Skip to main content

High-Dimensional Ordinary Differential Equation Models for Reconstructing Genome-Wide Dynamic Regulatory Networks

  • Conference paper
  • First Online:
Topics in Applied Statistics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 55))

Abstract

The gene regulatory network (GRN) is a complex control system and plays a fundamental role in the physiological and development processes of living cells. Focusing on the ordinary differential equation (ODE) modeling approach, we propose a novel pipeline for constructing high-dimensional dynamic GRNs from genome-wide time course gene expression data. A five-step procedure, i.e., detection of temporally differentially expressed genes, clustering genes into functional modules, identification of network structure, parameter estimate refinement and functional enrichment analysis, is developed, combining a series of cutting-edge statistical techniques to efficiently reduce the dimension of the problem and to account for the correlations between measurements from the same gene. In the key step of identifying the network structure, we employ the advanced parameter estimation and statistical inference methods to perform model selection for the ODE models. The proposed pipeline is a computationally efficient data-driven tool bridging the experimental data and the mathematical modeling and statistical analysis. The application of the pipeline to the time course gene expression data from influenza-infected mouse lungs has led to some interesting findings of the immune process in mice and also illustrated the usefulness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • BANSAL, M., GATTA, G. and DI BERNARDO, D. (2006). Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics22 815–822.

    Article  Google Scholar 

  • Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 57 289–300.

    MathSciNet  MATH  Google Scholar 

  • Chen, H.-C., Lee, H.-C., Lin, T.-Y., Li, W.-H. and Chen, B.-S. (2004). Quantitative characterization of the trancriptional regulatory network in the yeast cell cycle. Bioinformatics 20 1914–1927.

    Google Scholar 

  • Chen, T., He, H. and Church, G. (1999). Modeling gene expression with differential equations. Pacific Symposium on Biocomputing 29–40.

    Google Scholar 

  • DE JONG, H. (2002). Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology 9 67–103.

    Article  Google Scholar 

  • Delyon, B., Lavielle, M. and Moulines, E. (1999). Convergence of a stochastic approximation version of the em algorithm. The Annals of Statistics 27 94–128.

    Article  MathSciNet  MATH  Google Scholar 

  • Eisen, M., Spellman, P., Brown, P. and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Science USA 95 14863–14868.

    Article  Google Scholar 

  • Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96 1348–1360.

    Google Scholar 

  • Friedman, N., Linial, M., Nachman, I. and Pe’er, D. (2000). Using bayesian networks to analyze expression data. Journal of Computational Biology 7 (3–4) 601–620.

    Google Scholar 

  • HARTIGAN, J. and Wong, M. (1979). Algorithm AS 136: A K–means clustering algorithm. Journal of the Royal Statistical Society: Series C (Applied Statistics) 28 100–108.

    Google Scholar 

  • Hecker, M., Lambecka, S., Toepferb, S., Somerenc, E. and Guthke, R. (2009). Gene regulatory network inference: Data integration in dynamic models-a review. BioSystems 96 86–103.

    Google Scholar 

  • Heckerman, D. (1996). A tutorial on learning with bayesian networks. Tech. rep., Microsft Research.

    Google Scholar 

  • Heinrich, R. and Schuster, S. (1996). The regulation of cellular systems. Chapman and Hall.

    Google Scholar 

  • Hirose, O., Yoshida, R., Imoto, S., Yamaguchi, R., Higuchi, T., Charnock-Jones, D. S., Print, C. and Miyano, S. (2008). Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics 24 932–942.

    Google Scholar 

  • HOLTER, N. S., Maritan, A., Cieplak, M., Fedoroff, N. V. and Banavar, J. R. (2001). Dynamic modeling of gene expression data. Proceedings of the National Academy of Science USA 98 1693–1698.

    Google Scholar 

  • Huang, D., Sherman, B. and Lempicki, R. (2009). Systematic and integrative analysis of large gene lists using david bioinformatics resources. Nature Protocols 4 44–57.

    Google Scholar 

  • Jeong, H., Tombor, B., Albert, R., Oltvai, Z. and Barabási, A.-L. (2000). The large-scale organization of metabolic networks. Nature 407 651.

    Google Scholar 

  • KIKUCHI, S., TOMINAGA, D., ARITA, M., TAKAHASHI, K. and Tomita, M. (2003). Dynamic modeling of genetic networks using genetic algorithm and S–system. Bioinformatics 19 643–650.

    Google Scholar 

  • Kim, Y., Choi, H. and Oh, H.-S. (2008). Smoothily clipped absolute deviation on high dimensions. Journal of the American Statistical Association 103 1665–1673.

    Google Scholar 

  • Kimura, S., Ide, K., Kashihara, A., Kano, M., Hatakeyama, M., Masui, R., Nakagawa, N., Yokoyama, S., Kuramitsu, S. and Konagaya, A. (2005). Inference of s-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics 21 1154–1163.

    Google Scholar 

  • Kohonen, T. (1997). Self-Organizing Maps. Springer, New York.

    Google Scholar 

  • Kojima, K., Yamaguchi, R., Imoto, S., Yamauchi, M., Nagasaki, M., Yoshida, R., Shimamura, T., Ueno, K., Higuchi, T., Gotoh, N. and Miyano, S. (2009). A state space representation of var models with sparse learning for dynamic gene networks. Genome Informatics 22 56–68.

    Google Scholar 

  • KUHN, E. and Lavielle, M. (2004). Coupling a stochastic approximation version of EM with a MCMC procedure. ESAIM: Probability and Statistics 8 115–131.

    Google Scholar 

  • Liang, H. and Wu, H. (2008). Parameter estimation for differential equation models using a framework of measurement error in regression models. Journal of the American Statistical Association 103 15701583.

    Google Scholar 

  • Lu, T., Liang, H., Li, H. and Wu, H. (2011). High dimensional odes coupled with mixedeffects modeling techniques for dynamic gene regulatory network identification. Journal of the American Statistical Association 106 1242–1258.

    Google Scholar 

  • Luan, Y. and Li, H. (2003). Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics 19 474–482.

    Google Scholar 

  • Ma, P., Castillo-Davis, C., Zhong, W. and Liu, J. (2006). A data-driven clustering method for time course gene expression data. Nucleic Acids Research 34 1261–1269.

    Google Scholar 

  • Perrin, B., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J. and d’Alché Buc, F. (2003). Gene networks inference using dynamic bayesian networks. Bioinformatics 19 (Suppl. 2) ii138–148.

    Google Scholar 

  • Pommerenke, C., Wilk, E., Srivastava, B., Schulze, A., Novoselova, N., Geffers, R. and Schughart, K. (2012). Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses. PLoS One 7 e41169.

    Google Scholar 

  • SHMULEVICH, I., DOUGHERTY, E. R., KIM, S. and ZHANG, W. (2002). Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics18 261–274.

    Article  Google Scholar 

  • Steuer, R., Kurths, J., Daub, C. O., Weise, J. and Selbig, J. (2002). The mutual information: Detecting and evaluating dependencies between variables. Bioinformatics 18 S231–S240.

    Google Scholar 

  • STUART, J.M., SEGAL, E., KOLLER, D. and KIM, S. K. (2003). A gene-coexpression network for global discovery of conserved genetic modules. Science 302 249–255.

    Article  Google Scholar 

  • THOMAS, R. (1973). Boolean formalization of genetic control circuits. Journal of Theoretical Biology 42 563–585.

    Article  Google Scholar 

  • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 58 267–288.

    MathSciNet  MATH  Google Scholar 

  • VOIT, E. O. and ALMEIDA, J. (2004). Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformatics 22 1670–1681.

    Article  Google Scholar 

  • Wu, H., Xue, H. and Kumar, A. (2012). Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research. Biometrics 68 344–352.

    Google Scholar 

  • Wu, H. and Zhang, J.-T. (2005). Nonparametric regression methods for longitudinal data analysis. Wiley, New York.

    Google Scholar 

  • Wu, S. and Wu, H. (2013). More powerful significant testing for time course gene expression data using functional principal component analysis approaches. BMC Bioinformatics 14 6.

    Google Scholar 

  • Yeung, M. K. S., Tegner, J. and Collins, J. J. (2002). Reverse engineering gene networks using singular value decomposition and robust regression. Proceedings of the National Academy of Science USA 99 6163–6168.

    Google Scholar 

  • Zhang, C.-H. and Huang, J. (2008). The sparsity and bias of the lasso selection in high-dimensional linear regression. The Annals of Statistics 36 1567–1594.

    Google Scholar 

  • ZOU, M. and CONZEN, S. (2005). A new dynamic bayesian network approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21 71–79.

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the NIH grants HHSN 272201000055C, AI087135, and the University of Rochester CTSI pilot award (UL1RR024160) from the National Center For Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hulin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Wu, S., Liu, ZP., Qiu, X., Wu, H. (2013). High-Dimensional Ordinary Differential Equation Models for Reconstructing Genome-Wide Dynamic Regulatory Networks. In: Hu, M., Liu, Y., Lin, J. (eds) Topics in Applied Statistics. Springer Proceedings in Mathematics & Statistics, vol 55. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7846-1_15

Download citation

Publish with us

Policies and ethics