Skip to main content

Time-Adaptive FEM for Distributed Parameter Identification in Biological Models

  • Conference paper
  • First Online:
Applied Inverse Problems

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 48))

Abstract

We propose a time-adaptive finite element method for the solution of a parameter identification problem for ODE which describes dynamical systems of biological models. We present framework of a posteriori error estimate in the Tikhonov functional, in Lagrangian, and in the reconstructed function. We also present time-mesh relaxation property in the adaptivity and formulate the time-mesh refinement recommendation and an adaptive algorithm which can be used to find optimal values of the distributed parameters in biological models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.M. Adams, H.T. Banks, M. Davidian, H.-D. Kwon, H.T. Tran, S.N. Wynne and E.S. Rosenberg, HIV dynamics: Modeling, data analysis, and optimal treatment protocols, Journal of Computational and Applied Mathematics, 184, 10–49, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Asadzadeh and L. Beilina, A posteriori error analysis in a globally convergent numerical method for a hyperbolic coefficient inverse problem, Inverse Problems, 26, 115007, 2010.

    Article  MathSciNet  Google Scholar 

  3. A.B. Bakushinskii and M.Y. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems, Springer, New York, 2004.

    Google Scholar 

  4. A.B. Bakushinsky, M.Y. Kokurin, A. Smirnova, Iterative Methods for Ill-posed Problems, Walter de Gruyter GmbH&Co., Berlin, 2011.

    Google Scholar 

  5. W. Bangerth and A. Joshi, Adaptive finite element methods for the solution of inverse problems in optical tomography, Inverse Problems, 24, 034011, 2008.

    Article  MathSciNet  Google Scholar 

  6. R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element method, Acta Numerica, 10, 1–102, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Beilina, Adaptive finite element/difference method for inverse elastic scattering waves, Applied and Computational Mathematics, 1, 158–174, 2002.

    MathSciNet  Google Scholar 

  8. L. Beilina, Adaptive finite element method for a coefficient inverse problem for the Maxwell’s system, Applicable Analysis, 90, 1461–1479, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Beilina and C. Clason, An adaptive hybrid FEM/FDM method for an inverse scattering problem in scanning acoustic microscopy,  SIAM Journal on Scientific Computing, 28, 382–402, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Beilina and C. Johnson, A hybrid FEM/FDM method for an inverse scattering problem. In  Numerical Mathematics and Advanced Applications - ENUMATH 2001, Springer-Verlag, Berlin, 2001.

    Google Scholar 

  11. L. Beilina and C. Johnson, A posteriori error estimation in computational inverse scattering, Mathematical Models and Methods in Applied Sciences, 15, 23–37, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Beilina and M.V. Klibanov, A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem, Inverse Problems, 26, 045012, 2010.

    Article  MathSciNet  Google Scholar 

  13. L. Beilina and M.V. Klibanov, Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 26, 125009, 2010.

    Article  MathSciNet  Google Scholar 

  14. L. Beilina and M.V. Klibanov, Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D, Journal of Inverse and Ill-posed Problems, 18, 85–132, 2010.

    Article  MathSciNet  Google Scholar 

  15. L. Beilina and M.V. Klibanov, Relaxation property of the adaptivity technique for some ill-posed problems, preprint, Department of Mathematical Sciences, Chalmers University of Technology and Göteborg University, ISSN 1652–9715; nr 2012:4.

    Google Scholar 

  16. L. Beilina and M.V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer, New York, 2012.

    Book  MATH  Google Scholar 

  17. L. Beilina, M.V. Klibanov and M.Yu Kokurin, Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem, Journal of Mathematical Sciences, 167, 279–325, 2010.

    Article  MathSciNet  Google Scholar 

  18. V.A. Chereshnev, S.I. Bazhan, B.A. Bakhmetev, I.A. Gainova and G.A. Bocharov, Systems analysis of HIV infection pathogenesis, Biology Bulletin Reviews, 132(2), 115–140, 2012.

    Google Scholar 

  19. K. Eriksson, D. Estep and C. Johnson,Calculus in Several Dimensions, Springer, Berlin, 2004.

    MATH  Google Scholar 

  20. T. Feng, N. Yan and W. Liu, Adaptive finite element methods for the identification of distributed parameters in elliptic equation, Advances in Computational Mathematics, 29, 27–53, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Fletcher, Practical Methods of Optimization, John Wiley and Sons, Ltd, New York, 1986.

    Google Scholar 

  22. A. Griesbaum, B. Kaltenbacher and B. Vexler, Efficient computation of the Tikhonov regularization parameter by goal-oriented adaptive discretization, Inverse Problems, 24, 025025, 2008.

    Article  MathSciNet  Google Scholar 

  23. B. Kaltenbacher, A. Krichner and B. Vexler, Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems, Inverse Problems, 27, 125008, 2011.

    Article  MathSciNet  Google Scholar 

  24. B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems, de Gruyter, New York, 2008.

    Google Scholar 

  25. N.A. Koshev and L. Beilina, A posteriori error estimates for the Fredholm integral equation of the first kind, accepted to book series Springer Proceedings in Mathematics, 2012.

    Google Scholar 

  26. O.A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Springer Verlag, Berlin, 1985.

    Book  Google Scholar 

  27. R. Medzhitov and D. Littman, HIV immunology needs a new direction: Commentary, Nature, 455(7213), 591, 2008.

    Google Scholar 

  28. A.N. Tikhonov and V.Y. Arsenin,  Solutions of Ill-Posed Problems, Winston and Sons, Washington, DC, 1977.

    MATH  Google Scholar 

  29. A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov and A.G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems, Kluwer, London, 1995.

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Swedish Research Council, the Swedish Foundation for Strategic Research (SSF) through the Gothenburg Mathematical Modelling Centre (GMMC), the Swedish Institute, Visby Program, the program of the Russian Academy of Sciences “Basic Research for Medicine,” and the Russian Foundation for Basic Research (Grant 11-01-00117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa Beilina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this paper

Cite this paper

Beilina, L., Gainova, I. (2013). Time-Adaptive FEM for Distributed Parameter Identification in Biological Models. In: Beilina, L. (eds) Applied Inverse Problems. Springer Proceedings in Mathematics & Statistics, vol 48. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7816-4_3

Download citation

Publish with us

Policies and ethics