Birkeland Currents in Cosmic Plasma

  • Anthony L. Peratt


An electromotive force ϕ = ∫ v × B⋅ dl giving rise to electrical currents in conducting media is produced wherever a relative perpendicular motion of plasma and magnetic field lines exist (Sect. 3.5.2). An example of this is the sunward convective motion of the magnetospheric plasma that cuts the earth’s dipole field lines through the equatorial plane, thereby producing a Lorentz force that drives currents within the auroral circuit. The tendency for charged particles to follow magnetic lines of force and therefore produce field-aligned currents has resulted in the widespread use of the term “Birkeland Currents” in space plasma physics.


Filamentary Structure Axial Current Relativistic Electron Beam Axial Magnetic Field Interstellar Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alfvén, H.: Magnetic storms and the aurorae. Proc. R. Swed.-Acad. Sci. (Kungliga Svenska Vetenskapakademiens Handlingar) 18, 139 (1939)Google Scholar
  2. Alfvén, H.: Electric currents in cosmic plasma. Rev. Geophys. Space Phys. 15, 271 (1977)CrossRefADSGoogle Scholar
  3. Alfvén, H.: Cosmic Plasma. D. Reidel, Dordrecht (1981)CrossRefGoogle Scholar
  4. Bennett, W.H.: Magnetically self-focussing streams. Phys. Rev. 45, 890 (1934)CrossRefADSGoogle Scholar
  5. Bogdankevich, L.S., Rukhadze, A.A.: Stability of relativistic electron beams in a plasma and the problem of critical currents. Sov. Phys. Usp. 14 163–179 (1971)CrossRefADSGoogle Scholar
  6. Block, L.P., Fälthammar, C.-G.: Field-aligned currents and auroral precipitation. In: McCormac, B.M. (ed.) Atmospheric Emissions, p. 285. Van Nostrand Reinhold, New York (1969)Google Scholar
  7. Bostick, W.H.: Experimental study of ionized matter projected across a magnetic field. Phys. Rev. 104, 292 (1956)CrossRefADSGoogle Scholar
  8. Bostick, W.H.: Simulation of astrophysical processes in the laboratory. Nature 179, 214 (1957)CrossRefADSGoogle Scholar
  9. Bostick, W.H., Prior, W., Grunberger, L., Emmert, G.: Phys. Fluids 9, 2078 (1966)CrossRefADSGoogle Scholar
  10. Buneman, O.: A toroidal magnetron. Proc. Phys. Soc. Lond. 1363, 278 (1949)Google Scholar
  11. Buneman, O.: Ribbon beams. J. Electron. Control 3, 507 (1957)CrossRefMathSciNetGoogle Scholar
  12. Buneman, O., Levy, R.H., Linson, L.M.: Stability of crossed-field electron beams. J. Appl. Phys. 37, 3203 (1966)CrossRefADSGoogle Scholar
  13. Carlqvist, P.: Cosmic electric currents and the generalized Bennett relation. Astrophys. Space Sci. 144, 73 (1988)ADSGoogle Scholar
  14. Carmel, Y., Nation, J.A.: Instability of an unneutralized relativistic electron beam. Phys. Rev. Lett. 31, 286 (1973)CrossRefADSGoogle Scholar
  15. Cutler, C.C.: Instabilitity in hollow and strip electron beams. J. Appl. Phys. 27, 1028 (1956)CrossRefADSGoogle Scholar
  16. Cummings, W., Dessler, A.J.: Field-aligned currents in the magnetosphere. J. Geophys. Res. 72, 1007 (1967)CrossRefADSGoogle Scholar
  17. Davis, T.N., Hallinan, T.J.: Aurora spirals 1. Observations. J. Geophys. Res. 81, 3953 (1976)CrossRefADSGoogle Scholar
  18. Dessler, A.: Evolution of arguments regarding existence of field aligned currents. In: Potemra, T.A. (ed.) Magnetospheric Currents. Geophysical Monograph, vol. 28. American Geophysical Union, Washington, DC (1984)Google Scholar
  19. Egeland, A., Holtet, J.: The Birkeland Symposium on Aurora and Magnetic Storms, Sandefjord. Centre National de la Recherche Scientifique, Paris (1968)Google Scholar
  20. Ekdahl, C.A., Freeman, J.R., Leifeste, G.T., Miller, R.B., Stygar, W.A., Godfrey, B.B.: Axisymmetric hollowing instability of an intense relativistic electron beam propagating in air. Phys. Rev. Lett. 55, 935 (1985)CrossRefADSGoogle Scholar
  21. Fälthammar, C.-G.: Magnetosphere-ionosphere interactions: near-earth manifestations of the plasma universe. IEEE Trans. Plasma Sci. 14, 616 (1986)CrossRefADSGoogle Scholar
  22. Friedman, M., Hammar, D.A.: Castastrophic disruption of the flow a magnetically confined intense relativistic electron beam. Appl. Phys. Lett. 21, 174 (1972)CrossRefADSGoogle Scholar
  23. Hallinan, T.J.: Small scale arc distortions. Planet. Space Sci. 18, 1735 (1970)CrossRefADSGoogle Scholar
  24. Hallinan, T.J.: Aurora spirals 1. Theory. J. Geophys. Res. 81, 3959 (1976)CrossRefADSGoogle Scholar
  25. Hammer, D.A., Rostocker, N.: Phys. Fluids 13, 1831 (1970)CrossRefADSGoogle Scholar
  26. Hill, T.W.: Rotationally-induced Birkeland current systems. In: Potemra, T.A. (ed.) Magnetospheric Currents. Geophysical Monograph, vol. 28, p. 340. American Geophysical Union, Washington, DC (1984)Google Scholar
  27. Iijima, T., Potemra, T.A.: Field-aligned currents in the dayside cusp observed by Triad. J. Geophys. Res. 81, 5971 (1976)CrossRefADSGoogle Scholar
  28. Ivanov, V.S., Krementsov, S.I., Raizer, M.D., Rukhadze, A.A., Fedotov, A.V.: Sov. J. Plasma Phys. 7 430 (1981)Google Scholar
  29. Jones, M.E., Mostrom, M.A.: The diocotron instability in annular relativistic electron beams. J. Appl. Phys. 52, 3794 (1981)CrossRefADSGoogle Scholar
  30. Kapetanakos, C.A.: Filamentation of intense electron beams propagating in dense plasmas. Appl. Phys. Lett. 25, 484 (1974)CrossRefADSGoogle Scholar
  31. Kapetanakos, C.A., Hammer, D.A., Striffler, C.D., Davidson, R.C.: Destructive instabilities in hollow intense relativistic electron beams. Phys. Rev. Lett. 30, 1303 (1973)CrossRefADSGoogle Scholar
  32. Keinigs, R., Jones, M.E.: Two-dimensional dynamics of the plasma wakefield accelerator. Phys. Fluids. 30 252–263 (1987)CrossRefADSMATHGoogle Scholar
  33. Kim, K.-T., Kronberg, P.P., Giovannini, G., Venturi, T.: Discovery of intergalactic radio emission in the Coma-A1367 supercluster. Nature 341, 720 (1989)CrossRefADSGoogle Scholar
  34. Knauer, W.: Diocotron instability in plasmas and gas discharges. J. Appl. Phys. 37, 602 (1966)CrossRefADSGoogle Scholar
  35. Knauer, W., Poeschel, J.L.: The diocotron effect in plasmas and gas discharges, in Phenomena. In: Perovic, B., Tosic, D. (eds.) Ionized Gases, p. 719. Gradeviska Knjiga Publication, Beograd (1966)Google Scholar
  36. Krall, N.A., Trivelpiece, A.W.: Principles of Plasma Physics, pp. 678. McGraw-Hill, New York (1973)Google Scholar
  37. Küppers, G., Salat, A., Wimmel, H.K.: Macroscopic equilibria of relativistic electron beams in plasmas. Plasma Phys. 15, 44 (1973)Google Scholar
  38. Kyhl, R.L., Webster, H.F.: Breakup of hollow cylindrical electron beams. IRE Trans. Prof. Group Electron Devices ED-3, 183 (1956)Google Scholar
  39. Lehnert, B.: Experiments on non-laminar flow of mercury in presence of a magnetic field. Tellus 4, 63 (1952)CrossRefADSGoogle Scholar
  40. Lehnert, B.: An instability of laminar flow of mercury caused by an external magnetic field. Proc. R. Soc. Lond. Ser. A 233, 299 (1955)CrossRefADSGoogle Scholar
  41. Lerner, E.J.: Magnetic vortex filaments, universal scale invariants, and the fundamental constants. IEEE Trans. Plasma Sci. 14, 690 (1986)CrossRefADSGoogle Scholar
  42. Levy, R.H.: Diocotron instability in a cyclindrical geometry. Phys. Fluids 8, 1288 (1965)CrossRefADSMathSciNetGoogle Scholar
  43. Levy, R.H., Hockney, M.A.: Computer experiments on low-density crossed-field electron beams. Phys. Fluids 11, 766 (1968)CrossRefADSGoogle Scholar
  44. Meierovich, B.E.: Electromagnetic collapse, problems of stability, emission of radiation and evolution of a dense pinch. Phys. Rep. 104, 259 (1984)CrossRefADSMathSciNetGoogle Scholar
  45. Mostrom, M.A., Jones, M.E.: Shear-driven instabilities of annular relativistic electron beams in vacuum. Phys. Fluids 26, 1649 (1983)CrossRefADSMATHGoogle Scholar
  46. Murty, G.S.: Instability of a conducting cylinder in the presence of an axial current, a longitudinal magnetic field and a coaxial conducting cylinder. Ark. fr Fys. 19, 483 (1961)MATHGoogle Scholar
  47. Nardi, V., Bostick. W.H., Feugeas, J., Prior, W.: Internal structure of electron-beam filaments. Phys. Rev. A 22, 2211 (1980)Google Scholar
  48. Nielsen, D., Green, J., Buneman, O.: Dynamic evolution of a z-pinch. Phys. Rev. Lett. 42, 1274 (1979)CrossRefADSGoogle Scholar
  49. Peratt, A.L.: A high-power reflex triode microwave source. IEEE Trans. Plasma Sci. 13, 498 (1985)CrossRefADSGoogle Scholar
  50. Peratt, A.L.: Evolution of the plasma universe 1. Double radio galaxies, quasars, and extragalactic jets. IEEE Trans. Plasma Sci. 14, 639 (1986)Google Scholar
  51. Peratt, A.L., Green, J.C.: On the evolution of interacting magnetized galactic plasmas. Astrophys. Space Sci. 91, 19 (1983)CrossRefADSGoogle Scholar
  52. Peratt, A.L., Snell, C.M.: Microwave generation from filamentation and vortex formation within magnetically confined electron beams. Phys. Rev. Lett. 54, 1167 (1985)CrossRefADSGoogle Scholar
  53. Peratt, A.L., Green, J., Nielsen, D.: Evolution of colliding plasmas. Phys. Rev. Lett. 44, 1767 (1980)CrossRefADSMathSciNetGoogle Scholar
  54. Pereira, N.R., Davis, J., Rostocker, N. (eds.): Dense Z-Pinches. American Institute of Physics, New York (1989)Google Scholar
  55. Pierce, J.R.: Instability of hollow beams. IRE Trans. Electron Devices ED3, 183 (1956)Google Scholar
  56. Potemra, T.A.: Magnetospheric Currents. Geophysical Monograph, vol. 28. American Geophysical Union, Washington, DC (1984)Google Scholar
  57. Rose, D.J., Clark, M.: Plasmas and Controlled Fusion. MIT, Cambridge (1961)MATHGoogle Scholar
  58. Schönherr, O., Über die Fabrikation des Luftsalpeters nach dem Verfahrem der Badischem Anilin- und Sodafabrik. Elektro-techn. Z, 30 365 (1909)Google Scholar
  59. Salingaros, N.: An amended magnetohydrodynamics equation which predicts field-aligned current sheets. Astrophys. Space Sci. 137, 385 (1988)CrossRefADSGoogle Scholar
  60. Shrafranov, V.D.: On the stability of a cylindrical gaseous conductor in a magnetic field. J. Nucl. Energy 5, 86 (1957)Google Scholar
  61. Wagner, J.S., Sydora, R.D., Tajima, T., Hallinan, T., Lee, L.C., Akasofu, S.-I.: J. Geophys. Res. 88, 8013 (1983)Google Scholar
  62. Webster, H.F.: Breakup of hollow beams. J. Appl. Phys. 26, 1386 (1955)CrossRefADSGoogle Scholar
  63. Webster, H.F.: Structure in magnetically confined electron beams. J. Appl. Phys. 28, 1388 (1957)CrossRefADSGoogle Scholar
  64. Webster, H.F., Hallinan, T.J.: Instabilities in charge sheets and current sheets and their possible occurance in the aurora. Radio Sci. 8, 475 (1973)CrossRefADSGoogle Scholar
  65. Witalis, E.: Phys. Rev. A 24, 2758 (1981)CrossRefADSGoogle Scholar
  66. Witalis, E.: Hall magnetohydrodynamics and its applications to laboratory and cosmic plasma. IEEE Trans. Plasma Sci. 14, 842 (1986)CrossRefADSGoogle Scholar
  67. Yonas, G.: Sandia National Laboratory Report, SAND-74-5367 Albuquerque, New Mexico (1974)Google Scholar
  68. Yu, S.P., Kooyers, G.P., Buneman, O.: Time-dependent computer analysis of electron wave interaction in crossed fields. J. Appl. Phys. 36, 2550 (1965)CrossRefADSGoogle Scholar
  69. Zmuda, A.J., Martin, J.H., Huering, F.T.: Transverse magnetic disturbances at 1100 km in the auroral region. J. Geophys. Res. 71, 5033 (1966)CrossRefADSGoogle Scholar
  70. Zmuda, A.J., Huering, F.T., Martin, J.H.: Dayside magnetic disturbances at 1100 km in the auroral oval. J. Geophys. Res. 72, 1115 (1967)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anthony L. Peratt
    • 1
  1. 1.Los AlamosUSA

Personalised recommendations