Skip to main content

Birkeland Currents in Cosmic Plasma

  • Chapter
  • First Online:
Physics of the Plasma Universe
  • 1768 Accesses

Abstract

An electromotive force ϕ = ∫ v × B⋅ dl giving rise to electrical currents in conducting media is produced wherever a relative perpendicular motion of plasma and magnetic field lines exist (Sect. 3.5.2). An example of this is the sunward convective motion of the magnetospheric plasma that cuts the earth’s dipole field lines through the equatorial plane, thereby producing a Lorentz force that drives currents within the auroral circuit. The tendency for charged particles to follow magnetic lines of force and therefore produce field-aligned currents has resulted in the widespread use of the term “Birkeland Currents” in space plasma physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to Chen (1985): “In a plasma, it is usually possible to assume n i  = n e and ∇⋅ E ≠ 0 at the same time. We shall call this the plasma approximation. It is a fundamental trait of plasmas, one which is difficult for the novice to understand. Do not use Poisson’s equation to obtain E unless it is unavoidable!

  2. 2.

    This equation differs from the Alfvén-Lawson limiting current, \(I_{\max } = I_{A}\beta ^{2}/\left [\beta ^{2} - 1 + f_{e}\right ]\), because of the differing ways in describing charge neutralization (Witalis 1981).

  3. 3.

    The dispersion relation for a beam of electrons propagating through a plasma is simply \(1 =\omega _{ p}^{2}/\omega ^{2} +\omega _{ b}^{2}/\left (\omega -kV _{b}^{2}\right )\). If the beam is relativistic ω b 2 is replaced by \(\omega _{b}^{2}/\gamma ^{3}\).

  4. 4.

    In the prescription for Landau damping (Chen 1984), if the electrons are traveling slower than and in the same direction as the wave, they take energy from it.

  5. 5.

    The dielectric medium of the Marx bank may be 300,000 L of transformer oil while the pulseline may contain 400,000 L of deionized water.

  6. 6.

    The term “plasmoid” was coined by W. Bostick (1956) to describe the force-free self-magnetic field carrying entities he experimented with.

References

  • Alfvén, H.: Magnetic storms and the aurorae. Proc. R. Swed.-Acad. Sci. (Kungliga Svenska Vetenskapakademiens Handlingar) 18, 139 (1939)

    Google Scholar 

  • Alfvén, H.: Electric currents in cosmic plasma. Rev. Geophys. Space Phys. 15, 271 (1977)

    Article  ADS  Google Scholar 

  • Alfvén, H.: Cosmic Plasma. D. Reidel, Dordrecht (1981)

    Book  Google Scholar 

  • Bennett, W.H.: Magnetically self-focussing streams. Phys. Rev. 45, 890 (1934)

    Article  ADS  Google Scholar 

  • Bogdankevich, L.S., Rukhadze, A.A.: Stability of relativistic electron beams in a plasma and the problem of critical currents. Sov. Phys. Usp. 14 163–179 (1971)

    Article  ADS  Google Scholar 

  • Block, L.P., Fälthammar, C.-G.: Field-aligned currents and auroral precipitation. In: McCormac, B.M. (ed.) Atmospheric Emissions, p. 285. Van Nostrand Reinhold, New York (1969)

    Google Scholar 

  • Bostick, W.H.: Experimental study of ionized matter projected across a magnetic field. Phys. Rev. 104, 292 (1956)

    Article  ADS  Google Scholar 

  • Bostick, W.H.: Simulation of astrophysical processes in the laboratory. Nature 179, 214 (1957)

    Article  ADS  Google Scholar 

  • Bostick, W.H., Prior, W., Grunberger, L., Emmert, G.: Phys. Fluids 9, 2078 (1966)

    Article  ADS  Google Scholar 

  • Buneman, O.: A toroidal magnetron. Proc. Phys. Soc. Lond. 1363, 278 (1949)

    Google Scholar 

  • Buneman, O.: Ribbon beams. J. Electron. Control 3, 507 (1957)

    Article  MathSciNet  Google Scholar 

  • Buneman, O., Levy, R.H., Linson, L.M.: Stability of crossed-field electron beams. J. Appl. Phys. 37, 3203 (1966)

    Article  ADS  Google Scholar 

  • Carlqvist, P.: Cosmic electric currents and the generalized Bennett relation. Astrophys. Space Sci. 144, 73 (1988)

    ADS  Google Scholar 

  • Carmel, Y., Nation, J.A.: Instability of an unneutralized relativistic electron beam. Phys. Rev. Lett. 31, 286 (1973)

    Article  ADS  Google Scholar 

  • Cutler, C.C.: Instabilitity in hollow and strip electron beams. J. Appl. Phys. 27, 1028 (1956)

    Article  ADS  Google Scholar 

  • Cummings, W., Dessler, A.J.: Field-aligned currents in the magnetosphere. J. Geophys. Res. 72, 1007 (1967)

    Article  ADS  Google Scholar 

  • Davis, T.N., Hallinan, T.J.: Aurora spirals 1. Observations. J. Geophys. Res. 81, 3953 (1976)

    Article  ADS  Google Scholar 

  • Dessler, A.: Evolution of arguments regarding existence of field aligned currents. In: Potemra, T.A. (ed.) Magnetospheric Currents. Geophysical Monograph, vol. 28. American Geophysical Union, Washington, DC (1984)

    Google Scholar 

  • Egeland, A., Holtet, J.: The Birkeland Symposium on Aurora and Magnetic Storms, Sandefjord. Centre National de la Recherche Scientifique, Paris (1968)

    Google Scholar 

  • Ekdahl, C.A., Freeman, J.R., Leifeste, G.T., Miller, R.B., Stygar, W.A., Godfrey, B.B.: Axisymmetric hollowing instability of an intense relativistic electron beam propagating in air. Phys. Rev. Lett. 55, 935 (1985)

    Article  ADS  Google Scholar 

  • Fälthammar, C.-G.: Magnetosphere-ionosphere interactions: near-earth manifestations of the plasma universe. IEEE Trans. Plasma Sci. 14, 616 (1986)

    Article  ADS  Google Scholar 

  • Friedman, M., Hammar, D.A.: Castastrophic disruption of the flow a magnetically confined intense relativistic electron beam. Appl. Phys. Lett. 21, 174 (1972)

    Article  ADS  Google Scholar 

  • Hallinan, T.J.: Small scale arc distortions. Planet. Space Sci. 18, 1735 (1970)

    Article  ADS  Google Scholar 

  • Hallinan, T.J.: Aurora spirals 1. Theory. J. Geophys. Res. 81, 3959 (1976)

    Article  ADS  Google Scholar 

  • Hammer, D.A., Rostocker, N.: Phys. Fluids 13, 1831 (1970)

    Article  ADS  Google Scholar 

  • Hill, T.W.: Rotationally-induced Birkeland current systems. In: Potemra, T.A. (ed.) Magnetospheric Currents. Geophysical Monograph, vol. 28, p. 340. American Geophysical Union, Washington, DC (1984)

    Google Scholar 

  • Iijima, T., Potemra, T.A.: Field-aligned currents in the dayside cusp observed by Triad. J. Geophys. Res. 81, 5971 (1976)

    Article  ADS  Google Scholar 

  • Ivanov, V.S., Krementsov, S.I., Raizer, M.D., Rukhadze, A.A., Fedotov, A.V.: Sov. J. Plasma Phys. 7 430 (1981)

    Google Scholar 

  • Jones, M.E., Mostrom, M.A.: The diocotron instability in annular relativistic electron beams. J. Appl. Phys. 52, 3794 (1981)

    Article  ADS  Google Scholar 

  • Kapetanakos, C.A.: Filamentation of intense electron beams propagating in dense plasmas. Appl. Phys. Lett. 25, 484 (1974)

    Article  ADS  Google Scholar 

  • Kapetanakos, C.A., Hammer, D.A., Striffler, C.D., Davidson, R.C.: Destructive instabilities in hollow intense relativistic electron beams. Phys. Rev. Lett. 30, 1303 (1973)

    Article  ADS  Google Scholar 

  • Keinigs, R., Jones, M.E.: Two-dimensional dynamics of the plasma wakefield accelerator. Phys. Fluids. 30 252–263 (1987)

    Article  ADS  MATH  Google Scholar 

  • Kim, K.-T., Kronberg, P.P., Giovannini, G., Venturi, T.: Discovery of intergalactic radio emission in the Coma-A1367 supercluster. Nature 341, 720 (1989)

    Article  ADS  Google Scholar 

  • Knauer, W.: Diocotron instability in plasmas and gas discharges. J. Appl. Phys. 37, 602 (1966)

    Article  ADS  Google Scholar 

  • Knauer, W., Poeschel, J.L.: The diocotron effect in plasmas and gas discharges, in Phenomena. In: Perovic, B., Tosic, D. (eds.) Ionized Gases, p. 719. Gradeviska Knjiga Publication, Beograd (1966)

    Google Scholar 

  • Krall, N.A., Trivelpiece, A.W.: Principles of Plasma Physics, pp. 678. McGraw-Hill, New York (1973)

    Google Scholar 

  • Küppers, G., Salat, A., Wimmel, H.K.: Macroscopic equilibria of relativistic electron beams in plasmas. Plasma Phys. 15, 44 (1973)

    Google Scholar 

  • Kyhl, R.L., Webster, H.F.: Breakup of hollow cylindrical electron beams. IRE Trans. Prof. Group Electron Devices ED-3, 183 (1956)

    Google Scholar 

  • Lehnert, B.: Experiments on non-laminar flow of mercury in presence of a magnetic field. Tellus 4, 63 (1952)

    Article  ADS  Google Scholar 

  • Lehnert, B.: An instability of laminar flow of mercury caused by an external magnetic field. Proc. R. Soc. Lond. Ser. A 233, 299 (1955)

    Article  ADS  Google Scholar 

  • Lerner, E.J.: Magnetic vortex filaments, universal scale invariants, and the fundamental constants. IEEE Trans. Plasma Sci. 14, 690 (1986)

    Article  ADS  Google Scholar 

  • Levy, R.H.: Diocotron instability in a cyclindrical geometry. Phys. Fluids 8, 1288 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  • Levy, R.H., Hockney, M.A.: Computer experiments on low-density crossed-field electron beams. Phys. Fluids 11, 766 (1968)

    Article  ADS  Google Scholar 

  • Meierovich, B.E.: Electromagnetic collapse, problems of stability, emission of radiation and evolution of a dense pinch. Phys. Rep. 104, 259 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • Mostrom, M.A., Jones, M.E.: Shear-driven instabilities of annular relativistic electron beams in vacuum. Phys. Fluids 26, 1649 (1983)

    Article  ADS  MATH  Google Scholar 

  • Murty, G.S.: Instability of a conducting cylinder in the presence of an axial current, a longitudinal magnetic field and a coaxial conducting cylinder. Ark. fr Fys. 19, 483 (1961)

    MATH  Google Scholar 

  • Nardi, V., Bostick. W.H., Feugeas, J., Prior, W.: Internal structure of electron-beam filaments. Phys. Rev. A 22, 2211 (1980)

    Google Scholar 

  • Nielsen, D., Green, J., Buneman, O.: Dynamic evolution of a z-pinch. Phys. Rev. Lett. 42, 1274 (1979)

    Article  ADS  Google Scholar 

  • Peratt, A.L.: A high-power reflex triode microwave source. IEEE Trans. Plasma Sci. 13, 498 (1985)

    Article  ADS  Google Scholar 

  • Peratt, A.L.: Evolution of the plasma universe 1. Double radio galaxies, quasars, and extragalactic jets. IEEE Trans. Plasma Sci. 14, 639 (1986)

    Google Scholar 

  • Peratt, A.L., Green, J.C.: On the evolution of interacting magnetized galactic plasmas. Astrophys. Space Sci. 91, 19 (1983)

    Article  ADS  Google Scholar 

  • Peratt, A.L., Snell, C.M.: Microwave generation from filamentation and vortex formation within magnetically confined electron beams. Phys. Rev. Lett. 54, 1167 (1985)

    Article  ADS  Google Scholar 

  • Peratt, A.L., Green, J., Nielsen, D.: Evolution of colliding plasmas. Phys. Rev. Lett. 44, 1767 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  • Pereira, N.R., Davis, J., Rostocker, N. (eds.): Dense Z-Pinches. American Institute of Physics, New York (1989)

    Google Scholar 

  • Pierce, J.R.: Instability of hollow beams. IRE Trans. Electron Devices ED3, 183 (1956)

    Google Scholar 

  • Potemra, T.A.: Magnetospheric Currents. Geophysical Monograph, vol. 28. American Geophysical Union, Washington, DC (1984)

    Google Scholar 

  • Rose, D.J., Clark, M.: Plasmas and Controlled Fusion. MIT, Cambridge (1961)

    MATH  Google Scholar 

  • Schönherr, O., Über die Fabrikation des Luftsalpeters nach dem Verfahrem der Badischem Anilin- und Sodafabrik. Elektro-techn. Z, 30 365 (1909)

    Google Scholar 

  • Salingaros, N.: An amended magnetohydrodynamics equation which predicts field-aligned current sheets. Astrophys. Space Sci. 137, 385 (1988)

    Article  ADS  Google Scholar 

  • Shrafranov, V.D.: On the stability of a cylindrical gaseous conductor in a magnetic field. J. Nucl. Energy 5, 86 (1957)

    Google Scholar 

  • Wagner, J.S., Sydora, R.D., Tajima, T., Hallinan, T., Lee, L.C., Akasofu, S.-I.: J. Geophys. Res. 88, 8013 (1983)

    Google Scholar 

  • Webster, H.F.: Breakup of hollow beams. J. Appl. Phys. 26, 1386 (1955)

    Article  ADS  Google Scholar 

  • Webster, H.F.: Structure in magnetically confined electron beams. J. Appl. Phys. 28, 1388 (1957)

    Article  ADS  Google Scholar 

  • Webster, H.F., Hallinan, T.J.: Instabilities in charge sheets and current sheets and their possible occurance in the aurora. Radio Sci. 8, 475 (1973)

    Article  ADS  Google Scholar 

  • Witalis, E.: Phys. Rev. A 24, 2758 (1981)

    Article  ADS  Google Scholar 

  • Witalis, E.: Hall magnetohydrodynamics and its applications to laboratory and cosmic plasma. IEEE Trans. Plasma Sci. 14, 842 (1986)

    Article  ADS  Google Scholar 

  • Yonas, G.: Sandia National Laboratory Report, SAND-74-5367 Albuquerque, New Mexico (1974)

    Google Scholar 

  • Yu, S.P., Kooyers, G.P., Buneman, O.: Time-dependent computer analysis of electron wave interaction in crossed fields. J. Appl. Phys. 36, 2550 (1965)

    Article  ADS  Google Scholar 

  • Zmuda, A.J., Martin, J.H., Huering, F.T.: Transverse magnetic disturbances at 1100 km in the auroral region. J. Geophys. Res. 71, 5033 (1966)

    Article  ADS  Google Scholar 

  • Zmuda, A.J., Huering, F.T., Martin, J.H.: Dayside magnetic disturbances at 1100 km in the auroral oval. J. Geophys. Res. 72, 1115 (1967)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peratt, A.L. (2015). Birkeland Currents in Cosmic Plasma. In: Physics of the Plasma Universe. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7819-5_2

Download citation

Publish with us

Policies and ethics