Skip to main content

On Coherent Structures from a Diffusion-Type Model

  • Chapter
  • First Online:
Integral Methods in Science and Engineering

Abstract

In the present discussion we focus on the question, how one may make plausible the phenomenon that individual particles that constitute a fluid, which macroscopically appears as a continuum, organize their motion in a way to form coherent structures like eddies. The key to such an understanding may not be found in a purely macroscopic approach, but needs the microscopic reality of the existence of particles and their capability to interact with each other by mediators. A typical system that has those properties is a fermion-boson system, which we called generically the constituent-interaction mediator model. Consequences of such a model are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bodmann, B.E.J., Vilhena, M.T., Zabadal, J.R., Beck, D.: On a new definition of the Reynolds number from the interplay of macroscopic and microscopic phenomenology. In: Constanda, C., Harris, P.J. (eds.) Integral Methods in Science and Engineering: Computational and Analytic Aspects, pp. 7–14. Birkhäuser, Boston (2011)

    Chapter  Google Scholar 

  2. Bonetto, F., Gallavotti, G., Giuliani, A., Zamponi, F.: Chaotic hypothesis, fluctuation theorem and singularities. J. Stat. Phys. 123, 39–54 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burton, T.M., Eaton, J.K.: Fully resolved simulations of particle-turbulence interaction. J. Fluid Mech. 545, 67–111 (2005)

    Article  MATH  Google Scholar 

  4. Cate, A.T., Derksen, J.J., Portela, L.M., Van den Akker, H.E.A.: Fully resolved simulations of colliding mono-disperse spheres in forced isotropic turbulence. J. Fluid Mech. 519, 233–271 (2004)

    Article  MATH  Google Scholar 

  5. Guala, M., Luthi, B., Liberzon, A., Tsinober, A., Kinzelbach, W.: On the evolution of material lines and vorticity in homogeneous turbulence. J. Fluid Mech. 533, 339–359 (2005)

    Article  MATH  Google Scholar 

  6. Hoover, W.G., Hoover, C.G.: Links between microscopic and macroscopic fluid mechanics. Mol. Phys. 101, 1559–1573 (2003)

    Article  Google Scholar 

  7. Jirkovsky, L., Bo-ot, L.: Momentum transport equation for the fluids using projection perturbation formalism and onset of turbulence. Physica A 352, 241–251 (2005)

    Article  Google Scholar 

  8. Lüthi, B., Tsinober, A., Kinzelbach, W.: Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech. 528, 87–118 (2005)

    Article  MATH  Google Scholar 

  9. Mathur, M., Haller, G., Peacock, Th., Ruppert-Felsot, J.E., Swinney, H.L.: Uncovering the Lagrangian skeleton of turbulence. Phys. Rev. Lett. 98, 144502 (2007)

    Article  Google Scholar 

  10. Perrin, A., Hu, H.H.: An explicit finite-difference scheme for simulation of moving particles. J. Comput. Phys. 212, 166–187 (2006)

    Article  MATH  Google Scholar 

  11. Rumsey, C.L., Smith, B.R., Huang, G.P.: Consistency, verification, and validation of turbulence models for Reynolds-averaged Navier–Stokes applications. J. Aerospace Eng. 224, 1211–1218 (2010)

    Google Scholar 

  12. Salazar, J.P.L.C., Collins, L.R.: Two-particle dispersion in isotropic turbulent flows. Ann. Rev. Fluid Mech. 41, 405–432 (2009)

    Article  MathSciNet  Google Scholar 

  13. Toschi, F., Bodenschatz, E.: Lagrangian properties of particles in turbulence. Ann. Rev. Fluid Mech. 41, 375–404 (2009)

    Article  MathSciNet  Google Scholar 

  14. van Aartrijk, M., Clercx, H.J.H., Winters, K.B.: Single-particle, particle-pair, and multi-particle dispersion of fluid particles in forced stably stratified turbulence. Phys. Fluids 20, 025104–025116 (2008)

    Article  Google Scholar 

  15. Yeung, P.K.: Lagrangian investigations of turbulence. Ann. Rev. Fluid Mech. 34, 115–142 (2002)

    Article  MathSciNet  Google Scholar 

  16. Zhang, Z., Prosperetti, A.: A second-order method for three-dimensional particle simulation. J. Comput. Phys. 210, 292–324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. J. Bodmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bodmann, B.E.J., Zabadal, J.R.S., Schuck, A., Vilhena, M.T., Quadros, R. (2013). On Coherent Structures from a Diffusion-Type Model. In: Constanda, C., Bodmann, B., Velho, H. (eds) Integral Methods in Science and Engineering. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-7828-7_5

Download citation

Publish with us

Policies and ethics