Skip to main content

PTP1B and TCPTP in CNS Signaling and Energy Balance

  • Chapter
  • First Online:

Abstract

The regulation of energy balance is under tight homeostatic control. Biological mechanisms have evolved over time to ensure adequate nutritional status and appropriate body composition in response to metabolic and environmental stimuli. The central nervous system (CNS) plays an important role in the regulation of body weight and in the control of normal glucose homeostasis. Several key areas of the CNS are involved in energy balance, including the nuclei of the hypothalamus, hindbrain, and limbic (reward) centers of the brain. Within these brain regions critical cellular signaling pathways have been identified that mediate a multitude of metabolic processes, including feeding, body weight gain/loss, energy expenditure, core temperature regulation, peripheral insulin sensitivity, and liver metabolism. Two such pathways are the leptin and insulin signaling pathways. Rapid reversible phosphorylation events within these key CNS signaling pathways are critical to the tight regulation of energy balance control, and disruption of these events can contribute to the pathogenesis of the metabolic syndrome. Protein tyrosine phosphatases, or PTPs, catalyze the dephosphorylation of phosphorylated tyrosyl residues and thus are important regulators of intracellular signaling pathways. In this chapter, the contributions of protein tyrosine phosphatase 1B (PTP1B) and its closest homologue, T cell PTP (TCPTP), to CNS control of energy balance will be highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AgRP:

Agouti-related peptide

ARC:

Arcuate nucleus

BAT:

Brown adipose tissue

Cga:

Glycoprotein hormone alpha-subunit

CNS:

Central nervous system

DMH:

Dorsomedial hypothalamus

ER:

Endoplasmic reticulum

GH:

Growth hormone

icv :

Intracerebroventricular

IR:

Insulin receptor

IRS-1:

Insulin receptor substrate-1

JAK-2:

Janus-activated kinase 2

LepRb:

Leptin receptor

LH:

Lateral hypothalamus

MEFs:

Mouse embryonic fibroblasts

MTII:

Melanotan II

NPY:

Neuropeptide Y

NTS:

Nucleus of the solitary tract

PI3K:

Phosphatidylinositol 3-kinase

POMC:

Proopiomelanocortin

PTP1B:

Protein tyrosine phosphatase 1B

PVN:

Paraventricular nucleus

SHP-2:

Src homology phosphatase-2

SOCS3:

Suppressor of cytokine signaling 3

TCPTP:

T cell PTP

VMH:

Ventromedial hypothalamus

VTA:

Ventral tegmental area

α-MSH:

α-melanocyte-stimulating hormone

References

  1. Dube N, Tremblay ML (2004) Beyond the metabolic function of PTP1B. Cell Cycle 3:550–553

    Article  PubMed  CAS  Google Scholar 

  2. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283:1544–1548

    Article  PubMed  CAS  Google Scholar 

  3. Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Stricker-Krongrad A, Shulman GI, Neel BG, Kahn BB (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 20:5479–5489

    Article  PubMed  CAS  Google Scholar 

  4. Kenner KA, Anyanwu E, Olefsky JM, Kusari J (1996) Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling. J Biol Chem 271:19810–19816

    Article  PubMed  CAS  Google Scholar 

  5. Ahmad F, Li PM, Meyerovitch J, Goldstein BJ (1995) Osmotic loading of neutralizing antibodies demonstrates a role for protein-tyrosine phosphatase 1B in negative regulation of the insulin action pathway. J Biol Chem 270:20503–20508

    Article  PubMed  CAS  Google Scholar 

  6. Myers MG, Cowley MA, Munzberg H (2008) Mechanisms of leptin action and leptin resistance. Annu Rev Physiol 70:537–556

    Article  PubMed  CAS  Google Scholar 

  7. Myers MG Jr, Heymsfield SB, Haft C, Kahn BB, Laughlin M, Leibel RL, Tschop MH, Yanovski JA (2012) Challenges and opportunities of defining clinical leptin resistance. Cell Metab 15:150–156

    Article  PubMed  CAS  Google Scholar 

  8. Marino JS, Xu Y, Hill JW (2011) Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol Metab 22:275–285

    PubMed  CAS  Google Scholar 

  9. Xu Y, Elmquist JK, Fukuda M (2011) Central nervous control of energy and glucose balance: focus on the central melanocortin system. Ann N Y Acad Sci 1243:1–14

    Article  PubMed  CAS  Google Scholar 

  10. Schwartz MW, Seeley RJ, Campfield LA, Burn P, Baskin DG (1996) Identification of targets of leptin action in rat hypothalamus. J Clin Invest 98:1101–1106

    Article  PubMed  CAS  Google Scholar 

  11. Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P, Baskin DG (1997) Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46:2119–2123

    Article  PubMed  CAS  Google Scholar 

  12. Mizuno TM, Kleopoulos SP, Bergen HT, Roberts JL, Priest CA, Mobbs CV (1998) Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and [corrected] in ob/ob and db/db mice, but is stimulated by leptin. Diabetes 47:294–297

    Article  PubMed  CAS  Google Scholar 

  13. Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C, Flier JS, Saper CB, Elmquist JK (1999) Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23:775–786

    Article  PubMed  CAS  Google Scholar 

  14. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–484

    Article  PubMed  CAS  Google Scholar 

  15. Hayes MR, Skibicka KP, Leichner TM, Guarnieri DJ, DiLeone RJ, Bence KK, Grill HJ (2010) Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab 11:77–83

    Article  PubMed  CAS  Google Scholar 

  16. Scott MM, Williams KW, Rossi J, Lee CE, Elmquist JK (2011) Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice. J Clin Invest 121:2413–2421

    Article  PubMed  CAS  Google Scholar 

  17. Figlewicz DP, MacDonald Naleid A, Sipols AJ (2007) Modulation of food reward by adiposity signals. Physiol Behav 91:473–478

    Article  PubMed  CAS  Google Scholar 

  18. Fulton S, Woodside B, Shizgal P (2000) Modulation of brain reward circuitry by leptin. Science 287:125–128

    Article  PubMed  CAS  Google Scholar 

  19. Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN, Maratos-Flier E, Flier JS (2006) Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51:811–822

    Article  PubMed  CAS  Google Scholar 

  20. Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, Thurmon JJ, Marinelli M, DiLeone RJ (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51:801–810

    Article  PubMed  CAS  Google Scholar 

  21. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–635

    Article  PubMed  CAS  Google Scholar 

  22. Kloek C, Haq AK, Dunn SL, Lavery HJ, Banks AS, Myers MG Jr (2002) Regulation of Jak kinases by intracellular leptin receptor sequences. J Biol Chem 277:41547–41555

    Article  PubMed  CAS  Google Scholar 

  23. Villanueva EC, Myers MG Jr (2008) Leptin receptor signaling and the regulation of mammalian physiology. Int J Obes (Lond) 32(Suppl 7):S8–S12

    Article  CAS  Google Scholar 

  24. Hill JW, Williams KW, Ye C, Luo J, Balthasar N, Coppari R, Cowley MA, Cantley LC, Lowell BB, Elmquist JK (2008) Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J Clin Invest 118:1796–1805

    Article  PubMed  CAS  Google Scholar 

  25. Xu Y, Hill JW, Fukuda M, Gautron L, Sohn JW, Kim KW, Lee CE, Choi MJ, Lauzon DA, Dhillon H, Lowell BB, Zigman JM, Zhao JJ, Elmquist JK (2010) PI3K signaling in the ventromedial hypothalamic nucleus is required for normal energy homeostasis. Cell Metab 12:88–95

    Article  PubMed  CAS  Google Scholar 

  26. Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG Jr, Seeley RJ, Schwartz MW (2003) Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 52:227–231

    Article  PubMed  CAS  Google Scholar 

  27. Dagon Y, Hur E, Zheng B, Wellenstein K, Cantley LC, Kahn BB (2012) p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin’s effect on food intake. Cell Metab 16:104–112

    Article  PubMed  CAS  Google Scholar 

  28. Salmeen A, Andersen JN, Myers MP, Tonks NK, Barford D (2000) Molecular basis for recognition and dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol Cell 6:1401–1412

    Article  PubMed  CAS  Google Scholar 

  29. Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM, Parisien JP, Salmeen A, Barford D, Tonks NK (2001) TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem 276:47771–47774

    Article  PubMed  CAS  Google Scholar 

  30. Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y, Kim YB, Elmquist JK, Tartaglia LA, Kahn BB, Neel BG (2002) PTP1B regulates leptin signal transduction in vivo. Dev Cell 2:489–495

    Article  PubMed  CAS  Google Scholar 

  31. Cheng A, Uetani N, Simoncic PD, Chaubey VP, Lee-Loy A, McGlade CJ, Kennedy BP, Tremblay ML (2002) Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev Cell 2:497–503

    Article  PubMed  CAS  Google Scholar 

  32. Lund IK, Hansen JA, Andersen HS, Moller NP, Billestrup N (2005) Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling. J Mol Endocrinol 34:339–351

    Article  PubMed  CAS  Google Scholar 

  33. Kaszubska W, Falls HD, Schaefer VG, Haasch D, Frost L, Hessler P, Kroeger PE, White DW, Jirousek MR, Trevillyan JM (2002) Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line. Mol Cell Endocrinol 195:109–118

    Article  PubMed  CAS  Google Scholar 

  34. Guan KL, Haun RS, Watson SJ, Geahlen RL, Dixon JE (1990) Cloning and expression of a protein-tyrosine-phosphatase. Proc Natl Acad Sci U S A 87:1501–1505

    Article  PubMed  CAS  Google Scholar 

  35. Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG, Kahn BB (2006) Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med 12:917–924

    Article  PubMed  CAS  Google Scholar 

  36. Delibegovic M, Bence KK, Mody N, Hong EG, Ko HJ, Kim JK, Kahn BB, Neel BG (2007) Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B. Mol Cell Biol 27:7727–7734

    Article  PubMed  CAS  Google Scholar 

  37. Delibegovic M, Zimmer D, Kauffman C, Rak K, Hong EG, Cho YR, Kim JK, Kahn BB, Neel BG, Bence KK (2009) Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced ER stress. Diabetes 58:590–599

    Article  PubMed  CAS  Google Scholar 

  38. Agouni A, Mody N, Owen C, Czopek A, Zimmer D, Bentires-Alj M, Bence KK, Delibegovic M (2011) Liver-specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and pharmacologically induced endoplasmic reticulum stress. Biochem J 438:369–378

    Article  PubMed  CAS  Google Scholar 

  39. Owen C, Czopek A, Agouni A, Grant L, Judson R, Lees EK, McIlroy GD, Goransson O, Welch A, Bence KK, Kahn BB, Neel BG, Mody N, Delibegovic M (2012) Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis. PLoS One 7:e32700

    Article  PubMed  CAS  Google Scholar 

  40. Morrison CD, White CL, Wang Z, Lee SY, Lawrence DS, Cefalu WT, Zhang ZY, Gettys TW (2007) Increased hypothalamic protein tyrosine phosphatase 1B contributes to leptin resistance with age. Endocrinology 148:433–440

    Article  PubMed  CAS  Google Scholar 

  41. Picardi PK, Calegari VC, Prada Pde O, Moraes JC, Araujo E, Marcondes MC, Ueno M, Carvalheira JB, Velloso LA, Saad MJ (2008) Reduction of hypothalamic protein tyrosine phosphatase improves insulin and leptin resistance in diet-induced obese rats. Endocrinology 149:3870–3880

    Article  PubMed  CAS  Google Scholar 

  42. Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V, Kenny CD, McGovern RA, Chua SC Jr, Elmquist JK, Lowell BB (2004) Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42:983–991

    Article  PubMed  CAS  Google Scholar 

  43. Huo L, Gamber K, Greeley S, Silva J, Huntoon N, Leng XH, Bjorbaek C (2009) Leptin-dependent control of glucose balance and locomotor activity by POMC neurons. Cell Metab 9:537–547

    Article  PubMed  CAS  Google Scholar 

  44. Banno R, Zimmer D, De Jonghe BC, Atienza M, Rak K, Yang W, Bence KK (2010) PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice. J Clin Invest 120:720–734

    Article  PubMed  CAS  Google Scholar 

  45. De Jonghe BC, Hayes MR, Banno R, Skibicka KPPD, Zimmer DJ, Bowen KAPD, Leichner TM, Alhadeff AL, Kanoski SEPD, Cyr NE, Nillni EA, Grill HJ, Bence KK (2011) Deficiency of PTP1B in POMC neurons leads to alterations in energy balance and homeostatic response to cold exposure. Am J Physiol Endocrinol Metab 300(6):E1002–E1011

    Article  PubMed  CAS  Google Scholar 

  46. Ellacott KL, Halatchev IG, Cone RD (2006) Characterization of leptin-responsive neurons in the caudal brainstem. Endocrinology 147:3190–3195

    Article  PubMed  CAS  Google Scholar 

  47. Bronstein DM, Schafer MK, Watson SJ, Akil H (1992) Evidence that beta-endorphin is synthesized in cells in the nucleus tractus solitarius: detection of POMC mRNA. Brain Res 587:269–275

    Article  PubMed  CAS  Google Scholar 

  48. Palkovits M, Eskay RL (1987) Distribution and possible origin of beta-endorphin and ACTH in discrete brainstem nuclei of rats. Neuropeptides 9:123–137

    Article  PubMed  CAS  Google Scholar 

  49. De Jonghe BC, Hayes MR, Kanoski SE, Zimmer DJ, Grill HJ, Bence KK (2012) Food intake reductions and increases in energetic responses by hindbrain leptin and melanotan II are enhanced in mice with POMC-specific PTP1B deficiency. Am J Physiol Endocrinol Metab 303(5):E644–E651

    Article  PubMed  CAS  Google Scholar 

  50. Ali MI, Ketsawatsomkron P, Belin de Chantemele EJ, Mintz JD, Muta K, Salet C, Black SM, Tremblay ML, Fulton DJ, Marrero MB, Stepp DW (2009) Deletion of protein tyrosine phosphatase 1b improves peripheral insulin resistance and vascular function in obese, leptin-resistant mice via reduced oxidant tone. Circ Res 105:1013–1022

    Article  PubMed  CAS  Google Scholar 

  51. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    PubMed  CAS  Google Scholar 

  52. Porte D Jr, Baskin DG, Schwartz MW (2005) Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes 54:1264–1276

    Article  PubMed  CAS  Google Scholar 

  53. Galic S, Hauser C, Kahn BB, Haj FG, Neel BG, Tonks NK, Tiganis T (2005) Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP. Mol Cell Biol 25:819–829

    Article  PubMed  CAS  Google Scholar 

  54. Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck M (2000) Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J Biol Chem 275:4283–4289

    Article  PubMed  CAS  Google Scholar 

  55. Revuelta-Cervantes J, Mayoral R, Miranda S, Gonzalez-Rodriguez A, Fernandez M, Martin-Sanz P, Valverde AM (2011) Protein tyrosine phosphatase 1B (PTP1B) deficiency accelerates hepatic regeneration in mice. Am J Pathol 178:1591–1604

    Article  PubMed  CAS  Google Scholar 

  56. Chang Y (2011) A central role of PTP1B in hyperinsulinemia-enhanced IL-6 signaling in dedifferentiated vascular smooth muscle cells. J Diabet Metabol 2:118

    Article  CAS  Google Scholar 

  57. Wallenius K, Wallenius V, Sunter D, Dickson SL, Jansson JO (2002) Intracerebroventricular interleukin-6 treatment decreases body fat in rats. Biochem Biophys Res Commun 293:560–565

    Article  PubMed  CAS  Google Scholar 

  58. Wallenius V, Wallenius K, Ahren B, Rudling M, Carlsten H, Dickson SL, Ohlsson C, Jansson JO (2002) Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 8:75–79

    Article  PubMed  CAS  Google Scholar 

  59. Cool DE, Tonks NK, Charbonneau H, Walsh KA, Fischer EH, Krebs EG (1989) cDNA isolated from a human T-cell library encodes a member of the protein-tyrosine-phosphatse family. Proc Natl Acad Sci U S A 86:5257–5261

    Article  PubMed  CAS  Google Scholar 

  60. You-Ten KE, Muise ES, Itie A, Michaliszyn E, Wagner J, Jothy S, Lapp WS, Tremblay ML (1997) Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. J Exp Med 186:683–693

    Article  PubMed  CAS  Google Scholar 

  61. Wiede F, Shields BJ, Chew SH, Kyparissoudis K, van Vliet C, Galic S, Tremblay ML, Russell SM, Godfrey DI, Tiganis T (2011) T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. J Clin Invest 121:4758–4774

    Article  PubMed  CAS  Google Scholar 

  62. Tiganis T, Bennett AM (2007) Protein tyrosine phosphatase function: the substrate perspective. Biochem J 402:1–15

    Article  PubMed  CAS  Google Scholar 

  63. Tiganis T (2013) PTP1B and TCPTP—nonredundant phosphatases in insulin signaling and glucose homeostasis. FEBS J 280(2):445–458

    Article  PubMed  CAS  Google Scholar 

  64. Mosinger B Jr, Tillmann U, Westphal H, Tremblay ML (1992) Cloning and characterization of a mouse cDNA encoding a cytoplasmic protein-tyrosine-phosphatase. Proc Natl Acad Sci U S A 89:499–503

    Article  PubMed  CAS  Google Scholar 

  65. Tillmann U, Wagner J, Boerboom D, Westphal H, Tremblay ML (1994) Nuclear localization and cell cycle regulation of a murine protein tyrosine phosphatase. Mol Cell Biol 14:3030–3040

    PubMed  CAS  Google Scholar 

  66. Lorenzen JA, Dadabay CY, Fischer EH (1995) COOH-Terminal sequence motifs target the T-cell protein tyrosine phosphatase to the ER and nucleus. J Cell Biol 131:631–643

    Article  PubMed  CAS  Google Scholar 

  67. Tiganis T, Flint AJ, Adam SA, Tonks NK (1997) Association of the T-cell protein tyrosine phosphatase with nuclear import factor p97. J Biol Chem 272:21548–21557

    Article  PubMed  CAS  Google Scholar 

  68. Loh K, Fukushima A, Zhang X, Galic S, Briggs D, Enriori PJ, Simonds S, Wiede F, Reichenbach A, Hauser C, Sims NA, Bence KK, Zhang S, Zhang ZY, Kahn BB, Neel BG, Andrews ZB, Cowley MA, Tiganis T (2011) Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metab 14:684–699

    Article  PubMed  CAS  Google Scholar 

  69. Haj FG, Verveer PJ, Squire A, Neel BG, Bastiaens PI (2002) Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 295:1708–1711

    Article  PubMed  CAS  Google Scholar 

  70. Nievergall E, Janes PW, Stegmayer C, Vail ME, Haj FG, Teng SW, Neel BG, Bastiaens PI, Lackmann M (2010) PTP1B regulates Eph receptor function and trafficking. J Cell Biol 191:1189–1203

    Article  PubMed  CAS  Google Scholar 

  71. Eden ER, White IJ, Tsapara A, Futter CE (2010) Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nat Cell Biol 12:267–272

    PubMed  CAS  Google Scholar 

  72. Haj FG, Sabet O, Kinkhabwala A, Wimmer-Kleikamp S, Roukos V, Han HM, Grabenbauer M, Bierbaum M, Antony C, Neel BG, Bastiaens PI (2012) Regulation of signaling at regions of cell-cell contact by endoplasmic reticulum-bound protein-tyrosine phosphatase 1B. PLoS One 7:e36633

    Article  PubMed  CAS  Google Scholar 

  73. Monteleone MC, Gonzalez Wusener AE, Burdisso JE, Conde C, Caceres A, Arregui CO (2012) ER-bound protein tyrosine phosphatase PTP1B interacts with Src at the plasma membrane/substrate interface. PLoS One 7:e38948

    Article  PubMed  CAS  Google Scholar 

  74. Tiganis T, Kemp BE, Tonks NK (1999) The protein tyrosine phosphatase TCPTP regulates epidermal growth factor receptor-mediated and phosphatidylinositol 3-kinase-dependent signalling. J Biol Chem 274:27768–27775

    Article  PubMed  CAS  Google Scholar 

  75. Tiganis T, Bennett AM, Ravichandran KS, Tonks NK (1998) Epidermal growth factor receptor and the adaptor protein p52Shc are specific substrates of T-cell protein tyrosine phosphatase. Mol Cell Biol 18:1622–1634

    PubMed  CAS  Google Scholar 

  76. Lam MH, Michell BJ, Fodero-Tavoletti MT, Kemp BE, Tonks NK, Tiganis T (2001) Cellular stress regulates the nucleocytoplasmic distribution of the protein tyrosine phosphatase TCPTP. J Biol Chem 276:37700–37707

    Article  PubMed  CAS  Google Scholar 

  77. Galic S, Klingler-Hoffmann M, Fodero-Tavoletti MT, Puryer MA, Meng TC, Tonks NK, Tiganis T (2003) Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Mol Cell Biol 23:2096–2108

    Article  PubMed  CAS  Google Scholar 

  78. van Vliet C, Bukczynska PE, Puryer MA, Sadek CM, Shields BJ, Tremblay ML, Tiganis T (2005) Selective regulation of tumor necrosis factor-induced Erk signaling by Src family kinases and the T cell protein tyrosine phosphatase. Nat Immunol 6:253–260

    Article  PubMed  CAS  Google Scholar 

  79. Fukushima A, Loh K, Galic S, Fam B, Shields B, Wiede F, Tremblay ML, Watt MJ, Andrikopoulos S, Tiganis T (2010) T-cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis. Diabetes 59:1906–1914

    Article  PubMed  CAS  Google Scholar 

  80. Shields BJ, Hauser C, Bukczynska PE, Court NW, Tiganis T (2008) DNA replication stalling attenuates tyrosine kinase signaling to suppress S phase progression. Cancer Cell 14:166–179

    Article  PubMed  CAS  Google Scholar 

  81. Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML, McGlade CJ (2002) The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr Biol 12: 446–453

    Article  PubMed  CAS  Google Scholar 

  82. Aoki N, Matsuda T (2002) A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway: dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus. Mol Endocrinol 16:58–69

    Article  PubMed  CAS  Google Scholar 

  83. Yamamoto T, Sekine Y, Kashima K, Kubota A, Sato N, Aoki N, Matsuda T (2002) The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochem Biophys Res Commun 297:811–817

    Article  PubMed  CAS  Google Scholar 

  84. ten Hoeve J, Ibarra-Sanchez MJ, Fu Y, Zhu W, Tremblay M, David M, Shuai K (2002) Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol 22:5662–5668

    Article  PubMed  CAS  Google Scholar 

  85. Lu X, Chen J, Sasmono RT, Hsi ED, Sarosiek KA, Tiganis T, Lossos IS (2007) T-cell protein tyrosine phosphatase, distinctively expressed in activated-B-cell-like diffuse large B-cell lymphomas, is the nuclear phosphatase of STAT6. Mol Cell Biol 27:2166–2179

    Article  PubMed  CAS  Google Scholar 

  86. Heinonen KM, Nestel FP, Newell EW, Charette G, Seemayer TA, Tremblay ML, Lapp WS (2004) T Cell Protein Tyrosine Phosphatase deletion results in progressive systemic inflammatory disease. Blood 103(9):3457–3464

    Article  PubMed  CAS  Google Scholar 

  87. Bourdeau A, Dube N, Heinonen KM, Theberge JF, Doody KM, Tremblay ML (2007) TC-PTP-deficient bone marrow stromal cells fail to support normal B lymphopoiesis due to abnormal secretion of interferon-{gamma}. Blood 109:4220–4228

    Article  PubMed  CAS  Google Scholar 

  88. Wiede F, Hui Chew S, van Vliet C, Poulton IJ, Kyparissoudis K, Sasmono T, Loh K, Tremblay ML, Godfrey DI, Sims NA, Tiganis T (2012) Strain-dependent differences in bone development, myeloid hyperplasia, morbidity and mortality in Ptpn2-deficient mice. Plos One 7:e36703

    Article  PubMed  CAS  Google Scholar 

  89. Minami S, Kamegai J, Hasegawa O, Sugihara H, Okada K, Wakabayashi I (1993) Expression of growth hormone receptor gene in rat hypothalamus. J Neuroendocrinol 5:691–696

    Article  PubMed  CAS  Google Scholar 

  90. Burton KA, Kabigting EB, Clifton DK, Steiner RA (1992) Growth hormone receptor messenger ribonucleic acid distribution in the adult male rat brain and its colocalization in hypothalamic somatostatin neurons. Endocrinology 131:958–963

    Article  PubMed  CAS  Google Scholar 

  91. Lichanska AM, Waters MJ (2008) How growth hormone controls growth, obesity and sexual dimorphism. Trends Genet 24:41–47

    Article  PubMed  CAS  Google Scholar 

  92. Bennett E, McGuinness L, Gevers EF, Thomas GB, Robinson IC, Davey HW, Luckman SM (2005) Hypothalamic STAT proteins: regulation of somatostatin neurones by growth hormone via STAT5b. J Neuroendocrinol 17:186–194

    Article  PubMed  CAS  Google Scholar 

  93. Xue B, Pulinilkunnil T, Murano I, Bence KK, He H, Minokoshi Y, Asakura K, Lee A, Haj F, Furukawa N, Catalano KJ, Delibegovic M, Balschi JA, Cinti S, Neel BG, Kahn BB (2009) Neuronal protein tyrosine phosphatase 1B deficiency results in inhibition of hypothalamic AMPK and isoform-specific activation of AMPK in peripheral tissues. Mol Cell Biol 29:4563–4573

    Article  PubMed  CAS  Google Scholar 

  94. Zhang S, Chen L, Luo Y, Gunawan A, Lawrence DS, Zhang ZY (2009) Acquisition of a potent and selective TC-PTP inhibitor via a stepwise fluorophore-tagged combinatorial synthesis and screening strategy. J Am Chem Soc 131:13072–13079

    Article  PubMed  CAS  Google Scholar 

  95. El-Haschimi K, Pierroz DD, Hileman SM, Bjorbaek C, Flier JS (2000) Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest 105:1827–1832

    Article  PubMed  CAS  Google Scholar 

  96. Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, Lynn RB, Zhang PL, Sinha MK, Considine RV (1996) Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet 348:159–161

    Article  PubMed  CAS  Google Scholar 

  97. Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte D Jr (1996) Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med 2:589–593

    Article  PubMed  CAS  Google Scholar 

  98. Horvath TL, Sarman B, Garcia-Caceres C, Enriori PJ, Sotonyi P, Shanabrough M, Borok E, Argente J, Chowen JA, Perez-Tilve D, Pfluger PT, Bronneke HS, Levin BE, Diano S, Cowley MA, Tschop MH (2010) Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc Natl Acad Sci U S A 107:14875–14880

    Article  PubMed  CAS  Google Scholar 

  99. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA, Izgur V, Maravilla KR, Nguyen HT, Fischer JD, Matsen ME, Wisse BE, Morton GJ, Horvath TL, Baskin DG, Tschop MH, Schwartz MW (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122:153–162

    Article  PubMed  CAS  Google Scholar 

  100. Taghibiglou C, Rashid-Kolvear F, Van Iderstine SC, Le-Tien H, Fantus IG, Lewis GF, Adeli K (2002) Hepatic very low density lipoprotein-ApoB overproduction is associated with attenuated hepatic insulin signaling and overexpression of protein-tyrosine phosphatase 1B in a fructose-fed hamster model of insulin resistance. J Biol Chem 277:793–803

    Article  PubMed  CAS  Google Scholar 

  101. Lam NT, Lewis JT, Cheung AT, Luk CT, Tse J, Wang J, Bryer-Ash M, Kolls JK, Kieffer TJ (2004) Leptin increases hepatic insulin sensitivity and protein tyrosine phosphatase 1B expression. Mol Endocrinol 18:1333–1345

    Article  PubMed  CAS  Google Scholar 

  102. Obata T, Maegawa H, Kashiwagi A, Pillay TS, Kikkawa R (1998) High glucose-induced abnormal epidermal growth factor signaling. J Biochem 123:813–820

    Article  PubMed  CAS  Google Scholar 

  103. Shao J, Gao Y, Yuan Z (1998) [Free fatty acids promoting PTP1B expression in rat skeletal muscle and hepatic cells]. Zhonghua Yi Xue Za Zhi 78:753–755

    PubMed  CAS  Google Scholar 

  104. Parvaneh L, Meshkani R, Bakhtiyari S, Mohammadtaghvaie N, Gorganifiruzjaee S, Taheripak G, Golestani A, Foruzandeh M, Larijani B, Taghikhani M (2010) Palmitate and inflammatory state additively induce the expression of PTP1B in muscle cells. Biochem Biophys Res Commun 396:467–471

    Article  PubMed  CAS  Google Scholar 

  105. Berthou F, Rouch C, Gertler A, Gerozissis K, Taouis M (2011) Chronic central leptin infusion differently modulates brain and liver insulin signaling. Mol Cell Endocrinol 337:89–95

    Article  PubMed  CAS  Google Scholar 

  106. Zabolotny JM, Kim YB, Welsh LA, Kershaw EE, Neel BG, Kahn BB (2008) Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem 283:14230–14241

    Article  PubMed  CAS  Google Scholar 

  107. Briancon N, McNay DE, Maratos-Flier E, Flier JS (2010) Combined neural inactivation of SOCS-3 and PTP-1B reveal additive, synergistic, and factor-specific roles in the regulation of body energy balance. Diabetes 59:3074–3084

    Article  PubMed  CAS  Google Scholar 

  108. Vong L, Ye C, Yang Z, Choi B, Chua S Jr, Lowell BB (2011) Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71:142–154

    Article  PubMed  CAS  Google Scholar 

  109. Haj FG, Zabolotny JM, Kim YB, Kahn BB, Neel BG (2005) Liver specific protein-tyrosine phosphatase 1B (PTP1B) Re-expression alters glucose homeostasis of PTP1B-/-mice. J Biol Chem 280:15038–15046

    Article  PubMed  CAS  Google Scholar 

  110. Gelling RW, Morton GJ, Morrison CD, Niswender KD, Myers MG Jr, Rhodes CJ, Schwartz MW (2006) Insulin action in the brain contributes to glucose lowering during insulin treatment of diabetes. Cell Metab 3:67–73

    Article  PubMed  CAS  Google Scholar 

  111. Koch L, Wunderlich FT, Seibler J, Konner AC, Hampel B, Irlenbusch S, Brabant G, Kahn CR, Schwenk F, Bruning JC (2008) Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest 118:2132–2147

    PubMed  CAS  Google Scholar 

  112. Plum L, Belgardt BF, Bruning JC (2006) Central insulin action in energy and glucose homeostasis. J Clin Invest 116:1761–1766

    Article  PubMed  CAS  Google Scholar 

  113. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-Wieland D, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125

    Article  PubMed  CAS  Google Scholar 

  114. Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L (2002) Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 5:566–572

    Article  PubMed  CAS  Google Scholar 

  115. Inoue H, Ogawa W, Asakawa A, Okamoto Y, Nishizawa A, Matsumoto M, Teshigawara K, Matsuki Y, Watanabe E, Hiramatsu R, Notohara K, Katayose K, Okamura H, Kahn CR, Noda T, Takeda K, Akira S, Inui A, Kasuga M (2006) Role of hepatic STAT3 in brain-insulin action on hepatic glucose production. Cell Metab 3:267–275

    Article  PubMed  CAS  Google Scholar 

  116. Scherer T, O’Hare J, Diggs-Andrews K, Schweiger M, Cheng B, Lindtner C, Zielinski E, Vempati P, Su K, Dighe S, Milsom T, Puchowicz M, Scheja L, Zechner R, Fisher SJ, Previs SF, Buettner C (2011) Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab 13:183–194

    Article  PubMed  CAS  Google Scholar 

  117. Klockener T, Hess S, Belgardt BF, Paeger L, Verhagen LA, Husch A, Sohn JW, Hampel B, Dhillon H, Zigman JM, Lowell BB, Williams KW, Elmquist JK, Horvath TL, Kloppenburg P, Bruning JC (2011) High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nat Neurosci 14:911–918

    Article  PubMed  CAS  Google Scholar 

  118. Schulz C, Paulus K, Johren O, Lehnert H (2012) Intranasal leptin reduces appetite and induces weight loss in rats with diet-induced obesity (DIO). Endocrinology 153:143–153

    Article  PubMed  CAS  Google Scholar 

  119. Hallschmid M, Higgs S, Thienel M, Ott V, Lehnert H (2012) Postprandial administration of intranasal insulin intensifies satiety and reduces intake of palatable snacks in women. Diabetes 61:782–789

    Article  PubMed  CAS  Google Scholar 

  120. Benedict C, Brede S, Schioth HB, Lehnert H, Schultes B, Born J, Hallschmid M (2011) Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes 60:114–118

    Article  PubMed  CAS  Google Scholar 

  121. Jauch-Chara K, Friedrich A, Rezmer M, Melchert UH, G Scholand-Engler H, Hallschmid M, Oltmanns KM (2012) Intranasal insulin suppresses food intake via enhancement of brain energy levels in humans. Diabetes 61:2261–2268

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

T.T. is a National Health and Medical Research Council (NHMRC) of Australia Principal Research Fellow and supported by grants from the NHMRC. K.B. is an Associate Professor at the University of Pennsylvania, School of Veterinary Medicine, and is supported by the National Institutes of Health (NIDDK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendra K. Bence Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bence, K.K., Tiganis, T. (2013). PTP1B and TCPTP in CNS Signaling and Energy Balance. In: Bence, K. (eds) Protein Tyrosine Phosphatase Control of Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7855-3_4

Download citation

Publish with us

Policies and ethics