Skip to main content

The Role of LMPTP in the Metabolic Syndrome

  • Chapter
  • First Online:
Book cover Protein Tyrosine Phosphatase Control of Metabolism

Abstract

The low molecular weight class of protein tyrosine phosphatases (PTPs) has been implicated as key modulators of pathways controlling human susceptibility to a host of disorders. As a result, these enzymes are emerging as novel targets for the treatment of a variety of ailments, ranging from cardiovascular disorders to neoplastic syndromes to infectious diseases. For decades evidence has been accumulating that the human low molecular weight PTP (LMPTP) is a key regulator of the metabolic conditions that accompany obesity and can put humans at risk for type 2 diabetes, coronary artery disease, and other, sometimes lethal, complications. While the LMPTP is ubiquitously expressed and involved in numerous signaling pathways controlling cell growth and differentiation, this review will focus on the critical role of LMPTP in regulating insulin resistance and its implications for metabolic homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACP1:

Acid phosphatase locus 1

ADA:

Adenosine deaminase

ASO:

Antisense oligonucleotide

BMI:

Body mass index

BPTP:

Bovine heart protein tyrosine phosphatase

CAD:

Coronary artery disease

DIO:

Diet-induced obese

f:

Fast isoform

hAAP:

Human adipocyte acid phosphatase

HCPTP:

Human cytosolic low-molecular-weight protein tyrosine phosphatase

IR:

Insulin receptor

LDL:

Low-density lipoprotein

LMPTP:

Low molecular weight protein tyrosine phosphatase

PTP:

Protein tyrosine phosphatase

s:

Slow isoform

SNP:

Single nucleotide polymorphism

SV3:

Splicing variant 3

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

ZAP-70:

ζ-chain-associated protein tyrosine phosphatase of 70 kDa

References

  1. Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699–711

    Article  PubMed  CAS  Google Scholar 

  2. Apelt N, da Silva AP, Ferreira J, Alho I, Monteiro C, Marinho C et al (2009) ACP1 genotype, glutathione reductase activity, and riboflavin uptake affect cardiovascular risk in the obese. Metabolism 58:1415–1423

    Article  PubMed  CAS  Google Scholar 

  3. Blake NM, Kirk RL, Barnes KR, Thompson JM (1973) Expression of human red cell acid phosphatase activity in placenta and other tissues. Jinrui Idengaku Zasshi 18:10–23

    PubMed  CAS  Google Scholar 

  4. Boivin B, Yang M, Tonks NK (2010) Targeting the reversibly oxidized protein tyrosine phosphatase superfamily. Sci Signal 3:pl2

    Article  PubMed  Google Scholar 

  5. Bottini E, Lucarini N, Gerlini G, Finocchi G, Scire G, Gloria-Bottini F (1990) Enzyme polymorphism and clinical variability of diseases: study of acid phosphatase locus 1 (ACP1) in obese subjects. Hum Biol 62:403–411

    PubMed  CAS  Google Scholar 

  6. Bottini N, Bottini E, Gloria-Bottini F, Mustelin T (2002) Low-molecular-weight protein tyrosine phosphatase and human disease: in search of biochemical mechanisms. Arch Immunol Ther Exp (Warsz) 50:95–104

    CAS  Google Scholar 

  7. Bottini N, Gloria-Bottini F, Borgiani P, Antonacci E, Lucarelli P, Bottini E (2004) Type 2 diabetes and the genetics of signal transduction: a study of interaction between adenosine deaminase and acid phosphatase locus 1 polymorphisms. Metabolism 53:995–1001

    Article  PubMed  CAS  Google Scholar 

  8. Bottini N, Gloria-Bottini F, Lucarini N, Ronchetti PG, Fontana L (2000) Inflammatory bowel disease: are there gender differences in the genetics of signal transduction? A preliminary study of cytosolic low molecular weight protein tyrosine phosphatase. Dis Markers 16:163–166

    Article  PubMed  CAS  Google Scholar 

  9. Bottini N, MacMurray J, Peters W, Rostamkhani M, Comings DE (2002) Association of the acid phosphatase (ACP1) gene with triglyceride levels in obese women. Mol Genet Metab 77:226–229

    Article  PubMed  CAS  Google Scholar 

  10. Bottini N, Stefanini L, Williams S, Alonso A, Jascur T, Abraham RT et al (2002) Activation of ZAP-70 through specific dephosphorylation at the inhibitory Tyr-292 by the low molecular weight phosphotyrosine phosphatase (LMPTP). J Biol Chem 277:24220–24224

    Article  PubMed  CAS  Google Scholar 

  11. Bryson GL, Massa H, Trask BJ, Van Etten RL (1995) Gene structure, sequence, and chromosomal localization of the human red cell-type low-molecular-weight acid phosphotyrosyl phosphatase gene, ACP1. Genomics 30:133–140

    Article  PubMed  CAS  Google Scholar 

  12. Bucciantini M, Chiarugi P, Cirri P, Taddei L, Stefani M, Raugei G et al (1999) The low Mr phosphotyrosine protein phosphatase behaves differently when phosphorylated at Tyr131 or Tyr132 by Src kinase. FEBS Lett 456:73–78

    Article  PubMed  CAS  Google Scholar 

  13. Bugert P, Geider K (1997) Characterization of the amsI gene product as a low molecular weight acid phosphatase controlling exopolysaccharide synthesis of erwinia amylovora. FEBS Lett 400:252–256

    Article  PubMed  CAS  Google Scholar 

  14. Chernoff J, Li HC (1985) A major phosphotyrosyl-protein phosphatase from bovine heart is associated with a low-molecular-weight acid phosphatase. Arch Biochem Biophys 240:135–145

    Article  PubMed  CAS  Google Scholar 

  15. Chiarugi P, Cirri P, Marra F, Raugei G, Camici G, Manao G et al (1997) LMW-PTP is a negative regulator of insulin-mediated mitotic and metabolic signalling. Biochem Biophys Res Commun 238:676–682

    Article  PubMed  CAS  Google Scholar 

  16. Chiarugi P, Cirri P, Raugei G, Camici G, Dolfi F, Berti A et al (1995) PDGF receptor as a specific in vivo target for low M(r) phosphotyrosine protein phosphatase. FEBS Lett 372:49–53

    Article  PubMed  CAS  Google Scholar 

  17. Chiarugi P, Cirri P, Taddei ML, Giannoni E, Fiaschi T, Buricchi F et al (2002) Insight into the role of low molecular weight phosphotyrosine phosphatase (LMW-PTP) on platelet-derived growth factor receptor (PDGF-r) signaling. LMW-PTP controls PDGF-r kinase activity through TYR-857 dephosphorylation. J Biol Chem 277:37331–37338

    Article  PubMed  CAS  Google Scholar 

  18. Cirri P, Caselli A, Manao G, Camici G, Polidori R, Cappugi G et al (1995) Kinetic studies on rat liver low M(r) phosphotyrosine protein phosphatases. The activation mechanism of the isoenzyme AcP2 by cGMP. Biochim Biophys Acta 1243:129–135

    Article  PubMed  Google Scholar 

  19. Cirri P, Fiaschi T, Chiarugi P, Camici G, Manao G, Raugei G et al (1996) The molecular basis of the differing kinetic behavior of the two low molecular mass phosphotyrosine protein phosphatase isoforms. J Biol Chem 271:2604–2607

    Article  PubMed  CAS  Google Scholar 

  20. Corfield V, Jenkins T (1971) Red cell acid phosphatase: distribution in Southern Africa and first report of studies on families containing P r homozygotes. S Afr J Med Sci 36:51–56

    PubMed  CAS  Google Scholar 

  21. De Lorenzo A, Di Renzo L, Puja A, Saccucci P, Gloria-Bottini F, Bottini E (2009) A study of acid phosphatase locus 1 in women with high fat content and normal body mass index. Metabolism 58:351–354

    Article  PubMed  Google Scholar 

  22. Dissing J (1987) Immunochemical characterization of human red cell acid phosphatase isozymes. Biochem Genet 25:901–918

    Article  PubMed  CAS  Google Scholar 

  23. Dissing J, Dahl O, Svensmark O (1979) Phosphonic and arsonic acids as inhibitors of human red cell acid phosphatase and their use in affinity chromatography. Biochim Biophys Acta 569:159–176

    Article  PubMed  CAS  Google Scholar 

  24. Dissing J, Johnsen AH (1992) Human red cell acid phosphatase (ACP1): the primary structure of the two pairs of isozymes encoded by the ACP1*A and ACP1*C alleles. Biochim Biophys Acta 1121:261–268

    Article  PubMed  CAS  Google Scholar 

  25. Dissing J, Johnsen AH, Sensabaugh GF (1991) Human red cell acid phosphatase (ACP1). The amino acid sequence of the two isozymes Bf and Bs encoded by the ACP1*B allele. J Biol Chem 266:20619–20625

    PubMed  CAS  Google Scholar 

  26. Dissing J, Rangaard B, Christensen U (1993) Activity modulation of the fast and slow isozymes of human cytosolic low-molecular-weight acid phosphatase (ACP1) by purines. Biochim Biophys Acta 1162:275–282

    Article  PubMed  CAS  Google Scholar 

  27. Dissing J, Svensmark O (1990) Human red cell acid phosphatase: purification and properties of the A, B and C isozymes. Biochim Biophys Acta 1041:232–242

    Article  PubMed  CAS  Google Scholar 

  28. Faggioni G, Borgiani P, Bottini N, Gloria-Bottini F, Tontoli F, Contreas V et al (2002) Identification of two SNPs in the 5′ flanking region of the ACP1 gene and evaluation of disequilibrium among polymorphic sites. Ann Hum Genet 66:245–254

    Article  PubMed  CAS  Google Scholar 

  29. Forghieri M, Laggner C, Paoli P, Langer T, Manao G, Camici G et al (2009) Synthesis, activity and molecular modeling of a new series of chromones as low molecular weight protein tyrosine phosphatase inhibitors. Bioorg Med Chem 17:2658–2672

    Article  PubMed  CAS  Google Scholar 

  30. Fuchs KR, Shekels LL, Bernlohr DA (1992) Analysis of the ACP1 gene product: classification as an FMN phosphatase. Biochem Biophys Res Commun 189:1598–1605

    Article  PubMed  CAS  Google Scholar 

  31. Giannoni E, Raugei G, Chiarugi P, Ramponi G (2006) A novel redox-based switch: LMW-PTP oxidation enhances Grb2 binding and leads to ERK activation. Biochem Biophys Res Commun 348:367–373

    Article  PubMed  CAS  Google Scholar 

  32. Gloria-Bottini F, Gerlini G, Lucarini N, Borgiani P, Amante A, La Torre M et al (1996) Phosphotyrosine protein phosphatases and diabetic pregnancy: an association between low molecular weight acid phosphatase and degree of glycemic control. Experientia 52:340–343

    Article  PubMed  CAS  Google Scholar 

  33. Gloria-Bottini F, Gerlini G, Lucarini N, Borgiani P, Gori MC, Amante A et al (1988) Foetal macrosomia and erythrocyte acid phosphatase (ACP1) polymorphism in diabetic and normal pregnancy. Early Hum Dev 17:265–274

    PubMed  CAS  Google Scholar 

  34. Grangeasse C, Doublet P, Vincent C, Vaganay E, Riberty M, Duclos B et al (1998) Functional characterization of the low-molecular-mass phosphotyrosine-protein phosphatase of Acinetobacter johnsonii. J Mol Biol 278:339–347

    Article  PubMed  CAS  Google Scholar 

  35. Greene LS, Bottini N, Borgiani P, Gloria-Bottini F (2000) Acid phosphatase locus 1 (ACP1): possible relationship of allelic variation to body size and human population adaptation to thermal stress—a theoretical perspective. Am J Hum Biol 12:688–701

    Article  PubMed  Google Scholar 

  36. Harrison ML, Rathinavelu P, Arese P, Geahlen RL, Low PS (1991) Role of band 3 tyrosine phosphorylation in the regulation of erythrocyte glycolysis. J Biol Chem 266: 4106–4111

    PubMed  CAS  Google Scholar 

  37. Heinrikson RL (1969) Purification and characterization of a low molecular weight acid phosphatase from bovine liver. J Biol Chem 244:299–307

    PubMed  CAS  Google Scholar 

  38. Hopkinson DA, Spencer N, Harris H (1963) Red cell acid phosphatase variants: a new human polymorphism. Nature 199:969–971

    Article  PubMed  CAS  Google Scholar 

  39. Huang L, Sankar S, Lin C, Kontos CD, Schroff AD, Cha EH et al (1999) HCPTPA, a protein tyrosine phosphatase that regulates vascular endothelial growth factor receptor-mediated signal transduction and biological activity. J Biol Chem 274:38183–38188

    Article  PubMed  CAS  Google Scholar 

  40. Iannaccone U, Bergamaschi A, Magrini A, Marino G, Bottini N, Lucarelli P et al (2005) Serum glucose concentration and ACP1 genotype in healthy adult subjects. Metabolism 54:891–894

    Article  PubMed  CAS  Google Scholar 

  41. Kawedia JD, Kaste SC, Pei D, Panetta JC, Cai X, Cheng C et al (2011) Pharmacokinetic, pharmacodynamic, and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood 117:2340–2347; quiz 556

    Article  PubMed  CAS  Google Scholar 

  42. Kennelly PJ (2003) Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry. Biochem J 370:373–389

    Article  PubMed  CAS  Google Scholar 

  43. Kikawa KD, Vidale DR, Van Etten RL, Kinch MS (2002) Regulation of the EphA2 kinase by the low molecular weight tyrosine phosphatase induces transformation. J Biol Chem 277:39274–39279

    Article  PubMed  CAS  Google Scholar 

  44. Lazaruk KD, Dissing J, Sensabaugh GF (1993) Exon structure at the human ACP1 locus supports alternative splicing model for f and s isozyme generation. Biochem Biophys Res Commun 196:440–446

    Article  PubMed  CAS  Google Scholar 

  45. Lourdusamy A, Newhouse S, Lunnon K, Proitsi P, Powell J, Hodges A et al (2012) Identification of cis-regulatory variation influencing protein abundance levels in human plasma. Hum Mol Genet 21:3719–3726

    Article  PubMed  CAS  Google Scholar 

  46. Lucarini N, Antonacci E, Bottini N, Borgiani P, Faggioni G, Gloria-Bottini F (1998) Phosphotyrosine-protein-phosphatase and diabetic disorders. Further studies on the relationship between low molecular weight acid phosphatase genotype and degree of glycemic control. Dis Markers 14:121–125

    Article  PubMed  CAS  Google Scholar 

  47. Lucarini N, Antonacci E, Bottini N, Gloria Bottini F (1997) Low-molecular-weight acid phosphatase (ACP1), obesity, and blood lipid levels in subjects with non-insulin-dependent diabetes mellitus. Hum Biol 69:509–515

    PubMed  CAS  Google Scholar 

  48. Lucarini N, Borgiani P, Ballarini P, Bottini E (1989) Erythrocyte acid phosphatase (ACP1) activity. In vitro modulation by adenosine and inosine and effects of adenosine deaminase (ADA) polymorphism. Hum Genet 81:185–187

    Article  PubMed  CAS  Google Scholar 

  49. Lucarini N, Finocchi G, Gloria-Bottini F, Macioce M, Borgiani P, Amante A et al (1990) A possible genetic component of obesity in childhood. Observations on acid phosphatase polymorphism. Experientia 46:90–91

    Article  PubMed  CAS  Google Scholar 

  50. Maccari R, Ottana R (2012) Low molecular weight phosphotyrosine protein phosphatases as emerging targets for the design of novel therapeutic agents. J Med Chem 55:2–22

    Article  PubMed  CAS  Google Scholar 

  51. Marraccini P, Iantomasi T, Rigacci S, Pacini S, Ruggiero M, Vincenzini MT et al (1994) Effect of phosphotyrosine phosphatase over-expression on glutathione metabolism in normal and oncogene-transformed cells. FEBS Lett 344:157–160

    Article  PubMed  CAS  Google Scholar 

  52. Marzocchini R, Bucciantini M, Stefani M, Taddei N, Thunnissen MG, Nordlund P et al (1998) Expression, purification and preliminary crystal analysis of the human low Mr phosphotyrosine protein phosphatase isoform 1. FEBS Lett 426:52–56

    Article  PubMed  CAS  Google Scholar 

  53. Miranda MA, Okamoto AK, Ferreira CV, Silva TL, Granjeiro JM, Aoyama H (2006) Differential effects of flavonoids on bovine kidney low molecular mass protein tyrosine phosphatase. J Enzyme Inhib Med Chem 21:419–425

    Article  PubMed  CAS  Google Scholar 

  54. Modesti A, Marzocchini R, Raugei G, Chiti F, Sereni A, Magherini F et al (1998) Cloning, expression and characterisation of a new human low Mr phosphotyrosine protein phosphatase originating by alternative splicing. FEBS Lett 431:111–115

    Article  PubMed  CAS  Google Scholar 

  55. Mohrenweiser HW, Novotny JE (1982) ACP1GUA-1: a low-activity variant of human erythrocyte acid phosphatase—association with increased glutathione reductase activity. Am J Hum Genet 34:425–433

    PubMed  CAS  Google Scholar 

  56. Moller DE, Kaufman KD (2005) Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med 56:45–62

    Article  PubMed  CAS  Google Scholar 

  57. Musumeci L, Bongiorni C, Tautz L, Edwards RA, Osterman A, Perego M et al (2005) Low-molecular-weight protein tyrosine phosphatases of bacillus subtilis. J Bacteriol 187:4945–4956

    Article  PubMed  CAS  Google Scholar 

  58. Ottana R, Maccari R, Ciurleo R, Paoli P, Jacomelli M, Manao G et al (2009) 5-arylidene-2-phenylimino-4-thiazolidinones as PTP1B and LMW-PTP inhibitors. Bioorg Med Chem 17:1928–1937

    Article  PubMed  CAS  Google Scholar 

  59. Paggi A, Borgiani P, Gloria-Bottini F, Russo S, Saponara I, Banci M et al (1991) Further studies on acid phosphatase in obese subjects. Dis Markers 9:1–7

    PubMed  CAS  Google Scholar 

  60. Pandey SK, Yu XX, Watts LM, Michael MD, Sloop KW, Rivard AR et al (2007) Reduction of low molecular weight protein-tyrosine phosphatase expression improves hyperglycemia and insulin sensitivity in obese mice. J Biol Chem 282:14291–14299

    Article  PubMed  CAS  Google Scholar 

  61. Park EK, Warner N, Mood K, Pawson T, Daar IO (2002) Low-molecular-weight protein tyrosine phosphatase is a positive component of the fibroblast growth factor receptor signaling pathway. Mol Cell Biol 22:3404–3414

    Article  PubMed  CAS  Google Scholar 

  62. Ramponi G, Stefani M (1997) Structure and function of the low Mr phosphotyrosine protein phosphatases. Biochim Biophys Acta 1341:137–156

    Article  PubMed  CAS  Google Scholar 

  63. Rudbeck HB, Johnsen A, Dissing J (2003) Evolutionary aspects of the gene for the classical enzyme polymorphism, ACP1. Int Congr Ser 1239:733–736

    Article  CAS  Google Scholar 

  64. Rudbeck L, Dissing J, Lazaruk KD, Sensabaugh G (2000) Human 18 kDa phosphotyrosine protein phosphatase (ACP1) polymorphism: studies of rare variants provide evidence that substitutions within or near alternatively spliced exons affect splicing result. Ann Hum Genet 64:107–116

    Article  PubMed  CAS  Google Scholar 

  65. Shekels LL, Smith AJ, Van Etten RL, Bernlohr DA (1992) Identification of the adipocyte acid phosphatase as a PAO-sensitive tyrosyl phosphatase. Protein Sci 1:710–721

    Article  PubMed  CAS  Google Scholar 

  66. Shu YH, Hartiala J, Xiang AH, Trigo E, Lawrence JM, Allayee H et al (2009) Evidence for sex-specific associations between variation in acid phosphatase locus 1 (ACP1) and insulin sensitivity in Mexican-Americans. J Clin Endocrinol Metab 94:4094–4102

    Article  PubMed  CAS  Google Scholar 

  67. Souza AC, Azoubel S, Queiroz KC, Peppelenbosch MP, Ferreira CV (2009) From immune response to cancer: a spot on the low molecular weight protein tyrosine phosphatase. Cell Mol Life Sci 66:1140–1153

    Article  PubMed  CAS  Google Scholar 

  68. Spencer N, Hopkinson DA, Harris H (1964) Quantitative differences and gene dosage in the human red cell acid phosphatase polymorphism. Nature 201:299–300

    Article  PubMed  CAS  Google Scholar 

  69. Stefani M, Caselli A, Bucciantini M, Pazzagli L, Dolfi F, Camici G et al (1993) Dephosphorylation of tyrosine phosphorylated synthetic peptides by rat liver phosphotyrosine protein phosphatase isoenzymes. FEBS Lett 326:131–134

    Article  PubMed  CAS  Google Scholar 

  70. Stefani M, Taddei N, Ramponi G (1997) Insights into acylphosphatase structure and catalytic mechanism. Cell Mol Life Sci 53:141–151

    Article  PubMed  CAS  Google Scholar 

  71. Swallow DM, Povey S, Harris H (1973) Activity of the “red cell” acid phosphatase locus in other tissues. Ann Hum Genet 37:31–38

    Article  PubMed  CAS  Google Scholar 

  72. Tabernero L, Aricescu AR, Jones EY, Szedlacsek SE (2008) Protein tyrosine phosphatases: structure-function relationships. FEBS J 275:867–882

    Article  PubMed  CAS  Google Scholar 

  73. Tailor P, Gilman J, Williams S, Couture C, Mustelin T (1997) Regulation of the low molecular weight phosphotyrosine phosphatase by phosphorylation at tyrosines 131 and 132. J Biol Chem 272:5371–5374

    Article  PubMed  CAS  Google Scholar 

  74. Tailor P, Gilman J, Williams S, Mustelin T (1999) A novel isoform of the low molecular weight phosphotyrosine phosphatase, LMPTP-C, arising from alternative mRNA splicing. Eur J Biochem 262:277–282

    Article  PubMed  CAS  Google Scholar 

  75. Vincent C, Doublet P, Grangeasse C, Vaganay E, Cozzone AJ, Duclos B (1999) Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J Bacteriol 181:3472–3477

    PubMed  CAS  Google Scholar 

  76. Wang S, Stauffacher CV, Van Etten RL (2000) Structural and mechanistic basis for the activation of a low-molecular weight protein tyrosine phosphatase by adenine. Biochemistry 39:1234–1242

    Article  PubMed  CAS  Google Scholar 

  77. Wo YY, McCormack AL, Shabanowitz J, Hunt DF, Davis JP, Mitchell GL et al (1992) Sequencing, cloning, and expression of human red cell-type acid phosphatase, a cytoplasmic phosphotyrosyl protein phosphatase. J Biol Chem 267:10856–10865

    PubMed  CAS  Google Scholar 

  78. Yasuda N, Inoue T, Horizoe T, Nagata K, Minami H, Kawata T et al (2003) Functional characterization of the adenosine receptor contributing to glycogenolysis and gluconeogenesis in rat hepatocytes. Eur J Pharmacol 459:159–166

    Article  PubMed  CAS  Google Scholar 

  79. Yoshihara CM, Mohrenweiser HW (1980) Characterization of ACP1TIC-1, an electrophoretic variant of erythrocyte acid phosphatase restricted to the Ticuna Indians of central Amazonas. Am J Hum Genet 32:898–907

    PubMed  CAS  Google Scholar 

  80. Zabell AP, Schroff AD Jr, Bain BE, Van Etten RL, Wiest O, Stauffacher CV (2006) Crystal structure of the human B-form low molecular weight phosphotyrosyl phosphatase at 1.6: a resolution. J Biol Chem 281:6520–6527

    Article  PubMed  CAS  Google Scholar 

  81. Zhang M, Stauffacher CV, Lin D, Van Etten RL (1998) Crystal structure of a human low molecular weight phosphotyrosyl phosphatase. Implications for substrate specificity. J Biol Chem 273:21714–21720

    Article  PubMed  CAS  Google Scholar 

  82. Zhang S, Zhang ZY (2007) PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov Today 12:373–381

    Article  PubMed  CAS  Google Scholar 

  83. Zhang ZY, Van Etten RL (1990) Purification and characterization of a low-molecular-weight acid phosphatase–a phosphotyrosyl-protein phosphatase from bovine heart. Arch Biochem Biophys 282:39–49

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nunzio Bottini M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stanford, S.M., Bottini, M., Bottini, N. (2013). The Role of LMPTP in the Metabolic Syndrome. In: Bence, K. (eds) Protein Tyrosine Phosphatase Control of Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7855-3_11

Download citation

Publish with us

Policies and ethics