Tartaglia M et al (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29(4):465–468

    PubMed  CAS  Google Scholar 

  2. Hof P et al (1998) Crystal structure of the tyrosine phosphatase SHP-2. Cell 92(4):441–450

    PubMed  CAS  Google Scholar 

  3. Barford D, Neel BG (1998) Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure 6(3):249–254

    PubMed  CAS  Google Scholar 

  4. O’Reilly AM, Neel BG (1998) Structural determinants of SHP-2 function and specificity in Xenopus mesoderm induction. Mol Cell Biol 18(1):161–177

    PubMed  Google Scholar 

  5. Neel BG, Gu H, Pao L (2003) The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28(6):284–293

    PubMed  CAS  Google Scholar 

  6. Van Vactor D, O’Reilly AM, Neel BG (1998) Genetic analysis of protein tyrosine phosphatases. Curr Opin Genet Dev 8(1):112–126

    PubMed  Google Scholar 

  7. Feng G (1999) SHP-2 tyrosine phosphatase: signaling one cell or many. Exp Cell Res 253:47–54

    PubMed  CAS  Google Scholar 

  8. Tonks NK, Neel BG (2001) Combinatorial control of the specificity of protein tyrosine phosphatases. Curr Opin Cell Biol 13(2):182–195

    PubMed  CAS  Google Scholar 

  9. Noguchi T et al (1994) Role of SH-PTP2, a protein-tyrosine phosphatase with src homology 2 domains, in insulin-stimulated ras activation. Mol Cell Biol 14:6674–6682

    PubMed  CAS  Google Scholar 

  10. Shi ZQ et al (2000) Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Mol Cell Biol 20(5):1526–1536

    PubMed  CAS  Google Scholar 

  11. Yamauchi K et al (1995) Protein-tyrosine-phosphatase SHPTP2 is a required positive effector for insulin downstream signaling. Proc Natl Acad Sci U S A 92:664–668

    PubMed  CAS  Google Scholar 

  12. Lauriol J, Kontaridis MI (2011) PTPN11-associated mutations in the heart: has LEOPARD changed its RASpots? Trends Cardiovasc Med 21(4):97–104

    PubMed  CAS  Google Scholar 

  13. Zhang SQ et al (2004) Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell 13(3):341–355

    PubMed  Google Scholar 

  14. Klinghoffer RA, Kazlauskas A (1995) Identification of a putative Syp substrate, the PDGFß receptor. J Biol Chem 270(38):22208–22217

    PubMed  CAS  Google Scholar 

  15. Agazie YM, Hayman MJ (2003) Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Mol Cell Biol 23(21):7875–7886

    PubMed  CAS  Google Scholar 

  16. Hanafusa H et al (2004) Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. J Biol Chem 279(22):22992–22995

    PubMed  CAS  Google Scholar 

  17. Jarvis LA et al (2006) Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases. Development 133(6):1133–1142

    PubMed  CAS  Google Scholar 

  18. Zhang SQ et al (2002) Receptor-specific regulation of phosphatidylinositol 3′-kinase activation by the protein tyrosine phosphatase Shp2. Mol Cell Biol 22(12):4062–4072

    PubMed  CAS  Google Scholar 

  19. Kontaridis MI et al (2004) SHP-2 positively regulates myogenesis by coupling to the Rho GTPase signaling pathway. Mol Cell Biol 24(12):5340–5352

    PubMed  Google Scholar 

  20. Princen F et al (2009) Deletion of Shp2 tyrosine phosphatase in muscle leads to dilated cardiomyopathy, insulin resistance, and premature death. Mol Cell Biol 29(2):378–388

    PubMed  CAS  Google Scholar 

  21. Kontaridis MI et al (2008) Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal-regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways. Circulation 117(11):1423–1435

    PubMed  CAS  Google Scholar 

  22. Marin TM et al (2008) Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways. Circ Res 103(8):813–824

    PubMed  CAS  Google Scholar 

  23. Tartaglia M et al (2002) PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet 70(6):1555–1563

    PubMed  CAS  Google Scholar 

  24. Marino B et al (1999) Congenital heart diseases in children with Noonan syndrome: an expanded cardiac spectrum with high prevalence of atrioventricular canal. J Pediatr 135(6): 703–706

    PubMed  CAS  Google Scholar 

  25. Yoshida R et al (2004) Protein-tyrosine phosphatase, nonreceptor type 11 mutation analysis and clinical assessment in 45 patients with Noonan syndrome. J Clin Endocrinol Metab 89(7):3359–3364

    PubMed  CAS  Google Scholar 

  26. Nishikawa T et al (1996) Hypertrophic cardiomyopathy in Noonan syndrome. Acta Paediatr Jpn 38(1):91–98

    PubMed  CAS  Google Scholar 

  27. Digilio MC et al (1998) Noonan syndrome and aortic coarctation. Am J Med Genet 80(2): 160–162

    PubMed  CAS  Google Scholar 

  28. Keilhack H et al (2005) Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. J Biol Chem 280(35):30984–30993

    PubMed  CAS  Google Scholar 

  29. O’Reilly AM et al (2000) Activated mutants of SHP-2 preferentially induce elongation of Xenopus animal caps. Mol Cell Biol 20(1):299–311

    PubMed  Google Scholar 

  30. Fragale A et al (2004) Noonan syndrome-associated SHP2/PTPN11 mutants cause EGF-dependent prolonged GAB1 binding and sustained ERK2/MAPK1 activation. Hum Mutat 23(3):267–277

    PubMed  CAS  Google Scholar 

  31. Araki T et al (2004) Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat Med 10(8):849–857

    PubMed  CAS  Google Scholar 

  32. Niihori T et al (2005) Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia. J Hum Genet 50(4):192–202

    PubMed  CAS  Google Scholar 

  33. Tartaglia M et al (2006) Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am J Hum Genet 78(2):279–290

    PubMed  CAS  Google Scholar 

  34. Schubbert S et al (2005) Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells. Blood 106(1):311–317

    PubMed  CAS  Google Scholar 

  35. Gorlin RJ, Anderson RC, Moller JH (1971) The Leopard (multiple lentigines) syndrome revisited. Birth Defects Orig Artic Ser 07(4):110–115

    PubMed  CAS  Google Scholar 

  36. Kontaridis MI et al (2006) PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J Biol Chem 281(10):6785–6792

    PubMed  CAS  Google Scholar 

  37. Marin TM et al (2011) Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest 121(3):1026–1043

    PubMed  CAS  Google Scholar 

  38. Schramm C et al (2012) The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling. Am J Physiol Heart Circ Physiol 302(1):H231–H243

    PubMed  CAS  Google Scholar 

  39. Edouard T et al (2010) Functional effects of PTPN11 (SHP2) mutations causing LEOPARD syndrome on epidermal growth factor-induced phosphoinositide 3-kinase/AKT/glycogen synthase kinase 3beta signaling. Mol Cell Biol 30(10):2498–2507

    PubMed  CAS  Google Scholar 

  40. Ishida H et al (2011) LEOPARD-type SHP2 mutant Gln510Glu attenuates cardiomyocyte differentiation and promotes cardiac hypertrophy via dysregulation of Akt/GSK-3beta/beta-catenin signaling. Am J Physiol Heart Circ Physiol 301(4):H1531–H1539

    PubMed  CAS  Google Scholar 

  41. Rapila R, Korhonen T, Tavi P (2008) Excitation-contraction coupling of the mouse embryonic cardiomyocyte. J Gen Physiol 132(4):397–405

    PubMed  CAS  Google Scholar 

  42. Greenstein JL, Winslow RL (2011) Integrative systems models of cardiac excitation-contraction coupling. Circ Res 108(1):70–84

    PubMed  CAS  Google Scholar 

  43. Bootman MD et al (2006) Calcium signalling during excitation-contraction coupling in mammalian atrial myocytes. J Cell Sci 119(Pt 19):3915–3925

    PubMed  CAS  Google Scholar 

  44. McDowell SA et al (2004) Phosphoinositide 3-kinase regulates excitation-contraction coupling in neonatal cardiomyocytes. Am J Physiol Heart Circ Physiol 286(2):H796–H805

    PubMed  CAS  Google Scholar 

  45. Seidman JG, Seidman C (2001) The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104(4):557–567

    PubMed  CAS  Google Scholar 

  46. Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79

    PubMed  CAS  Google Scholar 

  47. Molkentin JD, Dorn IG II (2001) Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 63:391–426

    PubMed  CAS  Google Scholar 

  48. Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245(1):C1–C14

    PubMed  CAS  Google Scholar 

  49. Bu G et al (2009) Uniform action potential repolarization within the sarcolemma of in situ ventricular cardiomyocytes. Biophys J 96(6):2532–2546

    PubMed  CAS  Google Scholar 

  50. Miner EC, Miller WL (2006) A look between the cardiomyocytes: the extracellular matrix in heart failure. Mayo Clin Proc 81(1):71–76

    PubMed  CAS  Google Scholar 

  51. Maron BJ (2002) Hypertrophic cardiomyopathy: a systematic review. JAMA 287(10):1308–1320

    PubMed  Google Scholar 

  52. Ly H et al (2007) Gene therapy in the treatment of heart failure. Physiology (Bethesda) 22:81–96

    CAS  Google Scholar 

  53. Banerjee P et al (2002) Diastolic heart failure: neglected or misdiagnosed? J Am Coll Cardiol 39(1):138–141

    PubMed  Google Scholar 

  54. van Kraaij DJ et al (2002) Diagnosing diastolic heart failure. Eur J Heart Fail 4(4):419–430

    PubMed  Google Scholar 

  55. Konstam MA (2003) “Systolic and diastolic dysfunction” in heart failure? Time for a new paradigm. J Card Fail 9(1):1–3

    PubMed  Google Scholar 

  56. Merante F et al (1998) Myocardial aerobic metabolism is impaired in a cell culture model of cyanotic heart disease. Am J Physiol 275(5 Pt 2):H1673–H1681

    PubMed  CAS  Google Scholar 

  57. Murgia M et al (2009) Controlling metabolism and cell death: at the heart of mitochondrial calcium signalling. J Mol Cell Cardiol 46(6):781–788

    PubMed  CAS  Google Scholar 

  58. Kolwicz SC Jr, Tian R (2011) Glucose metabolism and cardiac hypertrophy. Cardiovasc Res 90(2):194–201

    PubMed  CAS  Google Scholar 

  59. Malliri A et al (1998) The transcription factor AP-1 is required for EGF-induced activation of Rho-like GTPases, cytoskeletal rearrangements, motility, and in vitro invasion of A431 cells. J Cell Biol 143:1087–1099

    PubMed  CAS  Google Scholar 

  60. Kayar SR, Banchero N (1987) Volume density and distribution of mitochondria in myocardial growth and hypertrophy. Respir Physiol 70(3):275–286

    PubMed  CAS  Google Scholar 

  61. Vary TC, Reibel DK, Neely JR (1981) Control of energy metabolism of heart muscle. Annu Rev Physiol 43:419–430

    PubMed  CAS  Google Scholar 

  62. Salvi M et al (2004) Tyrosine phosphatase activity in mitochondria: presence of Shp-2 phosphatase in mitochondria. Cell Mol Life Sci 61(18):2393–2404

    PubMed  CAS  Google Scholar 

  63. Al Ghouleh I et al (2011) Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med 51(7):1271–1288

    PubMed  CAS  Google Scholar 

  64. Lee I et al (2010) A suggested role for mitochondria in Noonan syndrome. Biochim Biophys Acta 1802(2):275–283

    PubMed  CAS  Google Scholar 

  65. Helling S et al (2008) Phosphorylation and kinetics of mammalian cytochrome c oxidase. Mol Cell Proteomics 7(9):1714–1724

    PubMed  CAS  Google Scholar 

  66. Miyazaki T et al (2003) Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J Cell Biol 160(5):709–718

    PubMed  CAS  Google Scholar 

  67. Peng Z-Y, Cartwright CA (1995) Regulation of the Src tyrosine kinase and Syp tyrosine phosphatase by their cellular association. Oncogene 11:1955–1962

    PubMed  CAS  Google Scholar 

  68. Salvi M et al (2002) Characterization and location of Src-dependent tyrosine phosphorylation in rat brain mitochondria. Biochim Biophys Acta 1589(2):181–195

    PubMed  CAS  Google Scholar 

  69. Wall JA et al (2006) Alterations in oxidative phosphorylation complex proteins in the hearts of transgenic mice that overexpress the p38 MAP kinase activator, MAP kinase kinase 6. Am J Physiol Heart Circ Physiol 291(5):H2462–H2472

    PubMed  CAS  Google Scholar 

  70. Liu JC et al (2009) Urotensin II induces rat cardiomyocyte hypertrophy via the transient oxidization of Src homology 2-containing tyrosine phosphatase and transactivation of epidermal growth factor receptor. Mol Pharmacol 76(6):1186–1195

    PubMed  CAS  Google Scholar 

  71. Babinska M et al (2012) Is plasma urotensin II concentration an indicator of myocardial damage in patients with acute coronary syndrome? Arch Med Sci 8(3):449–454

    PubMed  CAS  Google Scholar 

  72. Cheng TH et al (2004) Inhibitory effect of resveratrol on angiotensin II-induced cardiomyocyte hypertrophy. Naunyn Schmiedebergs Arch Pharmacol 369(2):239–244

    PubMed  CAS  Google Scholar 

  73. Cheng TH et al (2005) Nitric oxide inhibits endothelin-1-induced cardiomyocyte hypertrophy through cGMP-mediated suppression of extracellular-signal regulated kinase phosphorylation. Mol Pharmacol 68(4):1183–1192

    PubMed  CAS  Google Scholar 

  74. Abel ED, O’Shea KM, Ramasamy R (2012) Insulin resistance: metabolic mechanisms and consequences in the heart. Arterioscler Thromb Vasc Biol 32(9):2068–2076

    PubMed  CAS  Google Scholar 

  75. Wright JJ et al (2009) Mechanisms for increased myocardial fatty acid utilization following short-term high-fat feeding. Cardiovasc Res 82(2):351–360

    PubMed  CAS  Google Scholar 

  76. Cook SA et al (2010) Abnormal myocardial insulin signalling in type 2 diabetes and left-ventricular dysfunction. Eur Heart J 31(1):100–111

    PubMed  CAS  Google Scholar 

  77. Lawrence SP, Holman GD, Koumanov F (2010) Translocation of the Na+/H+ exchanger 1 (NHE1) in cardiomyocyte responses to insulin and energy-status signalling. Biochem J 432(3):515–523

    PubMed  CAS  Google Scholar 

  78. Carley AN, Severson DL (2005) Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta 1734(2):112–126

    PubMed  CAS  Google Scholar 

  79. Dirkx E et al (2011) High fat diet induced diabetic cardiomyopathy. Prostaglandins Leukot Essent Fatty Acids 85(5):219–225

    PubMed  CAS  Google Scholar 

  80. Gray S, Kim JK (2011) New insights into insulin resistance in the diabetic heart. Trends Endocrinol Metab 22(10):394–403

    PubMed  CAS  Google Scholar 

  81. Bell DS (2003) Heart failure: the frequent, forgotten, and often fatal complication of diabetes. Diabetes Care 26(8):2433–2441

    PubMed  Google Scholar 

  82. Bertrand L et al (2006) AMPK activation restores the stimulation of glucose uptake in an in vitro model of insulin-resistant cardiomyocytes via the activation of protein kinase B. Am J Physiol Heart Circ Physiol 291(1):H239–H250

    PubMed  CAS  Google Scholar 

  83. Sun XJ et al (1991) Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352(6330):73–77

    PubMed  CAS  Google Scholar 

  84. Metz HE, Houghton AM (2011) Insulin receptor substrate regulation of phosphoinositide 3-kinase. Clin Cancer Res 17(2):206–211

    PubMed  CAS  Google Scholar 

  85. Yu C et al (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277(52):50230–50236

    PubMed  CAS  Google Scholar 

  86. Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148(5):852–871

    PubMed  CAS  Google Scholar 

  87. Mussig K et al (2005) Shp2 is required for protein kinase C-dependent phosphorylation of serine 307 in insulin receptor substrate-1. J Biol Chem 280(38):32693–32699

    PubMed  Google Scholar 

  88. White MF, Kahn CR (1994) The insulin signaling system. J Biol Chem 269(1):1–4

    PubMed  CAS  Google Scholar 

  89. Muniyappa R et al (2007) Cardiovascular actions of insulin. Endocr Rev 28(5):463–491

    PubMed  CAS  Google Scholar 

  90. Mazumder PK et al (2004) Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes 53(9):2366–2374

    PubMed  CAS  Google Scholar 

  91. Battiprolu PK et al (2012) Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. J Clin Invest 122(3):1109–1118

    PubMed  CAS  Google Scholar 

  92. Lee J et al (2010) Multiple abnormalities of myocardial insulin signaling in a porcine model of diet-induced obesity. Am J Physiol Heart Circ Physiol 298(2):H310–H319

    PubMed  CAS  Google Scholar 

  93. Belke DD et al (2002) Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J Clin Invest 109(5):629–639

    PubMed  CAS  Google Scholar 

  94. Hu P et al (2003) Minimally invasive aortic banding in mice: effects of altered cardiomyocyte insulin signaling during pressure overload. Am J Physiol Heart Circ Physiol 285(3): H1261–H1269

    PubMed  CAS  Google Scholar 

  95. Sena S et al (2009) Impaired insulin signaling accelerates cardiac mitochondrial dysfunction after myocardial infarction. J Mol Cell Cardiol 46(6):910–918

    PubMed  CAS  Google Scholar 

  96. Boudina S et al (2009) Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart. Circulation 119(9):1272–1283

    PubMed  CAS  Google Scholar 

  97. Ouwens DM et al (2007) Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification. Diabetologia 50(9):1938–1948

    PubMed  CAS  Google Scholar 

  98. Shioi T et al (2000) The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J 19(11):2537–2548

    PubMed  CAS  Google Scholar 

  99. McMullen JR et al (2004) The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. J Biol Chem 279(6): 4782–4793

    PubMed  CAS  Google Scholar 

  100. McMullen JR et al (2003) Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci U S A 100(21):12355–12360

    PubMed  CAS  Google Scholar 

  101. Crackower MA et al (2002) Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 110(6):737–749

    PubMed  CAS  Google Scholar 

  102. Oudit GY et al (2008) Loss of PTEN attenuates the development of pathological hypertrophy and heart failure in response to biomechanical stress. Cardiovasc Res 78(3):505–514

    PubMed  CAS  Google Scholar 

  103. Cho H et al (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292(5522):1728–1731

    PubMed  CAS  Google Scholar 

  104. Cho H et al (2001) Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 276(42):38349–38352

    PubMed  CAS  Google Scholar 

  105. Chen WS et al (2001) Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 15(17):2203–2208

    PubMed  CAS  Google Scholar 

  106. DeBosch B et al (2006) Akt1 is required for physiological cardiac growth. Circulation 113(17):2097–2104

    PubMed  CAS  Google Scholar 

  107. Shioi T et al (2002) Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol 22(8):2799–2809

    PubMed  CAS  Google Scholar 

  108. Matsui T et al (2002) Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem 277(25):22896–22901

    PubMed  CAS  Google Scholar 

  109. Condorelli G et al (2002) Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci U S A 99(19):12333–12338

    PubMed  CAS  Google Scholar 

  110. Shiojima I et al (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 115(8):2108–2118

    PubMed  CAS  Google Scholar 

  111. Maillet M, van Berlo JH, Molkentin JD (2013) Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 14(1):38–48

    PubMed  CAS  Google Scholar 

  112. McQueen AP et al (2005) Contractile dysfunction in hypertrophied hearts with deficient insulin receptor signaling: possible role of reduced capillary density. J Mol Cell Cardiol 39(6): 882–892

    PubMed  CAS  Google Scholar 

  113. Kuhné MR et al (1993) The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp. J Biol Chem 268(16):11479–11481

    PubMed  Google Scholar 

  114. Myers MGJ et al (1998) The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling. J Biol Chem 273:26908–26914

    PubMed  CAS  Google Scholar 

  115. Ouwens DM, van der Zon GC, Maassen JA (2001) Modulation of insulin-stimulated glycogen synthesis by Src Homology Phosphatase 2. Mol Cell Endocrinol 175(1–2):131–140

    PubMed  CAS  Google Scholar 

  116. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

    PubMed  CAS  Google Scholar 

  117. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    PubMed  CAS  Google Scholar 

  118. Lum JJ, DeBerardinis RJ, Thompson CB (2005) Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 6(6):439–448

    PubMed  CAS  Google Scholar 

  119. Mousavi SA et al (2003) Phosphoinositide 3-kinase regulates maturation of lysosomes in rat hepatocytes. Biochem J 372(Pt 3):861–869

    PubMed  CAS  Google Scholar 

  120. Ravikumar B et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595

    PubMed  CAS  Google Scholar 

  121. Yu L et al (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304(5676):1500–1502

    PubMed  CAS  Google Scholar 

  122. Shimizu S et al (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6(12):1221–1228

    PubMed  CAS  Google Scholar 

  123. Matsui Y et al (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100(6):914–922

    PubMed  CAS  Google Scholar 

  124. Hein S et al (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107(7):984–991

    PubMed  Google Scholar 

  125. Sciarretta S, Volpe M, Sadoshima J (2012) Is reactivation of autophagy a possible therapeutic solution for obesity and metabolic syndrome? Autophagy 8(8):1252–1254

    PubMed  CAS  Google Scholar 

  126. Wang ZV, Ferdous A, Hill JA (2012) Cardiomyocyte autophagy: metabolic profit and loss. Heart Fail Rev

    Google Scholar 

  127. Chang YP et al (2010) Autophagy facilitates IFN-gamma-induced Jak2-STAT1 activation and cellular inflammation. J Biol Chem 285(37):28715–28722

    PubMed  CAS  Google Scholar 

  128. Dennis PB et al (2001) Mammalian TOR: a homeostatic ATP sensor. Science 294(5544):1102–1105

    PubMed  CAS  Google Scholar 

  129. Wong AK et al (2009) AMP-activated protein kinase pathway: a potential therapeutic target in cardiometabolic disease. Clin Sci (Lond) 116(8):607–620

    CAS  Google Scholar 

  130. Russell RR III et al (1999) Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol 277(2 Pt 2):H643–H649

    PubMed  CAS  Google Scholar 

  131. Luiken JJ et al (2003) Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 52(7):1627–1634

    PubMed  CAS  Google Scholar 

  132. Marsin AS et al (2000) Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 10(20):1247–1255

    PubMed  CAS  Google Scholar 

  133. Ruderman NB et al (2003) Malonyl-CoA and AMP-activated protein kinase (AMPK): possible links between insulin resistance in muscle and early endothelial cell damage in diabetes. Biochem Soc Trans 31(Pt 1):202–206

    PubMed  CAS  Google Scholar 

  134. Zito CI et al (2007) SHP-2 regulates cell growth by controlling the mTOR/S6 kinase 1 pathway. J Biol Chem 282(10):6946–6953

    PubMed  CAS  Google Scholar 

  135. Zhang SS et al (2009) Coordinated regulation by Shp2 tyrosine phosphatase of signaling events controlling insulin biosynthesis in pancreatic beta-cells. Proc Natl Acad Sci U S A 106(18):7531–7536

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria I. Kontaridis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kontaridis, M.I., Geladari, E.V., Geladari, C.V. (2013). Role of the SHP2 Protein Tyrosine Phosphatase in Cardiac Metabolism. In: Bence, K. (eds) Protein Tyrosine Phosphatase Control of Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7855-3_8

Download citation

Publish with us

Policies and ethics