Skip to main content

Mitogen-Activated Protein Kinase Phosphatases in Metabolism

  • Chapter
  • First Online:
Protein Tyrosine Phosphatase Control of Metabolism

Abstract

Although we continue to learn much about how the mitogen-activated protein kinases (MAPKs) are involved in physiological and pathophysiological signaling in metabolism, a comparable level of understanding about the mechanisms of MAPK inactivation in the control of metabolic homeostasis is lacking. The family of enzymes known to specifically antagonize the MAPKs by direct dephosphorylation, the MAPK phosphatases (MKPs), are emerging as important players in the control of metabolic homeostasis. The MKPs regulate the MAPKs through a complex network of pathways within a spatio-temporal and tissue-specific manner. Here, we will review studies that have led to the realization that the MKPs play essential signaling roles in the control of metabolic homeostasis by counterbalancing the actions of the MAPKs. A growing body of evidence now demonstrates a critical role for the MKPs in the regulation of MAPK activity in metabolic signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DUSP:

Dual-specificity protein phosphatase

ERK1/2:

Extracellular signal-regulated kinases 1 and 2

FOXO:

Forkhead box O protein

G6Pase:

Glucose 6-phosphatase

JNK:

c-Jun NH2 kinases

KIM:

Kinase interaction motif

MAPK:

Mitogen-activated protein kinases

MKP:

MAPK phosphatase

PEPCK:

Phosphoenol pyruvate carboxykinase

PPAR:

Peroxisome proliferator-activated receptor

References

  1. Basen-Engquist K, Chang M (2011) Obesity and cancer risk: recent review and evidence. Curr Oncol Rep 13:71–76

    Article  PubMed  Google Scholar 

  2. Starley BQ, Calcagno CJ, Harrison SA (2010) Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 51:1820–1832

    Article  PubMed  Google Scholar 

  3. Siegel AB, Zhu AX (2009) Metabolic syndrome and hepatocellular carcinoma. Cancer 115:5651–5661

    Article  PubMed  Google Scholar 

  4. Farrell GC, Larter CZ (2006) Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43:S99–S112

    Article  PubMed  CAS  Google Scholar 

  5. Flier JS (2004) Obesity wars: molecular progress confronts an expanding epidemic. Cell 116:337–350

    Article  PubMed  CAS  Google Scholar 

  6. Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643

    PubMed  CAS  Google Scholar 

  7. Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148:852–871

    Article  PubMed  CAS  Google Scholar 

  8. Bost F, Aouadi M, Caron L, Binetruy B (2005) The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87:51–56

    Article  PubMed  CAS  Google Scholar 

  9. Bost F, Aouadi M, Caron L, Even P, Belmonte N, Prot M, Dani C, Hofman P, Pages G, Pouyssegur J, Le Marchand-Brustel Y, Binetruy B (2005) The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes 54:402–411

    Article  PubMed  CAS  Google Scholar 

  10. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336

    Article  PubMed  CAS  Google Scholar 

  11. Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, Zhang CY, Krauss S, Mootha VK, Lowell BB, Spiegelman BM (2001) Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell 8:971–982

    Article  PubMed  CAS  Google Scholar 

  12. Xiong Y, Collins QF, An J, Lupo E Jr, Liu H-Y, Liu D, Robidoux J, Liu Z, Cao W (2007) p38 Mitogen-activated protein kinase plays an inhibitory role in hepatic lipogenesis. J Biol Chem 282:4975–4982

    Article  PubMed  CAS  Google Scholar 

  13. Burns KA, Vanden Heuvel JP (2007) Modulation of PPAR activity via phosphorylation. Biochim Biophys Acta 1771:952–960

    Article  PubMed  CAS  Google Scholar 

  14. Somwar R, Koterski S, Sweeney G, Sciotti R, Djuric S, Berg C, Trevillyan J, Scherer PE, Rondinone CM, Klip A (2002) A dominant-negative p38 MAPK mutant and novel selective inhibitors of p38 MAPK reduce insulin-stimulated glucose uptake in 3T3-L1 adipocytes without affecting GLUT4 translocation. J Biol Chem 277:50386–50395

    Article  PubMed  CAS  Google Scholar 

  15. Barger PM, Browning AC, Garner AN, Kelly DP (2001) p38 Mitogen-activated protein kinase activates peroxisome proliferator-activated receptor alpha: a potential role in the cardiac metabolic stress response. J Biol Chem 276:44495–44501

    Article  PubMed  CAS  Google Scholar 

  16. Tuncman G, Hirosumi J, Solinas G, Chang L, Karin M, Hotamisligil GS (2006) Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc Natl Acad Sci U S A 103:10741–10746

    Article  PubMed  CAS  Google Scholar 

  17. Somwar R, Perreault M, Kapur S, Taha C, Sweeney G, Ramlal T, Kim DY, Keen J, Cote CH, Klip A, Marette A (2000) Activation of p38 mitogen-activated protein kinase alpha and beta by insulin and contraction in rat skeletal muscle: potential role in the stimulation of glucose transport. Diabetes 49:1794–1800

    Article  PubMed  CAS  Google Scholar 

  18. Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X, Floering LM, Spiegelman BM, Collins S (2004) p38 Mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol 24:3057–3067

    Article  PubMed  CAS  Google Scholar 

  19. Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS, Yan Z (2005) Exercise stimulates Pgc-1{alpha} transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280:19587–19593

    Article  PubMed  CAS  Google Scholar 

  20. Jager J, Corcelle V, Gremeaux T, Laurent K, Waget A, Pages G, Binetruy B, Le Marchand-Brustel Y, Burcelin R, Bost F, Tanti JF (2010) Deficiency in the extracellular signal-regulated kinase 1 (ERK1) protects leptin-deficient mice from insulin resistance without affecting obesity. Diabetologia 54(1):180–189

    Article  PubMed  Google Scholar 

  21. Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26:3100–3112

    Article  PubMed  CAS  Google Scholar 

  22. Derijard B, Raingeaud J, Barrett T, Wu I-H, Han J, Ulevitch RJ, Davis RJ (1995) Independent human MAP kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267:682–685

    Article  PubMed  CAS  Google Scholar 

  23. Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    PubMed  CAS  Google Scholar 

  24. Keyse SM (2000) Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol 12:186–192

    Article  PubMed  CAS  Google Scholar 

  25. Karlsson M, Mandl M, Keyse SM (2006) Spatio-temporal regulation of mitogen-activated protein kinase (MAPK) signalling by protein phosphatases. Biochem Soc Trans 34:842–845

    Article  PubMed  CAS  Google Scholar 

  26. Boutros T, Chevet E, Metrakos P (2008) Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 60:261–310

    Article  PubMed  CAS  Google Scholar 

  27. Patterson KI, Brummer T, O’Brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418:475–489

    PubMed  CAS  Google Scholar 

  28. Dickinson RJ, Keyse SM (2006) Diverse physiological functions for dual-specificity MAP kinase phosphatases. J Cell Sci 119:4607–4615

    Article  PubMed  CAS  Google Scholar 

  29. Tanoue T, Adachi M, Moriguchi T, Nishida E (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol 2:110–116

    Article  PubMed  CAS  Google Scholar 

  30. Camps M, Nichols A, Gillieron C, Antonsson B, Muda M, Chabert C, Boschert U, Arkinstall S (1998) Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 280:1262–1264

    Article  PubMed  CAS  Google Scholar 

  31. Wu JJ, Zhang L, Bennett AM (2005) The noncatalytic amino terminus of mitogen-activated protein kinase phosphatase 1 directs nuclear targeting and serum response element transcriptional regulation. Mol Cell Biol 25:4792–4803

    Article  PubMed  CAS  Google Scholar 

  32. Mandl M, Slack DN, Keyse SM (2005) Specific inactivation and nuclear anchoring of extracellular signal-regulated kinase 2 by the inducible dual-specificity protein phosphatase DUSP5. Mol Cell Biol 25:1830–1845

    Article  PubMed  CAS  Google Scholar 

  33. Karlsson M, Mathers J, Dickinson RJ, Mandl M, Keyse SM (2004) Both nuclear-cytoplasmic shuttling of the dual specificity phosphatase MKP-3 and its ability to anchor MAP kinase in the cytoplasm are mediated by a conserved nuclear export signal. J Biol Chem 279:41882–41891

    Article  PubMed  CAS  Google Scholar 

  34. Camps M, Nichols A, Arkinstall S (2000) Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J 14:6–16

    PubMed  CAS  Google Scholar 

  35. Jeong DG, Jung SK, Yoon TS, Woo EJ, Kim JH, Park BC, Ryu SE, Kim SJ (2009) Crystal structure of the catalytic domain of human MKP-2 reveals a 24-mer assembly. Proteins 76:763–767

    Article  PubMed  CAS  Google Scholar 

  36. Tao X, Tong L (2007) Crystal structure of the MAP kinase binding domain and the catalytic domain of human MKP5. Protein Sci 16:880–886

    Article  PubMed  CAS  Google Scholar 

  37. Jeong DG, Yoon TS, Kim JH, Shim MY, Jung SK, Son JH, Ryu SE, Kim SJ (2006) Crystal structure of the catalytic domain of human MAP kinase phosphatase 5: structural insight into constitutively active phosphatase. J Mol Biol 360:946–955

    Article  PubMed  CAS  Google Scholar 

  38. Farooq A, Zhou MM (2004) Structure and regulation of MAPK phosphatases. Cell Signal 16:769–779

    Article  PubMed  CAS  Google Scholar 

  39. Farooq A, Plotnikova O, Chaturvedi G, Yan S, Zeng L, Zhang Q, Zhou MM (2003) Solution structure of the MAPK phosphatase PAC-1 catalytic domain. Insights into substrate-induced enzymatic activation of MKP. Structure 11:155–164

    Article  PubMed  CAS  Google Scholar 

  40. Farooq A, Chaturvedi G, Mujtaba S, Plotnikova O, Zeng L, Dhalluin C, Ashton R, Zhou MM (2001) Solution structure of ERK2 binding domain of MAPK phosphatase MKP-3: structural insights into MKP-3 activation by ERK2. Mol Cell 7:387–399

    Article  PubMed  CAS  Google Scholar 

  41. Franklin CC, Kraft AS (1997) Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U397 cells. J Biol Chem 272:16917–16923

    Article  PubMed  CAS  Google Scholar 

  42. Zhang YY, Wu JW, Wang ZX (2011) A distinct interaction mode revealed by the crystal structure of the kinase p38alpha with the MAPK binding domain of the phosphatase MKP5. Sci Signal 4:ra88

    Article  PubMed  Google Scholar 

  43. Wu Z, Jiao P, Huang X, Feng B, Feng Y, Yang S, Hwang P, Du J, Nie Y, Xiao G, Xu H (2010) MAPK phosphatase-3 promotes hepatic gluconeogenesis through dephosphorylation of forkhead box O1 in mice. J Clin Invest 120:3901–3911

    Article  PubMed  CAS  Google Scholar 

  44. Jiao P, Feng B, Xu H (2012) Mapping MKP-3/FOXO1 interaction and evaluating the effect on gluconeogenesis. PLoS One 7:e41168

    Article  PubMed  CAS  Google Scholar 

  45. Wu JJ, Roth RJ, Anderson EJ, Hong E-G, Lee M-K, Choi CS, Neufer PD, Shulman GI, Kim JK, Bennett AM (2006) Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metab 4:61–73

    Article  PubMed  CAS  Google Scholar 

  46. Soulsby M, Bennett AM (2009) Physiological signaling specificity by protein tyrosine phosphatases. Physiology (Bethesda) 24:281–289

    Article  CAS  Google Scholar 

  47. Dorfman K, Carrasco D, Gruda M, Ryan C, Lira SA, Bravo R (1996) Disruption of the erp/mkp-1 gene does not affect mouse development: normal MAP kinase activity in ERP/MKP-1-deficient fibroblasts. Oncogene 13:925–931

    PubMed  CAS  Google Scholar 

  48. Roth RJ, Le AM, Zhang L, Kahn M, Samuel VT, Shulman GI, Bennett AM (2009) MAPK phosphatase-1 facilitates the loss of oxidative myofibers associated with obesity in mice. J Clin Invest 119:3817–3829

    Article  PubMed  CAS  Google Scholar 

  49. Tanoue T, Moriguchi T, Nishida E (1999) Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5. J Biol Chem 274:19949–19956

    Article  PubMed  CAS  Google Scholar 

  50. Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem 275:9047–9054

    Article  PubMed  CAS  Google Scholar 

  51. Liu Z, Cao W (2009) p38 mitogen-activated protein kinase: a critical node linking insulin resistance and cardiovascular diseases in type 2 diabetes mellitus. Endocr Metab Immune Disord Drug Targets 9:38–46

    Article  PubMed  CAS  Google Scholar 

  52. Flach RJ, Qin H, Zhang L, Bennett AM (2011) Loss of mitogen-activated protein kinase phosphatase-1 protects from hepatic steatosis by repression of cell death-inducing DNA fragmentation factor A (DFFA)-like effector C (CIDEC)/fat-specific protein 27. J Biol Chem 286: 22195–22202

    Article  PubMed  Google Scholar 

  53. Reddy ST, Nguyen JT, Grijalva V, Hough G, Hama S, Navab M, Fogelman AM (2004) Potential role for mitogen-activated protein kinase phosphatase-1 in the development of atherosclerotic lesions in mouse models. Arterioscler Thromb Vasc Biol 24:1676–1681

    Article  PubMed  CAS  Google Scholar 

  54. Lehrke M, Lazar MA (2005) The many faces of PPARgamma. Cell 123:993–999

    Article  PubMed  CAS  Google Scholar 

  55. Gavrilova O, Haluzik M, Matsusue K, Cutson JJ, Johnson L, Dietz KR, Nicol CJ, Vinson C, Gonzalez FJ, Reitman ML (2003) Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem 278:34268–34276

    Article  PubMed  CAS  Google Scholar 

  56. Matsusue K, Haluzik M, Lambert G, Yim SH, Gavrilova O, Ward JM, Brewer B Jr, Reitman ML, Gonzalez FJ (2003) Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest 111:737–747

    PubMed  CAS  Google Scholar 

  57. Matsusue K, Kusakabe T, Noguchi T, Takiguchi S, Suzuki T, Yamano S, Gonzalez FJ (2008) Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab 7:302–311

    Article  PubMed  CAS  Google Scholar 

  58. Yin R, Dong YG, Li HL (2006) PPARgamma phosphorylation mediated by JNK MAPK: a potential role in macrophage-derived foam cell formation. Acta Pharmacol Sin 27:1146–1152

    Article  PubMed  CAS  Google Scholar 

  59. Traini M, Jessup W (2009) Lipid droplets and adipose metabolism: a novel role for FSP27/CIDEC. Curr Opin Lipidol 20:147–149

    Article  PubMed  CAS  Google Scholar 

  60. Hu E, Kim J, Sarraf P, Spiegelman B (1996) Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ. Science 274:2100–2103

    Article  PubMed  CAS  Google Scholar 

  61. Feng B, Jiao P, Yang Z, Xu H (2012) MEK/ERK pathway mediates insulin-promoted degradation of MKP-3 protein in liver cells. Mol Cell Endocrinol 361:116–123

    Article  PubMed  CAS  Google Scholar 

  62. Asada S, Daitoku H, Matsuzaki H, Saito T, Sudo T, Mukai H, Iwashita S, Kako K, Kishi T, Kasuya Y, Fukamizu A (2007) Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1. Cell Signal 19:519–527

    Article  PubMed  CAS  Google Scholar 

  63. Misra-Press A, Rim CS, Yao H, Roberson MS, Stork PJS (1995) A novel mitogen-activated protein kinase phosphatase. J Biol Chem 270:14587–14596

    Article  PubMed  CAS  Google Scholar 

  64. Berasi SP, Huard C, Li D, Shih HH, Sun Y, Zhong W, Paulsen JE, Brown EL, Gimeno RE, Martinez RV (2006) Inhibition of gluconeogenesis through transcriptional activation of EGR1 and DUSP4 by AMP-activated kinase. J Biol Chem 281:27167–27177

    Article  PubMed  CAS  Google Scholar 

  65. Cahova M, Vavrinkova H, Kazdova L (2007) Glucose-fatty acid interaction in skeletal muscle and adipose tissue in insulin resistance. Physiol Res 56:1–15

    PubMed  CAS  Google Scholar 

  66. Sabio G, Davis RJ (2010) cJUN NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance. Trends Biochem Sci 35:490–496

    Article  PubMed  CAS  Google Scholar 

  67. Cao W, Collins QF, Becker TC, Robidoux J, Lupo EG Jr, Xiong Y, Daniel KW, Floering L, Collins S (2005) p38 mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis. J Biol Chem 280:42731–42737

    Article  PubMed  CAS  Google Scholar 

  68. Zierath JR, Hawley JA (2004) Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2:e348

    Article  PubMed  Google Scholar 

  69. Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26:439–451

    Article  PubMed  CAS  Google Scholar 

  70. Qiao L, Kinney B, Yoo HS, Lee B, Schaack J, Shao J (2012) Adiponectin increases skeletal muscle mitochondrial biogenesis by suppressing mitogen-activated protein kinase phosphatase-1. Diabetes 61:1463–1470

    Article  PubMed  CAS  Google Scholar 

  71. Sabio G, Das M, Mora A, Zhang Z, Jun JY, Ko HJ, Barrett T, Kim JK, Davis RJ (2008) A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322:1539–1543

    Article  PubMed  CAS  Google Scholar 

  72. Sakaue H, Ogawa W, Nakamura T, Mori T, Nakamura K, Kasuga M (2004) Role of MAPK phosphatase-1 (MKP-1) in adipocyte differentiation. J Biol Chem 279:39951–39957

    Article  PubMed  CAS  Google Scholar 

  73. Lawan A, Shi H, Gatzke F, Bennett AM (2012) Diversity and specificity of the mitogen-activated protein kinase phosphatase-1 functions. Cell Mol Life Sci 70(2):223–237

    Article  PubMed  Google Scholar 

  74. Ito A, Suganami T, Miyamoto Y, Yoshimasa Y, Takeya M, Kamei Y, Ogawa Y (2007) Role of MAPK phosphatase-1 in the induction of monocyte chemoattractant protein-1 during the course of adipocyte hypertrophy. J Biol Chem 282:25445–25452

    Article  PubMed  CAS  Google Scholar 

  75. Hong SB, Lubben TH, Dolliver CM, Petrolonis AJ, Roy RA, Li Z, Parsons TF, Li P, Xu H, Reilly RM, Trevillyan JM, Nichols AJ, Tummino PJ, Gant TG (2005) Expression, purification, and enzymatic characterization of the dual specificity mitogen-activated protein kinase phosphatase, MKP-4. Bioorg Chem 33:34–44

    Article  PubMed  CAS  Google Scholar 

  76. Xu H, Dembski M, Yang Q, Yang D, Moriarty A, Tayber O, Chen H, Kapeller R, Tartaglia LA (2003) Dual specificity mitogen-activated protein (MAP) kinase phosphatase-4 plays a potential role in insulin resistance. J Biol Chem 278:30187–30192

    Article  PubMed  CAS  Google Scholar 

  77. Emanuelli B, Eberle D, Suzuki R, Kahn CR (2008) Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance. Proc Natl Acad Sci U S A 105:3545–3550

    Article  PubMed  CAS  Google Scholar 

  78. Dankel SN, Fadnes DJ, Stavrum AK, Stansberg C, Holdhus R, Hoang T, Veum VL, Christensen BJ, Vage V, Sagen JV, Steen VM, Mellgren G (2010) Switch from stress response to homeobox transcription factors in adipose tissue after profound fat loss. PLoS One 5:e11033

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

A.M.B. was supported by NIH grants DK075776 and DK34989. We thank Florian Gatzke for the preparation of illustrations for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Lawan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lawan, A., Bennett, A.M. (2013). Mitogen-Activated Protein Kinase Phosphatases in Metabolism. In: Bence, K. (eds) Protein Tyrosine Phosphatase Control of Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7855-3_12

Download citation

Publish with us

Policies and ethics