Skip to main content

Goniopolarimetric techniques for low-frequency radio astronomy in space

  • Chapter
  • First Online:
Observing Photons in Space

Part of the book series: ISSI Scientific Report Series ((ISSI,volume 9))

  • 2436 Accesses

Abstract

The principles of space-based low-frequency radio astronomy are briefly introduced. As the wavelength range considered does not allow the use of focusing systems, goniopolarimetric (or “direction-finding”) techniques have been developed. These techniques are presented, and their limitations are discussed. An example from a recent study on auroral radio emissions at Saturn from Cassini/RPWS measurements illustrates the techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This wavelength range is called the short antenna or quasistatic range.

References

  • Arridge CS, Agnor CB, André N (plus 76 authors) (2012) Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets. Experimental Astronomy. 33(2–3):753–791. DOI 10.1007/s10686-011-9251-4

    Google Scholar 

  • Baan WA, Tzioumis T, Wu X-P (plus nine authors) (2012) SURO-LC, Space Based Ultra Long Wavelength Radio Observatory, ESA Cosmic Vision proposal.

    Google Scholar 

  • Bale SD, Ullrich R, Goetz K (plus four authors) (2008) The electric antennas for the STEREO/Waves experiment. Space Sci Rev 136:529–547

    Google Scholar 

  • Berthomier M, Fazakerley AN, Forsyth C (plus 60 authors) (2012) Alfvén: magnetosphere-ionosphere connection explorers. Experimental Astronomy. 33(2–3): 445–489. DOI 10.1007/s10686-011-9273-y

    Google Scholar 

  • Bolton S (2006) The new JUNO mission. 36th COSPAR Scientific Assembly 36:3775

    Google Scholar 

  • Bougeret JL, Kaiser ML, Kellogg PJ (plus nine authors) (1995) WAVES: The radio and plasma wave investigation on the WIND spacecraft. Space Sci Rev 71:231–263

    Google Scholar 

  • Bougeret JL, Goetz K, Kaiser ML (plus 40 authors) (2008) S/Waves: The radio and plasma wave investigation on the STEREO Mission. Space Sci Rev 136:487–528

    Google Scholar 

  • Cecconi B (2004) Étude Goniopolarimétrique des émissions radio de Jupiter et Saturne à l’aide du récepteur radio de la sonde Cassini. PhD thesis, Univ. Paris 7, Meudon, France

    Google Scholar 

  • Cecconi B (2007) Influence of an extended source on goniopolarimetry (or direction finding) with Cassini and STEREO radio receivers. Radio Sci 42:(RS2003) 1–17

    Google Scholar 

  • Cecconi B (2011) Mesures Radio Spatiales: Goniopolarimétrie. In: Zarka P, Tagger M (eds) Comptes rendus de l’Ecole de Goutelas: Radio Astronomie Basse Fréquence, vol 30

    Google Scholar 

  • Cecconi B, Zarka P (2005) Direction finding and antenna calibration through analytical inversion of radio measurements performed using a system of 2 or 3 electric dipole antennas. Radio Sci 40:(RS3003) 1–20

    Google Scholar 

  • Cecconi B, Bonnin X, Hoang S (plus eight authors) (2008) STEREO/Waves Goniopolarimetry. Space Sci Rev 136:549–563

    Google Scholar 

  • Cecconi B, Lamy L, Zarka P (plus three authors) (2009) Goniopolarimetric study of the Rev 29 perikrone using the Cassini/RPWS/HFR radio receiver. J Geophys Res, DOI 10.1029/2008JA013390

    Google Scholar 

  • Dulk GA, Steinberg JL, Hoang S, Lecacheux A (1986) Latitude distribution of interplanetary magnetic field lines rooted in active regions. In: Marsden RG (ed) The Sun and the Heliosphere in Three Dimensions, Astrophysics and Space Science Library, vol. 123, pp 229–233

    Google Scholar 

  • Christophe B, Spilker LJ, Anderson JD (plus 56 authors) (2012) OSS (Outer Solar System): A fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt, Experimental Astronomy 34(2):203–242. DOI 10.1007/s10686-012-9309-y

    Google Scholar 

  • Dulk GA, Erickson WC, Manning R, Bougeret JL (2001) Calibration of low-frequency radio telescopes using the galactic background radiation. Astrophys J 365:294–300

    ADS  Google Scholar 

  • Fainberg J, Hoang S, Manning R (1985) Measurements of distributed polarized radio sources from spinning spacecraft– Effect of a tilted axial antenna– ISEE-3 Application and Results. Astron Astrophys 153:145–150

    ADS  Google Scholar 

  • Falcke HD, van Haarlem MP, de Bruyn AG (plus 29 authors) (2007) A very brief description of LOFAR – the Low Frequency Array. Proceedings of the International Astronomical Union, 2:14. DOI 10.1017/ S174392130701112X

    Google Scholar 

  • Fischer G, Macher W, Rucker HO (plus 11 authors) (2001) Wire–grid modelling of Cassini spacecraft for the determination of effective length vectors of the RPWS antennas. In: Rucker HO, Kaiser ML, Leblanc Y (eds) Planetary Radio Emissions V, Austrian Academy of Sciences Press, Vienna, pp 347–356

    Google Scholar 

  • Gurnett DA, Baumback MM, Rosenbauer J (1978) Stereoscopic direction finding analysis of a type III solar radio burst: Evidence for emission at 2 f p −. J Geophys Res 83:616

    Article  ADS  Google Scholar 

  • Gurnett DA, Kurth WS, Shaw RR (plus five authors) (1992) The Galileo plasma wave investigation. Space Sci Rev 60:341–355

    Google Scholar 

  • Gurnett DA, Kurth WS, Kirchner DL (plus 27 authors) (2004) The Cassini radio and Plasma wave science investigation. Space Sci Rev 114:395–463

    Google Scholar 

  • Gustafsson G, Boström R, Holback B (plus 24 authors) (1997) The electric field and wave experiment for the Cluster mission. Space Sci Rev 79:137–156

    Google Scholar 

  • Hanasz J, Krawczyk Z, Mogilevsky MM (plus 11 authors) (1998a) Observation of auroral kilometric radiation on the INTEBALL-2 satellite: The POLRAD experiment. Cosmic Research 36:575

    Google Scholar 

  • Hanasz J, Schreiber R, de Feraudy H (plus two authors) (1998b) Observations of the upper frequency cutoffs of the auroral kilometric radiation. Ann Geophys 16:1097–1104

    Google Scholar 

  • Hanasz J, Panchenko M, de Feraudy H (plus two authors) (2003) Occurence distributions of the auroral kilometric radiation ordinary and extraordinary wave mode. J Geophys Res 108(A11):1408 SMP 14:1–14:11

    Google Scholar 

  • Hoang S, Dulk GA, Leblanc Y (1994) Interplanetary type III radio bursts that approach the plasma frequency: Ulysses observations. Astron Astrophys 289:957–971

    ADS  Google Scholar 

  • Hoang S, Maksimovic M, Bougeret JL (plus two authors) (1998) Wind-Ulysses source location of radio emissions associated with the January 1997 coronal mass ejection. Geophys Res Lett 25(14):2497–2500

    Google Scholar 

  • Jasik H (1961) Antenna Engineering Handbook. McGraw-Hill, New York

    Google Scholar 

  • Kraus JD (1966) Radio Astronomy. McGraw-Hill, New York

    Google Scholar 

  • Kurth WS, Baumback MM, Gurnett DA (1975) Direction-finding measurements of auroral kilometric radiation. J Geophys Res 80:2764–2770

    Article  ADS  Google Scholar 

  • Ladreiter HP, Zarka P, Lecacheux A (1994) Direction finding study of Jovian hectometric and broadband kilometric radio emissions: Evidence for their auroral origin. Planet Space Sci 42:919–931

    Article  ADS  Google Scholar 

  • Ladreiter HP, Zarka P, Lecacheux A (plus five authors) (1995) Analysis of electromagnetic wave direction finding performed by spaceborne antennas using singular-value decomposition techniques. Radio Sci 30:1699–1712

    Google Scholar 

  • Lamy L, Zarka P, Cecconi B (plus three authors) (2008) Saturn kilometric radiation: average and statistical properties. J Geophys Res 113:A07,201

    Google Scholar 

  • Lecacheux A (1978) Direction finding of a radiosource of unknown polarization with short electric antennas on a spacecraft. Astron Astrophys 70:701–706

    ADS  Google Scholar 

  • Manning R (2000) Instrumentation for space-based low frequency radio astronomy. Geophysical Monograph, vol 119, AGU, Washington DC, pp 329–337

    Google Scholar 

  • Manning R, Fainberg J (1980) A new method of measuring radio source parameters of a partially polarized distributed source from spacecraft observations. Space Sci Inst 5:161–181

    Google Scholar 

  • Matsumoto H, Nagano I, Anderson RR (plus seven authors) (1994) Plasma wave Observations with GEOTAIL spacecraft. J Geomagnet and Geoelectricity 46(1):59

    Google Scholar 

  • Meyer–Vernet N, Perche C (1989) Tool kit for antennae and thermal noise near the plasma frequency. J Geophys Res 94:2405–2415

    Google Scholar 

  • Mimoun D, Wieczorek MA, Alkalai L (plus 27 authors) (2012) Farside explorer: unique science from a mission to the farside of the moon. Experimental Astronomy 33(2–3):529–585. DOI 10.1007/ s10686-011-9252-3

    Google Scholar 

  • Mutel RL, Gurnett DA, Christopher IW (plus two authors) (2003) Locations of auroral kilometric radiation bursts inferred from multispacecraft wideband Cluster VLBI observations. 1: Description of technique and initial results. J Geophys Res 108(A11):1398 SMP 8–13

    Google Scholar 

  • Mutel RL, Christopher IW, Pickett JS (2008) Cluster multispacecraft determination of AKR angular beaming. Geophys Res Lett 35:L07104 1–6

    Google Scholar 

  • Oswald TH, Macher W, Rucker HO (plus six authors) (2008) Various methods of calibration of the STEREO/Waves antennas. Adv Space Res 43:355–364

    Google Scholar 

  • Panchenko M (2004) Polarimetry of auroral kilometric radiation with a triaxial nonorthogonal antenna system. Radio Sci 39:RS6010

    Article  MathSciNet  ADS  Google Scholar 

  • Reiner MJ, Fainberg J, Stone RG (1993) Source characteristics of Jovian hectometric radio emissions. J Geophys Res 98:18 767–18 777

    Google Scholar 

  • Reiner MJ, Fainberg J, Kaiser ML, Stone RG (1998a) Type III radio source located by Ulysses/Wind triangulation. J Geophys Res 103(A2):1923–1931

    Article  ADS  Google Scholar 

  • Reiner MJ, Kaiser ML, Fainberg J (plus two authors) (1998b) On the origin of radio emissions associated with the January 6-11, 1997, CME. Geophys Res Lett 25(14):2493–2496

    Google Scholar 

  • Reiner MJ, Kaiser ML, Fainberg J, Stone RG (1998c) A new method for studying remote type II radio emissions from coronal mass ejection-driver shocks. J Geophys Res 103(A12):29 651–29 664

    Google Scholar 

  • Reiner MJ, Jackson BV, Webb DF (plus three authors) (2005) Coronal mass ejection kinematics deduced from white light (Solar Mass Ejection Imager) and radio (Wind/WAVES) observations. J Geophys Res 110:(A09S14) 1–15

    Google Scholar 

  • Reiner MJ, Kaiser ML, Fainberg J, Bougeret JL (2006) A highly circularly polarized solar radio emission component observed at hectometer wavelengths. Sol Phys 234:301–324

    Article  ADS  Google Scholar 

  • Rucker HO, Macher W, Manning R, Ladreiter HP (1996) Cassini model rheometry. Radio Sci 31:1299–1312

    Article  ADS  Google Scholar 

  • Steinberg JL, Dulk GA, Hoang S (plus two authors) (1984) Type III radio bursts in the interplanetary medium: the role of propagation. Astron Astrophys 140:39–48

    Google Scholar 

  • Stone RG, Bougeret JL, Caldwell J (plus seven authors) (1992) The unified radio and plasma wave investigation. Astron Astrophys, Suppl Ser 92:291–316

    Google Scholar 

  • Vogl DF, Cecconi B, Macher W (plus ten authors) (2004) In–flight calibration of the Cassini-Radio and Plasma Wave Science (RPWS) antenna system for direction-finding and polarization measurements. J Geophys Res 109:(A09S17) 1–18

    Google Scholar 

  • Zarka P (1998) Auroral radio emissions at the outer planets: Observations and theories, J Geophys Res, 103, 20159–20194

    Article  ADS  Google Scholar 

  • Zarka P (1992) The auroral radio emissions from planetary magnetospheres: What do we know, what don’t we know, what do we learn from them? Adv Space Res 12(8):99–115

    Article  ADS  Google Scholar 

  • Zarka P (2000) Radio emissions from the planets and their moons. Geophysical Monograph, vol 119, AGU, Washington DC, pp 167–178

    Google Scholar 

  • Zarka P, Cecconi B, Kurth WS (2004) Jupiter’s low-frequency radio spectrum from Cassini/Radio and Plasma Wave Science (RPWS) absolute flux density measurements. J Geophys Res 109:A09S15

    Google Scholar 

  • Zouganelis I (2008) Measuring suprathermal electron parameters in space plasmas: Implementation of the quasi-thermal noise spectroscopy with kappa distributions using in situ Ulysses/URAP radio measurements in the solar wind. J Geophys Res 113:(A08111) 1–7

    Google Scholar 

Download references

Acknowledgements

The author wants to thank L. Lamy, R. Prangé and P. Zarka for their helpful discussion during the preparation of the manuscript. He also wants to thank Martin C.E. Huber (advised by M. Pick) for soliciting him to write this chapter.Part of this chapter is based on a presentation “Space-based Radio Measurements: Goniopolarimetry” given at the thirtieth Goutelas Spring school: “Low Frequency Radioastronomy: Instrumentation, Science, Projects”, Marcoux, France, June 2007 (Cecconi 2011).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cecconi, B. (2013). Goniopolarimetric techniques for low-frequency radio astronomy in space. In: Huber, M.C.E., Pauluhn, A., Culhane, J.L., Timothy, J.G., Wilhelm, K., Zehnder, A. (eds) Observing Photons in Space. ISSI Scientific Report Series, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7804-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7804-1_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7803-4

  • Online ISBN: 978-1-4614-7804-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics