Skip to main content

X-ray calorimeters

  • Chapter
  • First Online:
Observing Photons in Space

Part of the book series: ISSI Scientific Report Series ((ISSI,volume 9))

Abstract

X-ray calorimeter instruments for astrophysics have seen rapid development since they were invented in 1984. The prime instrument on all currently planned X-ray spectroscopic observatories is based on calorimeter technology. This relatively simple detection concept that senses the energy of an incident photon by measuring the temperature rise of an absorber material at very low temperatures can form the basis of a very high-performance, non-dispersive spectrometer. State-of-the-art calorimeter instruments have resolving powers of over 3000, large simultaneous bandpasses, and near unit efficiency. Coupled with the intrinsic imaging capability of a pixelated X-ray calorimeter array, this allows true spectral-spatial instruments to be constructed. This chapter briefly reviews the detection scheme, the state of the art in X-ray calorimeter instruments and the future outlook for this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The IXO mission concept was a merger of the U.S. Constellation-X and the European XEUS concept missions.

References

  • Boyce KR, Audley MD, Baker RG (plus eight authors) (1999) Design and performance of the Astro-E/XRS signal processing system. Proc SPIE 3765:741–750

    Google Scholar 

  • de Korte P, Anquita J, Bakker F (plus 39 authors) (2008) EURECA — European-Japanese microcalorimeter array. J Low Temp Phys 151:733–739

    Google Scholar 

  • Doriese WB, Ullom JN, Beall JA (plus 14 authors) (2007) 14-pixel, multiplexed array of gamma-ray microcalorimeters with 47 eV energy resolution at 103 keV. Appl Phys Lett 90:193508-1–3

    Google Scholar 

  • Eckart ME, Adams JS, Bailey CN (plus ten authors) (2012) Kilopixel X-ray Microcalorimeter Arrays for Astrophysics: Device Performance and Uniformity. J Low Temp Phys 167:732–740

    Google Scholar 

  • Figueroa-Feliciano E, Bandler SR, Boyce K (plus nine authors) (2006) Expanding the Constellation-X field of view with position-sensitive X-ray microcalorimeters. Proc SPIE 6276:627615-1–8

    Google Scholar 

  • Figueroa-Feliciano E, Bandler SR, Bautz M (plus 25 authors) (2008) Micro-X: Mission overview and science goals. J Low Temp Phys 151:740–745

    Google Scholar 

  • Fleischmann A, Enss C, Seidel GM (2005) Metallic Magnetic Calorimeters. In: Enss C (ed) Cryogenic particle detection, pp 151–216. Springer, Berlin

    Google Scholar 

  • Gendreau KC, Cash WC, Gorenstein P (plus three authors) (2004) MAXIM: the black hole imager. Proc SPIE 5488:394–402

    Google Scholar 

  • Harper DA, Bartels AE, Casey SC (plus 20 authors) (2004) Development of the HAWC far-infrared camera for SOFIA. Proc SPIE 5492:1064–1073

    Google Scholar 

  • Horansky RD, Ullom JN, Beall JA (plus seven authors) (2008) Analysis of nuclear material by alpha spectroscopy with a transition-edge microcalorimeter. J Low Temp Phys 151:1067–1073

    Google Scholar 

  • Irwin KD, Beall JA, Doriese WB (plus nine authors) (2006) Microwave SQUID multiplexers for low-temperature detectors. NIMPA 559:802–804

    Google Scholar 

  • Iyomoto N, Bandler SR, Brekosky RP (plus nine authors) (2008) Close-packed arrays of transition-edge X-ray microcalorimeters with high spectral resolution at 5.9 keV. Appl Phys Lett 92:013508-1–3

    Google Scholar 

  • Kelley RL, Mitsuda K, Allen CA (plus 41 authors) (2007) The Suzaku high resolution X-ray spectrometer. PASJ 59:77–112

    Google Scholar 

  • Kiviranta M, Seppa H, van der Kuur J, de Korte P (2002) SQUID-based readout schemes for microcalorimeter arrays. AIP Conf Proc 605:295–300

    Article  ADS  Google Scholar 

  • Mather JC (1982) Bolometer noise: nonequilibrium theory. Appl Opt 21:1125–1129

    Article  MathSciNet  ADS  Google Scholar 

  • Mazin BA, Eckart ME, Bumble B (plus four authors) (2008) Optical/UV and X-ray microwave kinetic inductance strip detectors. J Low Temp Phys 151:537–543

    Google Scholar 

  • McCammon D, Almy R, Apodaca E (plus 17 authors) (2002) A high spectral resolution observation of the soft X-ray diffuse background with thermal detectors. Astrophys J 576:188–203

    Google Scholar 

  • McCammon D (2005a) Thermal equilibrium calorimeters — An introduction. In: Enss C (ed) Cryogenic particle detection, pp 1–34. Springer, Berlin Heidelberg New York

    Google Scholar 

  • McCammon D (2005b) Semiconductor thermistors. In: Enss C (ed) Cryogenic particle detection, pp 35–61. Springer, Berlin Heidelberg New York

    Google Scholar 

  • McCammon D, Barger K, Brandl DE (plus nine authors) (2008) The X-ray quantum calorimeter sounding rocket experiment: Improvements for the next flight. J Low Temp Phys 151:715–720

    Google Scholar 

  • Moseley SH, Mather JC, McCammon D (1984) Thermal detectors as X-ray spectrometers. J Appl Phys 56:1257–1262

    Article  ADS  Google Scholar 

  • Porter FS, Audley MD, Brokosky R (plus 13 authors) (1999) The detector assembly and the ultralow-temperature refrigerator for XRS. Proc SPIE 3765:729–740

    Google Scholar 

  • Porter FS, Almy R, Apodaca E (plus seven authors) (2000a) The XQC microcalorimeter sounding rocket: A stable LTD platform 30 seconds after rocket motor burnout. NIMPA 444:220–223

    Google Scholar 

  • Porter FS, Audley MD, Beiersdorfer P (plus nine authors) (2000b) Laboratory astrophysics using a spare XRS microcalorimeter. Proc SPIE 4140:407–418

    Google Scholar 

  • Porter FS, Kelley RL, Kilbourne CA (2006) High resolution X-ray microcalorimeters. NIMPA 559:436–438

    Article  ADS  Google Scholar 

  • Porter FS, Beiersdorfer P, Brown GV (plus eight authors) (2008a) The EBIT calorimeter spectrometer: A new, permanent user facility at the LLNL EBIT. J Low Temp Phys 151:1061–1066

    Google Scholar 

  • Porter FS, Beck BR, Beiersdorfer P (plus nine authors) (2008b) The XRS microcalorimeter spectrometer at the Livermore electron beam ion trap. Can J Phys 86:231–240

    Google Scholar 

  • Reintsema CD, Beyer J, Nam SW (plus seven authors) (2003) Prototype system for superconducting quantum interference device multiplexing of large-format transition-edge sensor arrays. Rev Sci Inst 74:4500–4508

    Google Scholar 

  • Romani RW, Miller AJ, Cabrera B (plus two authors) (2001) Phase-resolved Crab studies with a cryogenic transition-edge sensor spectrophotometer. Astrophys J 563:221–228

    Google Scholar 

  • Smith SJ, Whitford CH, Fraser GW (2006) Signal processing for distributed readout using TESs. NIMPA 559:814–816

    Article  ADS  Google Scholar 

  • Stahle CK, Allen CA, Boyce KR (plus 16 authors) (2004) The next-generation microcalorimeter array of XRS on Astro-E2. NIMPA 520:466–468

    Google Scholar 

  • Smith SJ, Adams JS, Bailey CN (plus eight authors) (2012) Small Pitch Transition Edge Sensors with Broadband High Spectral Resolution for Solar Physics. J Low Temp Phys 167:168–175

    Google Scholar 

  • Windhorst RA, Cameron RA, Brissenden RJ (plus ten authors) (2006) Generation-X: An X-ray observatory designed to observe first light objects. New Astron Rev 50:121–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Porter, F.S. (2013). X-ray calorimeters. In: Huber, M.C.E., Pauluhn, A., Culhane, J.L., Timothy, J.G., Wilhelm, K., Zehnder, A. (eds) Observing Photons in Space. ISSI Scientific Report Series, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7804-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7804-1_28

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7803-4

  • Online ISBN: 978-1-4614-7804-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics