Skip to main content

Iatrogenic Genetic Damage of Spermatozoa

  • Chapter
  • First Online:
Genetic Damage in Human Spermatozoa

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 791))

Abstract

Various factors that negatively influence male fertility can affect sperm morphology and physiology. Many studies on humans and animals suggest that both radiation and chemotherapy alter the sperm chromatin, inducing significant damage to sperm DNA, and decrease the level of protamination, thereby altering DNA compaction. Spermatozoa from cancer survivors are affected by chemotherapy even years after the end of treatment. We are exposed to various toxicants present in the environment (e.g., products of air pollution, pesticides, and plasticizers) whose impact on human male reproduction has not yet been established.

This chapter aims to update our knowledge on how the sperm chromatin structure is modified by external agents and to describe the different strategies available to better study this complex structure in infertile men.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aben K, van Gaal C, van Gils N et al (2012) Cancer in adolescents and young adults (15–29 years): a population-based study in the Netherlands 1989–2009. Acta Oncol 51:922–933

    PubMed  Google Scholar 

  • Agarwal A, Gupta S, Sikka S (2006) The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol 18:325–332

    PubMed  Google Scholar 

  • Aitken R, Baker M (2006) Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol 250:66–69

    PubMed  CAS  Google Scholar 

  • Aitken R, Curry B (2011) Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal 14:367–381

    PubMed  CAS  Google Scholar 

  • Aitken R, Gordon E, Harkiss D et al (1998) Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod 59:1037–1046

    PubMed  CAS  Google Scholar 

  • Aitken R, De Iuliis G, Finnie J et al (2010) Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod 25:2415–2426

    PubMed  CAS  Google Scholar 

  • Aoki V, Carrell D (2003) Human protamines and the developing spermatid: their structure, function, expression and relationship with male infertility. Asian J Androl 5:315–324

    PubMed  CAS  Google Scholar 

  • Auger J, Mesbah M, Huber C et al (1990) Aniline blue staining as a marker of sperm chromatin defects associated with different semen characteristics discriminates between proven fertile and suspected infertile men. Int J Androl 13:452–462

    PubMed  CAS  Google Scholar 

  • Balhorn R (2007) The protamine family of sperm nuclear proteins. Genome Biol 8:227

    PubMed  Google Scholar 

  • Ballachey B, Evenson D, Saacke R (1988) The sperm chromatin structure assay. Relationship with alternate tests of semen quality and heterospermic performance of bulls. J Androl 9:109–115

    PubMed  CAS  Google Scholar 

  • Bedford J, Calvin H (1974) The occurrence and possible functional significance of -S-S- crosslinks in sperm heads, with particular reference to eutherian mammals. J Exp Zool 188:137–155

    PubMed  CAS  Google Scholar 

  • Bedford J, Bent M, Calvin H (1973) Variations in the structural character and stability of the nuclear chromatin in morphologically normal human spermatozoa. J Reprod Fertil 33:19–29

    PubMed  CAS  Google Scholar 

  • Bench G, Corzett M, Kramer C et al (2000) Zinc is sufficiently abundant within mammalian sperm nuclei to bind stoichiometrically with protamine 2. Mol Reprod Dev 56:512–519

    PubMed  CAS  Google Scholar 

  • Bianchi F, Rousseaux-Prevost R, Sautiere P et al (1992) P2 protamines from human sperm are zinc -finger proteins with one CYS2/HIS2 motif. Biochem Biophys Res Commun 182:540–547

    PubMed  CAS  Google Scholar 

  • Bianchi P, Manicardi G, Bizzaro D et al (1993) Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod 49:1083–1088

    PubMed  CAS  Google Scholar 

  • Bianchi P, Manicardi G, Urner F et al (1996) Chromatin packaging and morphology in ejaculated human spermatozoa: evidence of hidden anomalies in normal spermatozoa. Mol Hum Reprod 2:139–144

    PubMed  CAS  Google Scholar 

  • Bizzaro D, Manicardi G, Bianchi P et al (1998) In-situ competition between protamine and fluorochromes for sperm DNA. Mol Hum Reprod 4:127–132

    PubMed  CAS  Google Scholar 

  • Bjorndahl L, Kvist U (2009) Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol Hum Reprod 16:23–29

    PubMed  Google Scholar 

  • Blount B, Silva M, Caudill S et al (2000) Levels of seven urinary phthalate metabolites in a human reference population. Environ Health Perspect 108:979–982

    PubMed  CAS  Google Scholar 

  • Cambi M, Tamburrino L, Marchiani S et al (2013) Development of a specific method to evaluate 8-hydroxy,2-deoxyguanosine in sperm nuclei: relationship with semen quality in a cohort of 94 subjects. Reprod 145:227–235

    Google Scholar 

  • Cayli S, Sakkas D, Vigue L et al (2004) Cellular maturity and apoptosis in human sperm: creatine kinase, caspase-C3 and Bcl-XL levels in mature and diminished maturity sperm. Mol Hum Reprod 10:365–372

    PubMed  CAS  Google Scholar 

  • Chabory E, Damon C, Lenoir A et al (2009) Mammalian glutathione peroxidases control acquisition and maintenance of spermatozoa integrity. J Anim Sci 88:1321–1331

    PubMed  Google Scholar 

  • Codrington A, Hales B, Robaire B (2004) Spermiogenic germ cell phase-specific DNA damage following cyclophosphamide exposure. J Androl 25:354–362

    PubMed  Google Scholar 

  • Conrad M, Moreno S, Sinowatz F et al (2005) The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability. Mol Cell Biol 25:7637–7644

    PubMed  CAS  Google Scholar 

  • Couture C, Fortin M, Carrier G et al (2009) Assessment of exposure to pyrethroids and pyrethrins in a rural population of the montegie area, Quebec, Canada. J Occup Environ Hyg 6:341–352

    PubMed  CAS  Google Scholar 

  • Croxford T, McCormick N, Kelleher S (2011) Moderate zinc deficiency reduces testicular Zip6 and Zip10 abundance and impairs spermatogenesis in mice. J Nutr 141:359–365

    PubMed  CAS  Google Scholar 

  • de Lamirande E, Gagnon C (1995) Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod 10(Suppl 1):15–21

    PubMed  CAS  Google Scholar 

  • de Lamirande E, O’Flaherty C (2008) Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta 1784:106–115

    PubMed  Google Scholar 

  • de Lamirande E, O’Flaherty C (2012) Sperm capacitation as an oxidative event. In: Aitken J, Alvarez J, Agawarl A (eds) Studies on men’s health and fertility, oxidative stress in applied basic research and clinical practice. Springer Science, New York, pp 57–94

    Google Scholar 

  • de Mateo S, Gazquez C, Guimera M et al (2008) Protamine 2 precursors (Pre-P2), protamine 1 to protamine 2 ratio (P1/P2), and assisted reproduction outcome. Fertil Steril

    Google Scholar 

  • de Mateo S, Castillo J, Estanyol J et al (2011) Proteomic characterization of the human sperm nucleus. Proteomics 11:2714–2726

    PubMed  Google Scholar 

  • de Yebra L, Ballesca J, Vanrell J et al (1998) Detection of P2 precursors in the sperm cells of infertile patients who have reduced protamine P2 levels. Fertil Steril 69:755–759

    PubMed  Google Scholar 

  • Deans A, West S (2011) DNA interstrand crosslink repair and cancer. Nat Rev Cancer 11:467–480

    PubMed  CAS  Google Scholar 

  • Erenpreiss J, Bars J, Lipatnikova V et al (2001) Comparative study of cytochemical tests for sperm chromatin integrity. J Androl 22:45–53

    PubMed  CAS  Google Scholar 

  • Erenpreiss J, Jepson K, Giwercman A et al (2004) Toluidine blue cytometry test for sperm DNA conformation: comparison with the flow cytometric sperm chromatin structure and TUNEL assays. Hum Reprod 19:2277–2282

    PubMed  CAS  Google Scholar 

  • Esterhuizen A, Franken D, Becker P et al (2002) Defective sperm decondensation: a cause for fertilization failure. Andrologia 34:1–7

    PubMed  CAS  Google Scholar 

  • Evenson D, Wixon R (2005) Environmental toxicants cause sperm DNA fragmentation as detected by the Sperm Chromatin Structure Assay (SCSA(R)). Toxicol Appl Pharmacol 207:532–537

    PubMed  Google Scholar 

  • Evenson D, Wixon R (2006) Meta-analysis of sperm DNA fragmentation using the sperm chromatin structure assay. Reprod Biomed Online 12:466–472

    PubMed  CAS  Google Scholar 

  • Evenson D, Darzynkiewicz Z, Melamed M (1980) Relation of mammalian sperm chromatin heterogeneity to fertility. Science 210:1131–1133

    PubMed  CAS  Google Scholar 

  • Evenson D, Jost L, Marshall D et al (1999) Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod 14:1039–1049

    PubMed  CAS  Google Scholar 

  • Evenson D, Larson K, Jost L (2002) Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl 23:25–43

    PubMed  Google Scholar 

  • Fernandez J, Muriel L, Rivero M et al (2003) The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl 24:59–66

    PubMed  CAS  Google Scholar 

  • Fernandez J, Muriel L, Goyanes V et al (2005) Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertil Steril 84:833–842

    PubMed  CAS  Google Scholar 

  • Foresta C, Zorzi M, Rossato M et al (1992) Sperm nuclear instability and staining with aniline blue: abnormal persistence of histones in spermatozoa in infertile men. Int J Androl 15:330–337

    PubMed  CAS  Google Scholar 

  • Fortes C, Mastroeni S, Pilla M et al (2013) The relation between dietary habits and urinary levels of 3-phenoxybenzoic acid, a pyrethroid metabolite. Food Chem Toxicol 52:91–96

    PubMed  CAS  Google Scholar 

  • Fossa S, de Angelis P, Kraggerud S et al (1997) Prediction of posttreatment spermatogenesis in patients with testicular cancer by flow cytometric sperm chromatin structure assay. Cytometry 30:192–196

    PubMed  CAS  Google Scholar 

  • Franco J, Mauri A, Petersen C et al (2012) Large nuclear vacuoles are indicative of abnormal chromatin packaging in human spermatozoa. Int J Androl 35:46–51

    PubMed  Google Scholar 

  • Gagnon C, Iwasaki A, de Lamirande E et al (1991) Reactive oxygen species and human spermatozoa. Ann N Y Acad Sci 637:436–444

    PubMed  CAS  Google Scholar 

  • Gandini L, Lombardo F, Paoli D et al (2000) Study of apoptotic DNA fragmentation in human spermatozoa. Hum Reprod 15:830–839

    PubMed  CAS  Google Scholar 

  • Gandini L, Sgro P, Lombardo F et al (2006) Effect of chemo- or radiotherapy on sperm parameters of testicular cancer patients. Hum Reprod 21:2882–2889

    PubMed  CAS  Google Scholar 

  • Gatewood J, Cook G, Balhorn R et al (1987) Sequence-specific packaging of DNA in human sperm chromatin. Science 236:962–964

    PubMed  CAS  Google Scholar 

  • Gatewood J, Cook G, Balhorn R et al (1990a) Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem 265:20662–20666

    PubMed  CAS  Google Scholar 

  • Gatewood J, Schroth G, Schmid C et al (1990b) Zinc-induced secondary structure transitions in human sperm protamines. J Biol Chem 265:20667–20672

    PubMed  CAS  Google Scholar 

  • Glander H, Schaller J (1999) Binding of annexin V to plasma membranes of human spermatozoa: a rapid assay for detection of membrane changes after cryostorage. Mol Hum Reprod 5:109–115

    PubMed  CAS  Google Scholar 

  • Gong S, San Gabriel M, Zini A et al (2012) Low amounts and high thiol oxidation of peroxiredoxins in spermatozoa from infertile men. J Androl 33:1342–1351

    PubMed  CAS  Google Scholar 

  • Gosalvez J, Lopez-Fernandez C, Fernandez J (2011) Sperm chromatin dispersion test: technical aspects and clinical applications. In: Zini A, Agarwal A (eds) Sperm chromatin. Springer, New York, pp 151–170

    Google Scholar 

  • Govin J, Caron C, Lestrat C et al (2004) The role of histones in chromatin remodelling during mammalian spermiogenesis. Eur J Biochem 271:3459–3469

    PubMed  CAS  Google Scholar 

  • Greco E, Scarselli F, Iacobelli M et al (2005) Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod 20:226–230

    PubMed  Google Scholar 

  • Haines G, Marples B, Daniel P et al (1998) DNA damage in human and mouse spermatozoa after in vitro-irradiation assessed by the comet assay. Adv Exp Med Biol 444:79–91

    PubMed  CAS  Google Scholar 

  • Haines G, Hendry J, Daniel C et al (2002) Germ cell and dose-dependent DNA damage measured by the comet assay in murine spermatozoaa after testicular X-irradiation. Biol Reprod 67:854–861

    PubMed  CAS  Google Scholar 

  • Hammadeh M, Kuhnen A, Amer A et al (2001) Comparison of sperm preparation methods: effect on chromatin and morphology recovery rates and their consequences on the clinical outcome after in vitro fertilization embryo transfer. Int J Androl 24:360–368

    PubMed  CAS  Google Scholar 

  • Hammoud S, Nix D, Hammoud A et al (2011) Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod 26:2558–2569

    PubMed  CAS  Google Scholar 

  • Huddart R, Birtle A (2005) Recent advances in the treatment of testicular cancer. Expert Rev Anticancer Ther 5:123–138

    PubMed  CAS  Google Scholar 

  • Hurley L (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2:188–200

    PubMed  CAS  Google Scholar 

  • Ji G, Xia Y, Gu A et al (2011) Effects of non-occupational environmental exposure to pyrethroids on semen quality and sperm DNA integrity in Chinese men. Reprod Toxicol 31:171–176

    PubMed  CAS  Google Scholar 

  • Kenney L, Cohen L, Shnorhavorian M et al (2012) Male reproductive health after childhood, adolescent, and young adult cancers: a report from the children’s oncology group. J Clin Oncol 30:3408–3416

    PubMed  Google Scholar 

  • Kerr J, Loveland K, O’Bryan M et al (2006) Cytology of the testis and intrinsic control mechanisms. In: Jimmy D, Tony M, Donald W et al (eds) Knobil and Neill’s physiology of reproduction, 3rd edn. Academic, St Louis, pp 827–947

    Google Scholar 

  • Kimata A, Kondo T, Ueyama J et al (2009) Relationship between dietary habits and urinary concentrations of 3-phenoxybonzoic acid in a middle-aged and elderly general population in Japan. Environ Health Prev Med 14:173–179

    PubMed  CAS  Google Scholar 

  • Kopp H, Kuczyk M, Classen J et al (2006) Advances in the treatment of testicular cancer. Drugs 66:641–659

    PubMed  CAS  Google Scholar 

  • Kosower N, Kosower EM (1987) Thiol labeling with bromobimanes. In: William BJ and Owen WG (eds.) Methods in Enzymology, Academic Press, New York 143:76–84

    Google Scholar 

  • Kosower N, Katayose H, Yanagimachi R (1992) Thiol-disulfide status and acridine orange fluorescence of mammalian sperm nuclei. J Androl 13:342–348

    PubMed  CAS  Google Scholar 

  • Lee T, Liu C, Shih Y et al (2010) Magnetic-activated cell sorting for sperm preparation reduces spermatozoa with apoptotic markers and improves the acrosome reaction in couples with unexplained infertility. Hum Reprod 25:839–846

    PubMed  CAS  Google Scholar 

  • Lewis J, Song Y, de Jong M et al (2003) A walk though vertebrate and invertebrate protamines. Chromosoma 111:473–482

    PubMed  Google Scholar 

  • Lolis D, Georgiou I, Syrrou M et al (1996) Chromomycin A3-staining as an indicator of protamine deficiency and fertilization. Int J Androl 19:23–27

    PubMed  CAS  Google Scholar 

  • Mahfouz R, Sharma R, Poenicke K et al (2009) Evaluation of poly(ADP-ribose) polymerase cleavage (cPARP) in ejaculated human sperm fractions after induction of apoptosis. Fertil Steril 91:2210–2220

    PubMed  CAS  Google Scholar 

  • Makhlouf A, Niederberger C (2006) DNA integrity tests in clinical practice: it is not a simple matter of black and white (or red and green). J Androl 27:316–323

    PubMed  Google Scholar 

  • Manicardi G, Tombacco A, Bizzaro D et al (1998) DNA strand breaks in ejaculated human spermatozoa: comparison of susceptibility to the nick translation and terminal transferase assays. Histochem J 30:33–39

    PubMed  CAS  Google Scholar 

  • Marchesi D, Biederman H, Ferrara S et al (2010) The effect of semen processing on sperm DNA integrity: comparison of two techniques using the novel Toluidine Blue Assay. Eur J Obstet Gynecol Reprod Biol 151:176–180

    PubMed  CAS  Google Scholar 

  • Marchiani S, Tamburrino L, Maoggi A et al (2007) Characterization of M540 bodies in human semen: evidence that they are apoptotic bodies. Mol Hum Reprod 13:621–631

    PubMed  CAS  Google Scholar 

  • Marcon L, Boissonneault G (2004) Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod 70:910–918

    PubMed  CAS  Google Scholar 

  • Marcon L, Hales B, Robaire B (2008) Reversibility of the effects of subchronic exposure to the cancer chemotherapeutics bleomycin, etoposide, and cisplatin on spermatogenesis, fertility, and progeny outcome in the male rat. J Androl 29:408–417

    PubMed  CAS  Google Scholar 

  • Marcon L, Zhang X, Hales B et al (2010) Development of a short-term fluorescence-based assay to assess the toxicity of anticancer drugs on rat stem/progenitor spermatogonia in vitro. Biol Reprod 83:228–237

    PubMed  CAS  Google Scholar 

  • Marcon L, Zhang X, Hales B et al (2011) Effects of chemotherapeutic agents for testicular cancer on rat spermatogonial stem/progenitor cells. J Androl 32:432–443

    PubMed  CAS  Google Scholar 

  • Martinez-Heredia J, Estanyol J, Ballesca J et al (2006) Proteomic identification of human sperm proteins. Proteomics 6:4356–4369

    PubMed  CAS  Google Scholar 

  • Marushige Y, Marushige K (1975) Transformation of sperm histone during formation and maturation of rat spermatozoa. J Biol Chem 250:39–45

    PubMed  CAS  Google Scholar 

  • Marushige Y, Marushige K (1978) Phosphorylation of sperm histone during spermiogenesis in mammals. Biochim Biophys Acta 518:440–449

    PubMed  CAS  Google Scholar 

  • McKelvey-Martin V, Melia N, Walsh I et al (1997) Two potential clinical applications of the alkaline single-cell gel electrophoresis assay: (1). Human bladder washings and transitional cell carcinoma of the bladder; and (2). Human sperm and male infertility. Mutat Res 375:93–104

    PubMed  CAS  Google Scholar 

  • McPherson S, Longo F (1992) Localization of DNase I-hypersensitive regions during rat spermatogenesis: stage-dependent patterns and unique sensitivity of elongating spermatids. Mol Reprod Dev 31:268–279

    PubMed  CAS  Google Scholar 

  • McPherson S, Longo FJ (1993) Nicking of rat spermatid and spermatozoa DNA: possible involvement of DNA topoisomerase II. Dev Biol 158:122–130

    PubMed  CAS  Google Scholar 

  • Meeker J (2010) Exposure to environmental endocrine disrupting compounds and men’s health. Maturitas 66:236–241

    PubMed  CAS  Google Scholar 

  • Meeker J, Singh N, Ryan L et al (2004) Urinary levels of insecticide metabolites and DNA damage in human sperm. Hum Reprod 19:2573–2580

    PubMed  CAS  Google Scholar 

  • Meistrich M, Finch M, da Cunha M et al (1982) Damaging effects of fourteen chemotherapeutic drugs on mouse testis cells. Cancer Res 42:122–131

    PubMed  CAS  Google Scholar 

  • Meistrich M, Mohapatra B, Shirley C et al (2003) Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111:483–488

    PubMed  Google Scholar 

  • Muratori M, Piomboni P, Baldi E et al (2000) Functional and ultrastructural features of DNA-fragmented human sperm. J Androl 21:903–912

    PubMed  CAS  Google Scholar 

  • Muratori M, Maggi M, Spinelli S et al (2003) Spontaneous DNA fragmentation in swim-Up selected human spermatozoa during long term incubation. J Androl 24:253–262

    PubMed  CAS  Google Scholar 

  • Nakamura J, La D, Swenberg J (2000) 5’-Nicked apurinic/apyrimidinic sites are resistant to β-elimination by β-polymerase and are persistent in human cultured cells after oxidative stress. J Biol Chem 275:5323–5328

    PubMed  CAS  Google Scholar 

  • O’Flaherty C, Vaisheva F, Hales B et al (2008) Characterization of sperm chromatin quality in testicular cancer and Hodgkin’s lymphoma patients prior to chemotherapy. Hum Reprod 23:1044–1052

    PubMed  Google Scholar 

  • O’Flaherty C, Hales B, Chan P et al (2010) Impact of chemotherapeutics and advanced testicular cancer or Hodgkin lymphoma on sperm deoxyribonucleic acid integrity. Fertil Steril 94:1374–1379

    PubMed  Google Scholar 

  • O’Flaherty C, Chan P, Hales B et al (2012) Sperm chromatin structure components are differentially repaired in cancer survivors. J Androl 33:629–636

    PubMed  Google Scholar 

  • Oh E, Lee E, Im H et al (2005) Evaluation of immuno- and reproductive toxicities and association between immunotoxicological and genotoxicological parameters in waste incineration workers. Toxicology 210:65–80

    PubMed  CAS  Google Scholar 

  • Oliva R, Mezquita C (1982) Histone H4 hyperacetylation and rapid turnover of its acetyl groups in transcriptionally inactive rooster testis spermatids. Nucleic Acids Res 10:8049–8059

    PubMed  CAS  Google Scholar 

  • Oliva R, Bazett-Jones D, Mezquita C et al (1987) Factors affecting nucleosome disassembly by protamines in vitro. Histone hyperacetylation and chromatin structure, time dependence, and the size of the sperm nuclear proteins. J Biol Chem 262:17016–17025

    PubMed  CAS  Google Scholar 

  • Oliva R, Bazett-Jones D, Locklear L et al (1990) Histone hyperacetylation can induce unfolding of the nucleosome core particle. Nucleic Acids Res 18:2739–2747

    PubMed  CAS  Google Scholar 

  • Ollero M, Gil-Guzman E, Lopez M et al (2001) Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod 16:1912–1921

    PubMed  CAS  Google Scholar 

  • Pant N, Shukla M, Kumar Patel D et al (2008) Correlation of phthalate exposures with semen quality. Toxicol Appl Pharmacol 231:112–116

    PubMed  CAS  Google Scholar 

  • Papoutsopoulou S, Nikolakaki E, Chalepakis G et al (1999) SR protein-specific kinase 1 is highly expressed in testis and phosphorylates protamine 1. Nucleic Acids Res 27:2972–2980

    PubMed  CAS  Google Scholar 

  • Paul C, Nagano M, Robaire B (2011) Aging results in differential regulation of DNA repair pathways in pachytene spermatocytes in the Brown Norway rat. Biol Reprod 80:913–919

    Google Scholar 

  • Payne J, Raburn D, Couchman G et al (2005) Redefining the relationship between sperm deoxyribonucleic acid fragmentation as measured by the sperm chromatin structure assay and outcomes of assisted reproductive techniques. Fertil Steril 84:356–364

    PubMed  Google Scholar 

  • Petersen P, Hansen S (1999) The course of long-term toxicity in patients treated with cisplatin-based chemotherapy for non-seminomatous germ-cell cancer. Ann Oncol 10:1475–1483

    PubMed  CAS  Google Scholar 

  • Petersen P, Hansen S, Giwercman A et al (1994) Dose-dependent impairment of testicular function in patients treated with cisplatin-based chemotherapy for germ cell cancer. Ann Oncol 5:355–358

    PubMed  CAS  Google Scholar 

  • Petersen P, Skakkebaek N, Giwercman A (1998) Gonadal function in men with testicular cancer: biological and clinical aspects. APMIS 106:24–34

    PubMed  CAS  Google Scholar 

  • Pfeifer H, Conrad M, Roethlein D et al (2001) Identification of a specific sperm nuclei selenoenzyme necessary for protamine thiol cross-linking during sperm maturation. FASEB J 15:1236–1238

    PubMed  CAS  Google Scholar 

  • Piña-Guzman B, Solis-Heredia M, Quintanilla-Vega B (2005) Diazinon alters sperm chromatin structure in mice by phosphorylating nuclear protamines. Toxicol Appl Pharmacol 202:189–198

    PubMed  Google Scholar 

  • Ramos L, van der Heijden G, Derijck A et al (2008) Incomplete nuclear transformation of human spermatozoa in oligo-astheno-teratospermia: characterization by indirect immunofluorescence of chromatin and thiol status. Hum Reprod 23:259–270

    PubMed  CAS  Google Scholar 

  • Retief J, Winkfein R, Dixon G et al (1993) Evolution of protamine P1 genes in primates. J Mol Evol 37:426–434

    PubMed  CAS  Google Scholar 

  • Robaire B, Hinton B, Orgebin-Crist M (2006) The epididymis. In: Jimmy D, Tony M, Donald W et al (eds) Knobil and Neill’s physiology of reproduction, 3rd edn. Academic, St Louis, pp 1071–1148

    Google Scholar 

  • Romerius P, Stahl O, Moell C et al (2011) High risk of azoospermia in men treated for childhood cancer. Int J Androl 34:69–76

    PubMed  CAS  Google Scholar 

  • Rousseaux J, Rousseaux-Prevost R (1995) Molecular localization of free thiols in human sperm chromatin. Biol Reprod 52:1066–1072

    PubMed  CAS  Google Scholar 

  • Rubes J, Selevan S, Evenson D et al (2005) Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod 20:2776–2783

    PubMed  CAS  Google Scholar 

  • Said T, Agarwal A, Grunewald S et al (2006) Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: an in vitro model. Biol Reprod 74:530–537

    PubMed  CAS  Google Scholar 

  • Sakkas D, Alvarez J (2010) Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 93:1027–1036

    PubMed  CAS  Google Scholar 

  • Sakkas D, Manicardi G, Bianchi P et al (1995) Relationship between the presence of endogenous nicks and sperm chromatin packaging in maturing and fertilizing mouse spermatozoa. Biol Reprod 52:1149–1155

    PubMed  CAS  Google Scholar 

  • Sakkas D, Mariethoz E, Manicardi G et al (1999) Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod 4:31–37

    PubMed  CAS  Google Scholar 

  • Sakkas D, Moffatt O, Manicardi G et al (2002) Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod 66:1061–1067

    PubMed  CAS  Google Scholar 

  • Salazar-Arredondo E, Solis-Heredia M, Rojas-Garcia E et al (2008) Sperm chromatin alteration and DNA damage by methyl-parathion, chlorpyrifos and diazinon and their oxon metabolites in human spermatozoa. Reprod Toxicol 25:455–460

    PubMed  CAS  Google Scholar 

  • Sams C, Jones K (2012) Biological monitoring for exposure to deltamethrin: a human oral dosing study and background levels in the UK general population. Toxicol Lett 213:35–38

    PubMed  CAS  Google Scholar 

  • Schmid I, Uittenbogaart C, Giorgi J (1994) Sensitive method for measuring apoptosis and cell surface phenotype in human thymocytes by flow cytometry. Cytometry 15:12–20

    PubMed  CAS  Google Scholar 

  • Seligman J, Shalgi R (1991) Protein thiols in spermatozoa and epididymal fluid of rats. J Reprod Fertil 93:399–408

    PubMed  CAS  Google Scholar 

  • Seligman J, Kosower N, Weissenberg R et al (1994) Thiol-disulfide status of human sperm proteins. J Reprod Fertil 101:435–443

    PubMed  CAS  Google Scholar 

  • Sergerie M, Laforest G, Bujan L et al (2005) Sperm DNA fragmentation: threshold value in male fertility. Hum Reprod 20:3446–3451

    PubMed  CAS  Google Scholar 

  • Spano M, Bonde J, Hjollund H et al (2000) Sperm chromatin damage impairs human fertility. The danish first pregnancy planner study team. Fertil Steril 73:43–50

    PubMed  CAS  Google Scholar 

  • Telford W, King L, Fraker P (1994) Rapid quantitation of apoptosis in pure and heterogeneous cell populations using flow cytometry. J Immunol Methods 172:1–16

    PubMed  CAS  Google Scholar 

  • Tempest H, Ko E, Chan P et al (2007) Sperm aneuploidy frequencies analysed before and after chemotherapy in testicular cancer and Hodgkin’s lymphoma patients. Hum Reprod 23: 251–258

    PubMed  Google Scholar 

  • Tempest H, Ko E, Rademaker A et al (2009) Intra-individual and inter-individual variations in sperm aneuploidy frequencies in normal men. Fertil Steril 91:185–192

    PubMed  Google Scholar 

  • Theis B, Nishri D, Bahl S et al (2006) Cancer in young adults in canada [Internet]. Toronto, Canada: Cancer Care Ontario; 2006 May, ISBN 0-921325-11-8 (pdf). http://www.phacaspc.gc.ca/publicat/cyac-cjac06/index-eng.php.

  • Thomson A, Campbell A, Irvine D et al (2002) Semen quality and spermatozoal DNA integrity in survivors of childhood cancer: a case–control study. Lancet 360:361–367

    PubMed  CAS  Google Scholar 

  • Torregrosa N, Dominguez-Fandos D, Camejo M et al (2006) Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients. Human Reprod 21:2084–2089

    CAS  Google Scholar 

  • Trasler J (2009) Epigenetics in spermatogenesis. Mol Cell Endocrinol 306:33–36

    PubMed  CAS  Google Scholar 

  • Tremellen K (2008) Oxidative stress and male infertility: a clinical perspective. Hum Reprod Update 14:243–258

    PubMed  CAS  Google Scholar 

  • Tsarev I, Erenpreiss J (2011) Cytochemical tests for sperm chromatin maturity. Sperm chromatin. In: Zini A, Agarwal A (eds) Springer, New York, p 181–188

    Google Scholar 

  • Tsarev I, Bungum M, Giwercman A et al (2009) Evaluation of male fertility potential by Toluidine Blue test for sperm chromatin structure assessment. Hum Reprod 24:1569–1574

    PubMed  CAS  Google Scholar 

  • Virro M, Larson-Cook K, Evenson D (2004) Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril 81:1289–1295

    PubMed  Google Scholar 

  • Weng S, Taylor S, Morshedi M et al (2002) Caspase activity and apoptotic markers in ejaculated human sperm. Mol Hum Reprod 8:984–991

    PubMed  CAS  Google Scholar 

  • Wouters-Tyrou D, Martinage A, Chevaillier P et al (1998) Nuclear basic proteins in spermiogenesis. Biochemie 80:117–128

    CAS  Google Scholar 

  • Yamaguchi S, Miura C, Kikuchi K et al (2009) Zinc is an essential trace element for spermatogenesis. Proc Natl Acad Sci USA 106:10859–10864

    PubMed  CAS  Google Scholar 

  • Yanagimachi R (1994) Mammalian fertilization. In: Knobil E, Neill D (eds) The physiology of reproduction. Raven Press, New York, pp 189–318

    Google Scholar 

  • Zalensky A, Siino J, Gineitis A et al (2002) Human Testis/Sperm-specific Histone H2B (hTSH2B). J Biol Chem 277:43474–43480

    PubMed  CAS  Google Scholar 

  • Zini A, Mak V, Phang D et al (1999) Potential adverse effect of semen processing on human sperm deoxyribonucleic acid integrity. Fertil Steril 72:496–499

    PubMed  CAS  Google Scholar 

  • Zini A, Kamal K, Phang D (2001) Free thiols in human spermatozoa: correlation with sperm DNA integrity. Urology 58:80–84

    PubMed  CAS  Google Scholar 

  • Zini A, Zhang X, San Gabriel M (2008) Sperm nuclear histone H2B: correlation with sperm DNA denaturation and DNA stainability. Asian J Androl 10:865–871

    PubMed  Google Scholar 

  • Zubkova E, Robaire B (2006) Effects of ageing on spermatozoal chromatin and its sensitivity to in vivo and in vitro oxidative challenge in the Brown Norway rat. Hum Reprod 21:2901–2910

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian O’Flaherty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

O’Flaherty, C. (2014). Iatrogenic Genetic Damage of Spermatozoa. In: Baldi, E., Muratori, M. (eds) Genetic Damage in Human Spermatozoa. Advances in Experimental Medicine and Biology, vol 791. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7783-9_8

Download citation

Publish with us

Policies and ethics