Skip to main content

Quantitative Modeling Approaches for Understanding the Role of Phosphatases in Cell Signaling Regulation: Applications in Metabolism

  • Chapter
  • First Online:
Protein Tyrosine Phosphatase Control of Metabolism
  • 886 Accesses

Abstract

The regulation of cell signaling occurs through a complex set of coupled processes occurring over multiple length and time scales. Computational modeling approaches have been applied to dissect this complexity over these various time and length scales, which range from the molecular level to the cell and tissue level, but these approaches have not focused heavily on the regulation or roles of phosphatases. Because of the clear importance of phosphatases in cell signaling, significant opportunities exist to expand our understanding of the regulation of cell signaling in metabolism and other cell regulatory processes by focusing modern computational approaches on phosphatases and the processes they regulate. The aim of this chapter is to provide a brief review of some computational modeling approaches that have been usefully applied to study the regulation of signaling, mainly by kinases, over a range of length and time scales and to describe opportunities to apply similar approaches for understanding signaling regulation by phosphatases. Some specific examples of key relevance to metabolism are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKT:

Protein kinase B

DEP1/RPTPJ:

Density-enhanced phosphatase 1/receptor-like protein tyrosine phosphatase J

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

GAB1:

GRB2-associated binder 1

GLUT4:

Glucose transporter 4

GRB2:

Growth factor receptor-bound protein 2

HER2:

Human epidermal growth factor receptor 2

HER3/ErbB3:

Human epidermal growth factor receptor 3

IR:

Insulin receptor

IRS:

Insulin receptor substrate

MAP:

Mitogen-activated protein

MAPK:

Mitogen-activated protein kinase

MEK:

Mitogen-activated protein kinase kinase

MKP3/DUSP6:

MAP kinase phosphatase 3/dual specificity phosphatase 6

NSCLC:

Non-small cell lung cancer

PAG/Cbp:

Phosphoprotein associated with glycosphingolipid-enriched microdomains/Csk-binding protein

PDGFR:

Platelet-derived growth factor receptor

PDK1:

Phosphoinositide-dependent kinase-1

PI3K:

Phosphoinositide 3-kinase

PLSR:

Partial least squares regression

PTEN:

Phosphatase and tensin homolog

PTP:

Protein tyrosine phosphatase

PTP1B:

Protein tyrosine phosphatase 1B

Raf:

Mitogen-activated protein kinase kinase kinase for ERK pathway

ROS:

Reactive oxygen species

RPTP:

Receptor-like protein tyrosine phosphatase

RTK:

Receptor tyrosine kinase

SH2:

Src homology 2

SHP1:

Src homology 2 domain containing phosphatase 1

SHP2:

Src homology 2 domain containing phosphatase 2

Src:

Proto-oncogene tyrosine kinase

References

  1. Ideker T, Winslow LR, Lauffenburger DA (2006) Bioengineering and systems biology. Ann Biomed Eng 34:1226–1233

    Article  PubMed  Google Scholar 

  2. Lazzara MJ, Lauffenburger DA (2009) Quantitative modeling perspectives on the ErbB system of cell regulatory processes. Exp Cell Res 315:717–725

    Article  PubMed  CAS  Google Scholar 

  3. Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8:1195–1203

    Article  PubMed  CAS  Google Scholar 

  4. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7:165–176

    Article  PubMed  CAS  Google Scholar 

  5. Kolitz SE, Lauffenburger DA (2012) Measurement and modeling of signaling at the single-cell level. Biochemistry 51:7433–7443

    Article  PubMed  CAS  Google Scholar 

  6. Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7:833–846

    Article  PubMed  CAS  Google Scholar 

  7. Zhang ZY (2002) Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu Rev Pharmacol Toxicol 42:209–234

    Article  PubMed  CAS  Google Scholar 

  8. Fauman EB, Saper MA (1996) Structure and function of the protein tyrosine phosphatases. Trends Biochem Sci 21:413–417

    Article  PubMed  CAS  Google Scholar 

  9. Tonks NK, Neel BG (1996) From form to function: signaling by protein tyrosine phosphatases. Cell 87:365–368

    Article  PubMed  CAS  Google Scholar 

  10. Ostman A, Hellberg C, Bohmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6:307–320

    Article  PubMed  CAS  Google Scholar 

  11. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117: 699–711

    Article  PubMed  CAS  Google Scholar 

  12. Tsou RC, Bence KK (2012) The genetics of PTPN1 and obesity: insights from mouse models of tissue-specific PTP1B deficiency. J Obes 2012:926857

    Article  PubMed  CAS  Google Scholar 

  13. Loh K, Fukushima A, Zhang X, Galic S, Briggs D, Enriori PJ, Simonds S, Wiede F, Reichenbach A, Hauser C, Sims NA, Bence KK, Zhang S, Zhang ZY, Kahn BB, Neel BG, Andrews ZB, Cowley MA, Tiganis T (2011) Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metab 14:684–699

    Article  PubMed  CAS  Google Scholar 

  14. Tsou RC, Zimmer DJ, De Jonghe BC, Bence KK (2012) Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice. Endocrinology 153:4227–4237

    Article  PubMed  CAS  Google Scholar 

  15. Banno R, Zimmer D, De Jonghe BC, Atienza M, Rak K, Yang W, Bence KK (2010) PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice. J Clin Invest 120:720–734

    Article  PubMed  CAS  Google Scholar 

  16. Tsou RC, Bence KK (2012) Central regulation of metabolism by protein tyrosine phosphatases. Front Neurosci 6:192

    PubMed  Google Scholar 

  17. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    Article  PubMed  CAS  Google Scholar 

  18. Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE (2009) Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 19:120–127

    Article  PubMed  CAS  Google Scholar 

  19. Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci U S A 102:6679–6685

    Article  PubMed  CAS  Google Scholar 

  20. Purvis J, Liu Y, Ilango V, Radhakrishnan R (2007) Efficacy of tyrosine kinase inhibitors in the mutants of the epidermal growth factor receptor: a multiscale molecular/systems model for phosphorylation and inhibition. In: Proceedings of foundations in systems biology II. IRB, Stuttgart, pp 289–294

    Google Scholar 

  21. Liu Y, Purvis J, Shih A, Weinstein J, Agrawal N, Radhakrishnan R (2007) A multiscale computational approach to dissect early events in the Erb family receptor mediated activation, differential signaling, and relevance to oncogenic transformations. Ann Biomed Eng 35:1012–1025

    Article  PubMed  Google Scholar 

  22. Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA (2010) ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci U S A 107:7692–7697

    Article  PubMed  CAS  Google Scholar 

  23. Telesco SE, Shih AJ, Jia F, Radhakrishnan R (2011) A multiscale modeling approach to investigate molecular mechanisms of pseudokinase activation and drug resistance in the HER3/ErbB3 receptor tyrosine kinase signaling network. Mol Biosyst 7:2066–2080

    Article  PubMed  CAS  Google Scholar 

  24. Liu B, Bernard B, Wu JH (2006) Impact of EGFR point mutations on the sensitivity to gefitinib: insights from comparative structural analyses and molecular dynamics simulations. Proteins 65:331–346

    Article  PubMed  CAS  Google Scholar 

  25. Lee TS, Ma W, Zhang X, Giles F, Cortes J, Kantarjian H, Albitar M (2008) BCR-ABL alternative splicing as a common mechanism for imatinib resistance: evidence from molecular dynamics simulations. Mol Cancer Ther 7:3834–3841

    Article  PubMed  CAS  Google Scholar 

  26. Lee TS, Potts SJ, Kantarjian H, Cortes J, Giles F, Albitar M (2008) Molecular basis explanation for imatinib resistance of BCR-ABL due to T315I and P-loop mutations from molecular dynamics simulations. Cancer 112:1744–1753

    Article  PubMed  CAS  Google Scholar 

  27. Aloy P, Russell RB (2006) Structural systems biology: modelling protein interactions. Nat Rev Mol Cell Biol 7:188–197

    Article  PubMed  CAS  Google Scholar 

  28. Neel BG, Gu H, Pao L (2003) The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28:284–293

    Article  PubMed  CAS  Google Scholar 

  29. Chan G, Kalaitzidis D, Neel BG (2008) The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev 27:179–192

    Article  PubMed  CAS  Google Scholar 

  30. Grossmann KS, Rosario M, Birchmeier C, Birchmeier W (2010) The tyrosine phosphatase Shp2 in development and cancer. Adv Cancer Res 106:53–89

    Article  PubMed  CAS  Google Scholar 

  31. Lauriol J, Kontaridis MI (2011) PTPN11-associated mutations in the heart: has LEOPARD changed its RASpots? Trends Cardiovasc Med 21:97–104

    Article  PubMed  CAS  Google Scholar 

  32. Edouard T, Montagner A, Dance M, Conte F, Yart A, Parfait B, Tauber M, Salles JP, Raynal P (2007) How do Shp2 mutations that oppositely influence its biochemical activity result in syndromes with overlapping symptoms? Cell Mol Life Sci 64:1585–1590

    Article  PubMed  CAS  Google Scholar 

  33. Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, Maris JM, Richardson A, Bardelli A, Sugarbaker DJ, Richards WG, Du J, Girard L, Minna JD, Loh ML, Fisher DE, Velculescu VE, Vogelstein B, Meyerson M, Sellers WR, Neel BG (2004) Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 64:8816–8820

    Article  PubMed  CAS  Google Scholar 

  34. Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG (2006) PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J Biol Chem 281:6785–6792

    Article  PubMed  CAS  Google Scholar 

  35. Hardy S, Julien SG, Tremblay ML (2012) Impact of oncogenic protein tyrosine phosphatases in cancer. Anticancer Agents Med Chem 12:4–18

    Article  PubMed  CAS  Google Scholar 

  36. Mattila E, Ivaska J (2011) High-throughput methods in identification of protein tyrosine phosphatase inhibitors and activators. Anticancer Agents Med Chem 11:141–150

    Article  PubMed  CAS  Google Scholar 

  37. Wiesmann C, Barr KJ, Kung J, Zhu J, Erlanson DA, Shen W, Fahr BJ, Zhong M, Taylor L, Randal M, McDowell RS, Hansen SK (2004) Allosteric inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol 11:730–737

    Article  PubMed  CAS  Google Scholar 

  38. Bilwes AM, den Hertog J, Hunter T, Noel JP (1996) Structural basis for inhibition of receptor protein-tyrosine phosphatase-alpha by dimerization. Nature 382:555–559

    Article  PubMed  CAS  Google Scholar 

  39. Jiang G, den Hertog J, Su J, Noel J, Sap J, Hunter T (1999) Dimerization inhibits the activity of receptor-like protein-tyrosine phosphatase-alpha. Nature 401:606–610

    Article  PubMed  CAS  Google Scholar 

  40. Park CS, Schneider IC, Haugh JM (2003) Kinetic analysis of platelet-derived growth factor receptor/phosphoinositide 3-kinase/Akt signaling in fibroblasts. J Biol Chem 278:37064–37072

    Article  PubMed  CAS  Google Scholar 

  41. Monast CS, Furcht CM, Lazzara MJ (2012) Computational analysis of the regulation of EGFR by protein tyrosine phosphatases. Biophys J 102:2012–2021

    Article  PubMed  CAS  Google Scholar 

  42. Hendriks BS, Opresko LK, Wiley HS, Lauffenburger D (2003) Coregulation of epidermal growth factor receptor/human epidermal growth factor receptor 2 (HER2) levels and locations: quantitative analysis of HER2 overexpression effects. Cancer Res 63:1130–1137

    PubMed  CAS  Google Scholar 

  43. Hendriks BS, Griffiths GJ, Benson R, Kenyon D, Lazzara M, Swinton J, Beck S, Hickinson M, Beusmans JM, Lauffenburger D, de Graaf D (2006) Decreased internalisation of erbB1 mutants in lung cancer is linked with a mechanism conferring sensitivity to gefitinib. Syst Biol 153:457–466

    Article  CAS  Google Scholar 

  44. Purvis J, Ilango V, Radhakrishnan R (2008) Role of network branching in eliciting differential short-term signaling responses in the hyper-sensitive epidermal growth factor receptor mutants implicated in lung cancer. Biotechnol Prog 24:540–553

    Article  PubMed  Google Scholar 

  45. Schoeberl B, Eichler-Jonsson C, Gilles ED, Muller G (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20:370–375

    Article  PubMed  Google Scholar 

  46. Birtwistle MR, Hatakeyama M, Yumoto N, Ogunnaike BA, Hoek JB, Kholodenko BN (2007) Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses. Mol Syst Biol 3:144

    Article  PubMed  CAS  Google Scholar 

  47. Hatakeyama M, Kimura S, Naka T, Kawasaki T, Yumoto N, Ichikawa M, Kim JH, Saito K, Saeki M, Shirouzu M, Yokoyama S, Konagaya A (2003) A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem J 373:451–463

    Article  PubMed  CAS  Google Scholar 

  48. Palani S, Sarkar CA (2008) Positive receptor feedback during lineage commitment can generate ultrasensitivity to ligand and confer robustness to a bistable switch. Biophys J 95: 1575–1589

    Article  PubMed  CAS  Google Scholar 

  49. Palani S, Sarkar CA (2009) Integrating extrinsic and intrinsic cues into a minimal model of lineage commitment for hematopoietic progenitors. PLoS Comput Biol 5:e1000518

    Article  PubMed  CAS  Google Scholar 

  50. Palani S, Sarkar CA (2011) Synthetic conversion of a graded receptor signal into a tunable, reversible switch. Mol Syst Biol 7:480

    Article  PubMed  Google Scholar 

  51. Shah NA, Sarkar CA (2011) Robust network topologies for generating switch-like cellular responses. PLoS Comput Biol 7:e1002085

    Article  PubMed  CAS  Google Scholar 

  52. Hendriks BS, Cook J, Burke JM, Beusmans JM, Lauffenburger DA, de Graaf D (2006) Computational modelling of ErbB family phosphorylation dynamics in response to transforming growth factor alpha and heregulin indicates spatial compartmentation of phosphatase activity. Syst Biol 153:22–33

    Article  CAS  Google Scholar 

  53. Hendriks BS, Orr G, Wells A, Wiley HS, Lauffenburger DA (2005) Parsing ERK activation reveals quantitatively equivalent contributions from epidermal growth factor receptor and HER2 in human mammary epithelial cells. J Biol Chem 280:6157–6169

    Article  PubMed  CAS  Google Scholar 

  54. Asthagiri AR, Lauffenburger DA (2001) A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model. Biotechnol Prog 17:227–239

    Article  PubMed  CAS  Google Scholar 

  55. Heinrich R, Neel BG, Rapoport TA (2002) Mathematical models of protein kinase signal transduction. Mol Cell 9:957–970

    Article  PubMed  CAS  Google Scholar 

  56. O’Shaughnessy EC, Palani S, Collins JJ, Sarkar CA (2011) Tunable signal processing in synthetic MAP kinase cascades. Cell 144:119–131

    Article  PubMed  CAS  Google Scholar 

  57. Gadkar KG, Varner J, Doyle FJ III (2005) Model identification of signal transduction networks from data using a state regulator problem. Syst Biol 2:17–30

    Article  CAS  Google Scholar 

  58. Gadkar KG, Gunawan R, Doyle FJ III (2005) Iterative approach to model identification of biological networks. BMC Bioinformatics 6:155

    Article  PubMed  CAS  Google Scholar 

  59. Dasika MS, Burgard A, Maranas CD (2006) A computational framework for the topological analysis and targeted disruption of signal transduction networks. Biophys J 91:382–398

    Article  PubMed  CAS  Google Scholar 

  60. Klinke DJ II (2009) An empirical Bayesian approach for model-based inference of cellular signaling networks. BMC Bioinformatics 10:371

    Article  PubMed  CAS  Google Scholar 

  61. Offterdinger M, Georget V, Girod A, Bastiaens PI (2004) Imaging phosphorylation dynamics of the epidermal growth factor receptor. J Biol Chem 279:36972–36981

    Article  PubMed  CAS  Google Scholar 

  62. Reynolds AR, Tischer C, Verveer PJ, Rocks O, Bastiaens PI (2003) EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat Cell Biol 5:447–453

    Article  PubMed  CAS  Google Scholar 

  63. Jiang X, Huang F, Marusyk A, Sorkin A (2003) Grb2 regulates internalization of EGF receptors through clathrin-coated pits. Mol Biol Cell 14:858–870

    Article  PubMed  CAS  Google Scholar 

  64. Goh LK, Huang F, Kim W, Gygi S, Sorkin A (2010) Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor. J Cell Biol 189:871–883

    Article  PubMed  CAS  Google Scholar 

  65. Sorkin A, Goh LK (2009) Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 315:683–696

    Article  PubMed  CAS  Google Scholar 

  66. Tarcic G, Boguslavsky SK, Wakim J, Kiuchi T, Liu A, Reinitz F, Nathanson D, Takahashi T, Mischel PS, Ng T, Yarden Y (2009) An unbiased screen identifies DEP-1 tumor suppressor as a phosphatase controlling EGFR endocytosis. Curr Biol 19:1788–1798

    Article  PubMed  CAS  Google Scholar 

  67. Araki T, Nawa H, Neel BG (2003) Tyrosyl phosphorylation of Shp2 is required for normal ERK activation in response to some, but not all, growth factors. J Biol Chem 278:41677–41684

    Article  PubMed  CAS  Google Scholar 

  68. Bose AK, Janes KA (2013) A high-throughput assay for phosphoprotein-specific phosphatase activity in cellular extracts. Mol Cell Proteomics 12:797–806

    Article  PubMed  CAS  Google Scholar 

  69. Murphy LO, Blenis J (2006) MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31:268–275

    Article  PubMed  CAS  Google Scholar 

  70. Amit I, Citri A, Shay T, Lu Y, Katz M, Zhang F, Tarcic G, Siwak D, Lahad J, Jacob-Hirsch J, Amariglio N, Vaisman N, Segal E, Rechavi G, Alon U, Mills GB, Domany E, Yarden Y (2007) A module of negative feedback regulators defines growth factor signaling. Nat Genet 39:503–512

    Article  PubMed  CAS  Google Scholar 

  71. Haj FG, Verveer PJ, Squire A, Neel BG, Bastiaens PI (2002) Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 295:1708–1711

    Article  PubMed  CAS  Google Scholar 

  72. Haj FG, Markova B, Klaman LD, Bohmer FD, Neel BG (2003) Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. J Biol Chem 278:739–744

    Article  PubMed  CAS  Google Scholar 

  73. Eden ER, White IJ, Tsapara A, Futter CE (2010) Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nat Cell Biol 12:267–272

    PubMed  CAS  Google Scholar 

  74. Monteleone MC, Gonzalez Wusener AE, Burdisso JE, Conde C, Caceres A, Arregui CO (2012) ER-bound protein tyrosine phosphatase PTP1B interacts with Src at the plasma membrane/substrate interface. PLoS One 7:e38948

    Article  PubMed  CAS  Google Scholar 

  75. Lee HH, Lee HC, Chou CC, Hur SS, Osterday K, Del Alamo JC, Lasheras JC, Chien S (2013) Shp2 plays a crucial role in cell structural orientation and force polarity in response to matrix rigidity. Proc Natl Acad Sci U S A 110:2840–2845

    Article  PubMed  CAS  Google Scholar 

  76. Oh ES, Gu H, Saxton TM, Timms JF, Hausdorff S, Frevert EU, Kahn BB, Pawson T, Neel BG, Thomas SM (1999) Regulation of early events in integrin signaling by protein tyrosine phosphatase SHP-2. Mol Cell Biol 19:3205–3215

    PubMed  CAS  Google Scholar 

  77. Meng TC, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9:387–399

    Article  PubMed  CAS  Google Scholar 

  78. Rhee SG, Bae YS, Lee SR, Kwon J (2000) Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE 2000:pe1

    Article  PubMed  CAS  Google Scholar 

  79. Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221

    Article  PubMed  CAS  Google Scholar 

  80. Chiarugi P, Cirri P (2003) Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci 28:509–514

    Article  PubMed  CAS  Google Scholar 

  81. Deen WM (2012) Analysis of transport phenomena. Oxford University Press, New York

    Google Scholar 

  82. Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB (2005) A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310:1646–1653

    Article  PubMed  CAS  Google Scholar 

  83. Kumar N, Wolf-Yadlin A, White FM, Lauffenburger DA (2007) Modeling HER2 effects on cell behavior from mass spectrometry phosphotyrosine data. PLoS Comput Biol 3:e4

    Article  PubMed  CAS  Google Scholar 

  84. Miller-Jensen K, Janes KA, Brugge JS, Lauffenburger DA (2007) Common effector processing mediates cell-specific responses to stimuli. Nature 448:604–608

    Article  PubMed  CAS  Google Scholar 

  85. Dworkin M, Mukherjee S, Jayaprakash C, Das J (2012) Dramatic reduction of dimensionality in large biochemical networks owing to strong pair correlations. J R Soc Interface 9:1824–1835

    Article  PubMed  Google Scholar 

  86. Kreeger PK, Wang Y, Haigis KM, Lauffenburger DA (2010) Integration of multiple signaling pathway activities resolves K-RAS/N-RAS mutation paradox in colon epithelial cell response to inflammatory cytokine stimulation. Integr Biol (Camb) 2:202–208

    Article  CAS  Google Scholar 

  87. Shih AJ, Telesco SE, Radhakrishnan R (2011) Analysis of somatic mutations in cancer: molecular mechanisms of activation in the ErbB family of receptor tyrosine kinases. Cancers (Basel) 3:1195–1231

    Article  CAS  Google Scholar 

  88. Agrawal NJ, Nukpezah J, Radhakrishnan R (2010) Minimal mesoscale model for protein-mediated vesiculation in clathrin-dependent endocytosis. PLoS Comput Biol 6:e1000926

    Article  PubMed  CAS  Google Scholar 

  89. Ramanan V, Agrawal NJ, Liu J, Engles S, Toy R, Radhakrishnan R (2011) Systems biology and physical biology of clathrin-mediated endocytosis. Integr Biol (Camb) 3:803–815

    Article  CAS  Google Scholar 

  90. Barua D, Faeder JR, Haugh JM (2007) Structure-based kinetic models of modular signaling protein function: focus on Shp2. Biophys J 92:2290–2300

    Article  PubMed  CAS  Google Scholar 

  91. Sekar JA, Faeder JR (2012) Rule-based modeling of signal transduction: a primer. Methods Mol Biol 880:139–218

    Article  PubMed  Google Scholar 

  92. Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M, Fontana W (2006) Rules for modeling signal-transduction systems. Sci STKE 2006:re6

    PubMed  Google Scholar 

  93. Blinov ML, Faeder JR, Goldstein B, Hlavacek WS (2006) A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. Biosystems 83:136–151

    Article  PubMed  CAS  Google Scholar 

  94. Blinov ML, Faeder JR, Goldstein B, Hlavacek WS (2004) BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20:3289–3291

    Article  PubMed  CAS  Google Scholar 

  95. Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of biochemical systems with BioNetGen. Methods Mol Biol 500:113–167

    Article  PubMed  CAS  Google Scholar 

  96. Saltiel AR, Pessin JE (2002) Insulin signaling pathways in time and space. Trends Cell Biol 12:65–71

    Article  PubMed  CAS  Google Scholar 

  97. Wiese RJ, Mastick CC, Lazar DF, Saltiel AR (1995) Activation of mitogen-activated protein kinase and phosphatidylinositol 3′-kinase is not sufficient for the hormonal stimulation of glucose uptake, lipogenesis, or glycogen synthesis in 3T3-L1 adipocytes. J Biol Chem 270:3442–3446

    Article  PubMed  CAS  Google Scholar 

  98. Guilherme A, Czech MP (1998) Stimulation of IRS-1-associated phosphatidylinositol 3-kinase and Akt/protein kinase B but not glucose transport by beta1-integrin signaling in rat adipocytes. J Biol Chem 273:33119–33122

    Article  PubMed  CAS  Google Scholar 

  99. Albeck JG, Mills GB, Brugge JS (2013) Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals. Mol Cell 49:249–261

    Article  PubMed  CAS  Google Scholar 

  100. Inoue G, Cheatham B, Emkey R, Kahn CR (1998) Dynamics of insulin signaling in 3T3-L1 adipocytes. Differential compartmentalization and trafficking of insulin receptor substrate (IRS)-1 and IRS-2. J Biol Chem 273:11548–11555

    Article  PubMed  CAS  Google Scholar 

  101. Kunkel MT, Ni Q, Tsien RY, Zhang J, Newton AC (2005) Spatio-temporal dynamics of protein kinase B/Akt signaling revealed by a genetically encoded fluorescent reporter. J Biol Chem 280:5581–5587

    Article  PubMed  CAS  Google Scholar 

  102. Gao X, Zhang J (2009) Akt signaling dynamics in plasma membrane microdomains visualized by FRET-based reporters. Commun Integr Biol 2:32–34

    Article  PubMed  CAS  Google Scholar 

  103. Davidson D, Bakinowski M, Thomas ML, Horejsi V, Veillette A (2003) Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol Cell Biol 23:2017–2028

    Article  PubMed  CAS  Google Scholar 

  104. Delibegovic M, Zimmer D, Kauffman C, Rak K, Hong EG, Cho YR, Kim JK, Kahn BB, Neel BG, Bence KK (2009) Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes 58:590–599

    Article  PubMed  CAS  Google Scholar 

  105. Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Stricker-Krongrad A, Shulman GI, Neel BG, Kahn BB (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 20:5479–5489

    Article  PubMed  CAS  Google Scholar 

  106. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283:1544–1548

    Article  PubMed  CAS  Google Scholar 

  107. Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG, Kahn BB (2006) Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med 12:917–924

    Article  PubMed  CAS  Google Scholar 

  108. Owen C, Czopek A, Agouni A, Grant L, Judson R, Lees EK, McIlroy GD, Goransson O, Welch A, Bence KK, Kahn BB, Neel BG, Mody N, Delibegovic M (2012) Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis. PLoS One 7:e32700

    Article  PubMed  CAS  Google Scholar 

  109. Haj FG, Zabolotny JM, Kim YB, Kahn BB, Neel BG (2005) Liver-specific protein-tyrosine phosphatase 1B (PTP1B) re-expression alters glucose homeostasis of PTP1B-/-mice. J Biol Chem 280:15038–15046

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges Prof. Douglas A. Lauffenburger (MIT) and Prof. Ravi Radhakrishnan (University of Pennsylvania) for helpful feedback on this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Lazzara Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lazzara, M.J. (2013). Quantitative Modeling Approaches for Understanding the Role of Phosphatases in Cell Signaling Regulation: Applications in Metabolism. In: Bence, K. (eds) Protein Tyrosine Phosphatase Control of Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7855-3_2

Download citation

Publish with us

Policies and ethics