Skip to main content

Genome Analysis

  • Chapter
  • First Online:
Book cover Biotechnology of Crucifers

Abstract

Cruciferous crops are now cultivated throughout the world beyond their natural centres of diversity. The close evolutionary relationship of Arabidopsis has underpinned genome analysis and our current understanding of genome organisation and evolution within the Brassicaceae. Translating this reference information into crop species such as Brassica, of more recent polyploid origin and containing multiple paralogous and homoeologous gene copies, remains a challenge. Brassica experimental resources have enabled analysis of whole genome sequence data in combination with cytological approaches, This has revealed a series of large and small-scale duplication events driving a pattern of recursive paleopolyploidization, with genome triplication elegantly demonstrated in the B. rapa genome sequence. Progressive resolution and integration of genetic, physical and sequence maps underpins assignment of functional genes and regulatory networks to agronomic traits. High throughput sequencing now enables transcriptome mapping, associative transcriptomics and advanced eQTL analysis. Prospects for the future of genome analysis in cruciferous crops are considered. It is now possible to explore the role of epigenetic variation in modulating gene function and plasticity associated with phenotypic response to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alix K, Ryder C, Moore J, King G, Heslop-Harrison JS (2005) The genomic organization of retrotransposons in Brassica oleracea. Plant Mol Biol 59:839–851

    PubMed  CAS  Google Scholar 

  • Alix K, Joets J, Ryder CD, Moore J, Barker GC, Bailey JP, King GJ, Heslop-Harrison JS (2008) The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation. Plant J 56:1030–1044

    PubMed  CAS  Google Scholar 

  • Allender CJ, Allainguillaume J, Lynn JR, King GJ (2007) Chloroplast SSRs reveal uneven distribution of genetic diversity in C genome n = 9 Brassica species. Theor Appl Genet 114:609–618

    PubMed  CAS  Google Scholar 

  • Allender C, King GJ (2010) Clarifying the origins of the amphiploid species Brassica napus L. using chloroplast and nuclear molecular markers. BMC Plant Biol 10:54

    PubMed  Google Scholar 

  • Amoah S, Kurup S, Rodriguez Lopez CM, Welham SJ, Powers SJ, Hopkins CJ et al (2012) A hypomethylated population of Brassica rapa for forward and reverse epi-genetics. BMC Plant Biol 12:193

    PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (AGI) (2000) Analysis of the genome of the flowering plant Arabidopsis thaliana. Nature 408:816–820

    Google Scholar 

  • Ayele M, Haas BJ, Kumar N, Wu H, Xiao Y, Van Aken S et al (2005) Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis. Genome Res 15:487–495

    PubMed  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:211–215

    Google Scholar 

  • Bancroft I, Barnes S, Li J, Meng J, Qiou D, Schmidt R et al (2006) Establishment of an integrated marker system for oilseed rape breeding (IMSORB). Acta Hortic 706:195–202

    CAS  Google Scholar 

  • Bancroft I, Morgan C, Fraser F, Higgins J, Wells R, Clissold L et al (2011) Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat Biotechnol 29:762–766

    PubMed  CAS  Google Scholar 

  • Barker GC, Larson TR, Graham IA, Lynn JR, King GJ (2007) Novel insights into seed fatty acid synthesis and modification pathways from genetic diversity and QTL analysis of the Brassica C genome. Plant Physiol 144:1827–1842

    PubMed  CAS  Google Scholar 

  • Barker MS, Vogel H, Schranz ME (2009) Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol Evol 1:391–399

    PubMed  Google Scholar 

  • Basunanda P, Radoev M, Ecke W, Friedt W, Becker H, Snowdon RJ (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape Brassica napus L. Theor Appl Genet 120:271–281

    PubMed  CAS  Google Scholar 

  • Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K et al (2011) Spontaneous epigenetic variation in theArabidopsis thaliana methylome. Nature 480:245–249

    PubMed  CAS  Google Scholar 

  • Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci USA 107:18724–18728

    PubMed  CAS  Google Scholar 

  • Bohuon EJ, Ramsay LD, Craft JA, Arthur AE, Marshall DF, Lydiate DJ et al (1998) The association of flowering time quantitative trait loci with duplicated regions and candidate loci in Brassica oleracea. Genetics 150:393–401

    PubMed  CAS  Google Scholar 

  • Brown JS (2001) Fit of form and function, diversity of life, and procession of life as an evolutionary game. Chapter 4. In: Orzack SH, Sober E (ed) Adaptationism and optimality. Cambridge, England University Press

    Google Scholar 

  • Burns MJ, Barnes SR, Bowman JG, Clarke MH, Werner CP, Kearsey MJ (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity 90:39–48

    PubMed  CAS  Google Scholar 

  • Cárdenas PD, Gajardo HA, Huebert T, Parkin IAP, Iniguez-Luy FL, Federico ML (2012) Retention of triplicated phytoene synthase PSY genes in Brassica napus L. and its diploid progenitors during the evolution of the Brassiceae. Theor Appl Genet 124:1215–1228

    PubMed  Google Scholar 

  • Chang S, Yang T, Du T, Huang Y, Chen J, Yan J et al (2011) Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica. BMC Genomics 12:497

    PubMed  CAS  Google Scholar 

  • Chapman NH, Bonnet J, Grivet L, Lynn J, Graham N, Smith R et al (2012) High resolution mapping of a fruit firmness-related QTL in tomato reveals epistatic interactions associated with a complex combinatorial locus. Plant Physiol 159:1644–1657

    PubMed  CAS  Google Scholar 

  • Chen JZ, Pikaard CS (1997a) Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Natl Acad Sci USA 94:3442–3447

    PubMed  CAS  Google Scholar 

  • Chen JZ, Pikaard CS (1997b) Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev 11:2124–2136

    PubMed  CAS  Google Scholar 

  • Chen J, Guan R, Chang S, Du T, Zhang H, Xing H (2011) Substoichiometrically different mitotypes coexist in mitochondrial genomes of Brassica napus L. PLoS One 6(3):e17662

    PubMed  CAS  Google Scholar 

  • Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E et al (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792

    PubMed  CAS  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    PubMed  CAS  Google Scholar 

  • Colinas J, Birnbaum K, Benfey PN (2002) Using cauliflower to find conserved non-coding regions in Arabidopsis. Plant Physiol 129:451–454

    PubMed  CAS  Google Scholar 

  • Darwin C (1875) The variation of animals & plants under domestication, 2nd edn. John Murray, London, pp 398–403

    Google Scholar 

  • Edwards D, Batley K, Parkin I, Kole C (2012) Genetics, genomics and breeding of oilseed Brassicas. Science Publishers, Enfield, USA

    Google Scholar 

  • Eichten SR, Swanson-Wagner RA, Schnable JC, Waters AJ, Hermanson PJ, Liu S et al (2011) Heritable epigenetic variation among maize inbreds. PLoS Genet 7(11):e1002372

    PubMed  CAS  Google Scholar 

  • Eshed Y, Zamir D (1994) A genomic library of Lycopersicon Pennellii in Lycopersicon-Esculentum – a tool for fine mapping of genes. Euphytica 79:175–179

    CAS  Google Scholar 

  • Feng J, Long Y, Shi L et al (2012) Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. New Phytol 193:96–108

    PubMed  CAS  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    PubMed  CAS  Google Scholar 

  • Gao M, Li G, McCombie WR, Quiros CF (2005) Comparative analysis of a transposon-rich Brassica oleracea BAC clone with its corresponding sequence in A.thaliana. Theor Appl Genet 111:949–955

    PubMed  CAS  Google Scholar 

  • Geleta M, Heneen W, Stoute A, Muttucumaru N, Scott R, King GJ et al (2012) Assigning Brassica microsatellite markers to the nine C-genome chromosomes using Brassica rapa var. trilocularis-B. oleracea var. alboglabra monosomic alien addition lines. Theor Appl Genet 125:455–466

    PubMed  CAS  Google Scholar 

  • Gómez-Campo C (1999) Biology of Brassica coenospecies. Elsevier Science, Amsterdam

    Google Scholar 

  • Haberer G, Mader MT, Kosarev P, Spannag M, Yang L, Mayer KFX (2006) Large-scale cis-element detection by analysis of correlated expression and sequence conservation between Arabidopsis and Brassica oleracea. Plant Physiol 142:1589–1602

    PubMed  CAS  Google Scholar 

  • Hammond JP, Mayes S, Bowen HC, Graham NS, Hayden RM, Love CG et al (2011) Regulatory hotspots are associated with plant gene expression under varying soil phosphorus P supply in Brassica rapa. Plant Physiol 156:1230–1241

    PubMed  CAS  Google Scholar 

  • Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R et al (2012) Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotechnol 30:798–802

    PubMed  CAS  Google Scholar 

  • Hauben M, Haesendonckx B, Standaert E, Van Der Kelen K, Azmi A, Akpo H et al (2009) Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc Natl Acad Sci USA 106:20109

    PubMed  CAS  Google Scholar 

  • Haun WJ, Laoueille-Duprat S, O’Connell MJ, Spillane C, Grossniklaus U, Phillips AR et al (2007) Genomic imprinting, methylation and molecular evolution of maize Enhancer of zeste Mez homologs. Plant J 49:325–337

    PubMed  CAS  Google Scholar 

  • Hayward A, Mason A, Dalton Morgan J, Zander M, Edwards D et al (2012a) SNP discovery and applications in Brassica napus. J Plant Biotechnol 39:1–12

    Google Scholar 

  • Higgins JA, Magusin A, Trick M, Fraser F, Bancroft I (2012) Use of mRNA-Seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus. BMC Genomics 13:247. doi:10.1186/1471-2164-13-247

    PubMed  CAS  Google Scholar 

  • Hong CP, Plaha P, Koo D-H, Yang T-J, Choi SR, Lee YK et al (2006) A survey of the Brassica rapa genome through BAC-end sequence analysis, and comparative analysis with Arabidopsis thaliana. Mol Cells 22:300–307

    PubMed  Google Scholar 

  • Howell EC, Armstrong SJ, Barker GC, Jones GH, King GJ, Ryder CD et al (2005) Physical organisation of the major duplication on Brassica oleracea chromosome O6 revealed through fluorescence in situ hybridisation with Arabidopsis and Brassica BACs. Genome 48:1093–1103

    PubMed  CAS  Google Scholar 

  • Howell EC, Barker GC, Jones GH, Kearsey MJ, King GJ, Kop EP et al (2002) Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. Genetics 161:1225–1234

    PubMed  CAS  Google Scholar 

  • Howell EC, Kearsey MJ, Jones GH, King GJ, Armstrong SJ (2008) A and C genome distinction and chromosome identification in Brassica napus by sequential FISH and GISH. Genetics 180:1849–1857

    PubMed  CAS  Google Scholar 

  • Irwin JA, Lister C, Soumpourou E, Zhang Y, Howell EC, Teakle G et al (2012) Functional alleles of the flowering time regulator FRIGIDA in the Brassica oleracea genome. BMC Plant Biol 12:21

    PubMed  CAS  Google Scholar 

  • Karan R, DeLeon T, Biradar H, Subudhi PK (2012) Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS One 7:e40203

    PubMed  CAS  Google Scholar 

  • Kim JS, Chung TY, King GJ, Jin M, Yang TJ, Jin YM et al (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29–39

    PubMed  CAS  Google Scholar 

  • King G (1995) Morphological development in Brassica oleracea is modulated by in vivo treatment with 5-azacytidine. J Hortic Sci 70:333–342

    CAS  Google Scholar 

  • King GJ (2007) Utilization of Arabidopsis and Brassica genomic resources to underpin genetic analysis and improvement of Brassica crops. In: Varshney RK, Koebner RMD (eds) Model plants: crop improvement. CRC, Boca Ratan, pp 33–69

    Google Scholar 

  • King GJ, Amoah S, Kurup S (2010) Exploring and exploiting epigenetic variation in crop plants. Genome 53:856–868

    PubMed  CAS  Google Scholar 

  • Kliebenstein D (2009) Quantitative genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTLs. Annu Rev Plant Biol 60:93–114

    PubMed  CAS  Google Scholar 

  • Koo DH, Plaha P, Lim YP, Hur YK, Bang JW (2004) A high-resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization. Theor Appl Genet 109:1346–1352 Koo DH, Hong CP, Batley J, Chung YS, Edwards D, Bang JW et al (2011) Rapid divergence of repetitive DNAs in Brassica relatives. Genomics 97:173–185

    PubMed  CAS  Google Scholar 

  • Lagercrantz U, Lydiate DJ (1995) RFLP mapping in Brassica nigra indicates differing recombination rates in male and female meiosis. Genome 38:255–264

    PubMed  CAS  Google Scholar 

  • Lim KB, de Jong H, Yang TJ, Park JY, Kwon SJ, Kim JS et al (2005) Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol Cells 19:436–444

    PubMed  CAS  Google Scholar 

  • Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY, Kwon SJ et al (2007) Characterization of the centromere and pericentromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J 49:173–183

    PubMed  CAS  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    PubMed  CAS  Google Scholar 

  • Long Y, Xia W, Li R, Wang J, Shao M, Feng J et al (2011) Epigenetic QTL mapping in Brassica napus. Genetics 189:1093–1102

    PubMed  CAS  Google Scholar 

  • Love C, Andongabo A, Wang J, Carion P, Rawlings C, King GJ (2012) InterstoreDB: a generic intergration resource for genetic and genomic data. J Integr Plant Biol 54:345–355

    PubMed  CAS  Google Scholar 

  • Love CG, Graham NS, Ó Lochlainn S, Bowen HC, May ST, White PJ et al (2010) A Brassica exon array for whole-transcript gene expression profiling. PLOS One 5(9):e12812

    PubMed  Google Scholar 

  • Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn TC (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348

    PubMed  CAS  Google Scholar 

  • Lukens LN, Quijada PA, Udall J, Pires JC, Schranz ME, Osborn TC (2004) Genome redundancy and plasticity within ancient and recent Brassica crop species. Biol J Linn Soc 82:665–674

    Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    PubMed  CAS  Google Scholar 

  • Manning K, Tor M, Poole M, Hong Y, Thompson A, King GJ et al (2006) A naturally occurring epigenetic mutation in an SBP-box gene inhibits tomato fruit ripening. Nat Genet 38:948–952

    PubMed  CAS  Google Scholar 

  • Mun JH, Kwon SJ, Yang TJ, Kim HS, Choi BS, Baek S et al (2008) The first generation of a BAC-based physical map of Brassica rapa. BMC Genomics 9:280

    PubMed  Google Scholar 

  • Mun JH, Kwon SJ, Yang TJ, Seol YJ, Jin M, Kim JA et al (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111

    PubMed  Google Scholar 

  • Mun JH, Kwon SJ, Seol YJ, Kim JA, Jin M, Kim JS et al (2010) Sequence and structure of Brassica rapa chromosome A3. Genome Biol 11:R94

    PubMed  Google Scholar 

  • Nagaharu U (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation. Jpn J Bot 7:389–452

    Google Scholar 

  • Østergaard L, King GJ (2008) Standardized gene nomenclature for the Brassica genus. Plant Methods 4:10

    PubMed  Google Scholar 

  • Panjabi P, Jaqanath A, Bisht NC, Padmaja KL, Sharma C, Gupta V et al (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using intron polymorphism IP markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 3:113–132

    Google Scholar 

  • Park JY, Koo DH, Hong CP, Lee SJ, Jeon JW, Lee SH et al (2005) Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kb gene-rich region of Arabidopsis chromosome 4 duplicated on chromosome 5. Mole Genet Genomics 274:579–588

    CAS  Google Scholar 

  • Parkin IAP, Clarke WE, Sidebottom C, Zhang W, Robinson SJ, Links MG et al (2010) Towards unambiguous transcript mapping in the allotetraploid Brassica napus. Genome 53:929–938

    PubMed  CAS  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC et al (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    PubMed  CAS  Google Scholar 

  • Parkin IA, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131

    PubMed  CAS  Google Scholar 

  • Prakash S, Bhat SR, Quiros CF, Kirti PB, Chopra VL (2009) Brassica and its close allies: cytogenetics and evolution. Plant Breed Rev 31:21–187

    CAS  Google Scholar 

  • Quiros CF, Farnham M (2011) The genetics of Brassica oleracea. In: Bancroft I, Schmidt R (eds) Genetics and genomics of the Brassicaceae, Plant genetics and genomics series. Springer, New York

    Google Scholar 

  • Rae AM, Howell EC, Kearsey MJ (1999) More QTL for flowering time revealed by substitution lines in Brassica oleracea. Heredity 83:586–596

    PubMed  Google Scholar 

  • Ramchiary N, Lim YP (2011) Genetics of Brassica rapa L. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae, vol 9, Plant genetics and genomics: crops and models. Springer, New York, pp 215–260

    Google Scholar 

  • Rana D, van den Boogaart T, Bent E, O’Neill CM, Hynes L, Macpherson L et al (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40:725–733

    PubMed  CAS  Google Scholar 

  • Ryder CD, Smith LB, Teakle GR, King GJ (2001) Contrasting genome organisation: two regions of the Brassica oleracea genome compared with collinear regions of the Arabidopsis thaliana genome. Genome 44:808–817

    PubMed  CAS  Google Scholar 

  • Salmon A, Clotault J, Jenczewski E, Chable V, Manzanares-Dauleux MJ (2008) Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Sci 174:61–70

    CAS  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2005) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:1360–1385

    Google Scholar 

  • Schranz ME, Song BH, Windsor AJ, Mitchell-Olds T (2007) Comparative genomics in the Brassicaceae: a family-wide perspective. Curr Opin Plant Biol 10:168–175

    PubMed  CAS  Google Scholar 

  • Sharpe AG, Parkin IA, Keith DJ, Lydiate DJ (1995) Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape Brassica napus. Genome 38:1112–1121

    PubMed  CAS  Google Scholar 

  • Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C et al (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    PubMed  CAS  Google Scholar 

  • Shiba H, Kakizaki T, Iwano M, Tarutani Y, Watanabe M, Isogai A et al (2006) Dominance relationships between self-incompatibility alleles controlled by DNA methylation. Nat Genet 38:297–299

    PubMed  CAS  Google Scholar 

  • Smooker AM, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F et al (2010) The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theor Appl Genet 122:1075–1090

    PubMed  Google Scholar 

  • Snowdon R (2007) Cytogenetics and genome analysis in Brassica crops. Chromosome Res 15:85–95

    PubMed  CAS  Google Scholar 

  • Stephenson P, Baker D, Girin T, Perez A, Amoah S, King GJ et al (2010) A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biol 10:62

    PubMed  Google Scholar 

  • Stokes TL, Kunkel BN, Richards EJ (2002) Epigenetic variation in Arabidopsis disease resistance. Genes Dev 16:171–182

    PubMed  CAS  Google Scholar 

  • Suwabe K, Morgan C, Bancroft I (2008) Integration of Brassica A genome genetic linkage map between Brassica napus and B. rapa. Genome 51:169–176

    PubMed  CAS  Google Scholar 

  • Szadkowski E, Eber F, Huteau V, Lodé M, Huneau C, Belcram H et al (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112

    PubMed  CAS  Google Scholar 

  • The Brassica rapa Genome Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Google Scholar 

  • Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR et al (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveals gene loss, fragmentation and dispersal following polyploidy. Plant Cell 18:1348–1359

    PubMed  CAS  Google Scholar 

  • Trick M, Cheung F, Drou N, Fraser F, Lobenhofer EK, Hurban P et al (2009a) A newly-developed community microarray resource for transcriptome profiling inBrassica species enables the confirmation of Brassica-specific expressed sequences. BMC Plant Biol 9:50

    PubMed  Google Scholar 

  • Trick M, Kwon SJ, Choi SR, Fraser F, Soumpourou W, Drou N et al (2009b) Complexity of genome evolution by segmental rearrangement in Brassica rapa revealed by sequence-level analysis. BMC Genomics 10:539

    PubMed  Google Scholar 

  • Trick M, Long Y, Meng J, Bancroft I (2009c) Single nucleotide polymorphism SNP discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346

    PubMed  CAS  Google Scholar 

  • Vaughn MW, Tanurdžić M, Lippman Z, Jiang H, Carrasquillo R et al (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5(7):e174

    PubMed  Google Scholar 

  • Wang J, Hopkins C, Hou J, Zou X, Wand C, Long Y et al (2012) Promoter variation and transcript divergence in brassicaceae lineages of flowering locus T. PLoS One 7(10):e47127

    PubMed  CAS  Google Scholar 

  • Wang J, Lydiate DJ, Parkin IAP, Falentin C, Delourme R, Carion P et al (2011a) Integration of linkage maps for the Amphidiploid Brassica napus, and comparative mapping with Arabidopsis and Brassica rapa. BMC Genomics 12:101

    PubMed  CAS  Google Scholar 

  • Wang X, Torres MJ, Pierce G, Lemke C, Nelson LK, Yuksel B et al (2011b) A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations. BMC Genomics 12:470

    PubMed  CAS  Google Scholar 

  • Wang N, Wang Y, Tian F, King GJ, Zhang C, Long Y et al (2008) A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol 180:751–765

    PubMed  CAS  Google Scholar 

  • Wang J, Wu B, Liu J, Jiang C, Long Y, Shi L et al (2009) The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol 9:271

    PubMed  Google Scholar 

  • Xiong Z, Pires JC (2011) Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 187:37–49

    PubMed  CAS  Google Scholar 

  • Xu Y, Zhong L, Wu X, Fang X, Wang J (2009) Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Planta 229:471–483

    PubMed  CAS  Google Scholar 

  • Xu J, Qian X, Wang X, Li R, Cheng X, Yang T et al (2010) Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genomics 11:594

    PubMed  Google Scholar 

  • Yang B, Qiu D, Quiros CF (2010) Variation of five major glucosinolate genes in Brassica rapa in relation to Brassica oleracea and Arabidopsis thaliana. Span J Agric Res 8:662–671

    Google Scholar 

  • Zhang XY, Wessler SR (2004) Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proc Natl Acad Sci USA 101:5589–5594

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham J. King B.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

King, G.J. (2013). Genome Analysis. In: Gupta, S. (eds) Biotechnology of Crucifers. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7795-2_6

Download citation

Publish with us

Policies and ethics