Skip to main content

Protamine Alterations in Human Spermatozoa

  • Chapter
  • First Online:
Genetic Damage in Human Spermatozoa

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 791))

Abstract

Protamines are the major nuclear proteins in sperm cells, having a crucial role in the correct packaging of the paternal DNA. The fact that protamine haploinsufficiency in mice resulted in abnormal chromatin packaging and male infertility suggested that the protamines could also be important candidates in explaining some of the idiopathic male infertility cases in humans. The first clinical studies focused on analyzing protamines at the protein level. Various studies have found the presence of an altered amount of protamines in some infertile patients, in contrast to the normal situation in fertile individuals where the two protamines, protamine 1 and protamine 2, are both present in approximately equal quantities. Subsequently, the protamine genes were the subject of various mutational genetic screening studies in search of variants that could be associated with deregulation in the protamine expression observed. The results of these protamine mutational studies showed that the presence of high penetrant mutations is a very rare cause of male infertility. However, some variants and some haplotypes described may behave as risk factors for male infertility. More recently, the presence of RNA in the mature sperm cell has also been investigated. The present chapter will introduce the basic aspects of protamine evolution and function and review the various articles published to date on the relationship between the protamines studied at the DNA, RNA, and protein levels and male infertility.

This work was supported by a grant to RO from the Spanish Ministry of Economy and Competitiveness (Ministerio de Economia y Competividad; FEDER BFU 2009–07118).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaral A, Castillo J, Estanyol JM et al (2013) Human sperm tail proteome suggests new endogenous metabolic pathways. Mol Cell Proteomics 12:330–342

    PubMed  CAS  Google Scholar 

  • Ando T, Yamasaki M, Suzuki K (1973) Protamines. Isolation, characterization, structure and function. Mol Biol Biochem Biophys 12:1–114

    PubMed  CAS  Google Scholar 

  • Aoki VW, Liu L, Carrell DT (2005a) Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod 20:1298–1306

    PubMed  CAS  Google Scholar 

  • Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JB, Carrell DT (2005b) DNA integrity is compromised in protamine-deficient human sperm. J Androl 26:741–748

    PubMed  CAS  Google Scholar 

  • Aoki VW, Christensen GL, Atkins JF et al (2006a) Identification of novel polymorphisms in the nuclear protein genes and their relationship with human sperm protamine deficiency and severe male infertility. Fertil Steril 86:1416–1422

    PubMed  CAS  Google Scholar 

  • Aoki VW, Liu L, Carrell DT (2006b) A novel mechanism of protamine expression deregulation highlighted by abnormal protamine transcript retention in infertile human males with sperm protamine deficiency. Mol Hum Reprod 12:41–50

    PubMed  CAS  Google Scholar 

  • Aoki VW, Liu L, Jones KP, Hatasaka HH et al (2006c) Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril 86:1408–1415

    PubMed  CAS  Google Scholar 

  • Arkhis A, Martinage A, Sautiere P et al (1991) Molecular structure of human protamine P4 (HP4), a minor basic protein of human sperm nuclei. Eur J Biochem 200:387–392

    PubMed  CAS  Google Scholar 

  • Arpanahi A, Brinkworth M, Iles D et al (2009) Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res 19:1338–1349

    PubMed  CAS  Google Scholar 

  • Aston KI, Carrell DT (2009) Genome-wide study of single-nucleotide polymorphisms associated with azoospermia and severe oligozoospermia. J Androl 30:711–725

    PubMed  CAS  Google Scholar 

  • Ausio J, Soley JT, Burger W et al (1999) The histidine-rich protamine from ostrich and tinamou sperm. A link between reptile and bird protamines. Biochemistry 38:180–184

    PubMed  CAS  Google Scholar 

  • Bach O, Glander HJ, Scholz G et al (1990) Electrophoretic patterns of spermatozoal nucleoproteins (NP) in fertile men and infertility patients and comparison with NP of somatic cells. Andrologia 22:217–224

    PubMed  CAS  Google Scholar 

  • Baker MA, Nixon B, Naumovski N et al (2012) Proteomic insights into the maturation and capacitation of mammalian spermatozoa. Syst Biol Reprod Med 58:211–217

    PubMed  CAS  Google Scholar 

  • Baker MA, Naumovski N, Hetherington L et al (2013) Head and flagella subcompartmental proteomic analysis of human spermatozoa. Proteomics 13:61–74

    PubMed  CAS  Google Scholar 

  • Balhorn R (2007) The protamine family of sperm nuclear proteins. Genome Biol 8:227

    PubMed  Google Scholar 

  • Balhorn R, Corzett M, Mazrimas J et al (1987) High-performance liquid chromatographic separation and partial characterization of human protamines 1, 2, and 3. Biotechnol Appl Biochem 9:82–88

    PubMed  CAS  Google Scholar 

  • Balhorn R, Reed S, Tanphaichitr N (1988) Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia 44:52–55

    PubMed  CAS  Google Scholar 

  • Balhorn R, Corzett M, Mazrimas JA (1992) Formation of intraprotamine disulfides in vitro. Arch Biochem Biophys 296:384–393

    PubMed  CAS  Google Scholar 

  • Belokopytova IA, Kostyleva EI, Tomilin AN et al (1993) Human male infertility may be due to a decrease of the protamine P2 content in sperm chromatin. Mol Reprod Dev 34:53–57

    PubMed  CAS  Google Scholar 

  • Bjorndahl L, Kvist U (2010) Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol Hum Reprod 16:23–29

    PubMed  Google Scholar 

  • Bloch DP (1969) A catalog of sperm histones. Genetics 61(Suppl):93–111

    PubMed  CAS  Google Scholar 

  • Carrell DT, Liu L (2001) Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl 22:604–610

    PubMed  CAS  Google Scholar 

  • Castillo J, Simon L, de Mateo S et al (2011) Protamine/DNA ratios and DNA damage in native and density gradient centrifuged sperm from infertile patients. J Androl 32:324–332

    PubMed  CAS  Google Scholar 

  • Chevaillier P, Mauro N, Feneux D et al (1987) Anomalous protein complement of sperm nuclei in some infertile men. Lancet 2:806–807

    PubMed  CAS  Google Scholar 

  • Chirat F, Arkhis A, Martinage A et al (1993) Phosphorylation of human sperm protamines HP1 and HP2: identification of phosphorylation sites. Biochim Biophys Acta 1203:109–114

    PubMed  CAS  Google Scholar 

  • Cho C, Willis WD, Goulding EH et al (2001) Haploinsufficiency of protamine-1 or −2 causes infertility in mice. Nat Genet 28:82–86

    PubMed  CAS  Google Scholar 

  • Cho C, Jung-Ha H, Willis WD et al (2003) Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod 69:211–217

    PubMed  CAS  Google Scholar 

  • Chocu S, Calvel P, Rolland AD et al (2012) Spermatogenesis in mammals: proteomic insights. Syst Biol Reprod Med 58:179–190

    PubMed  CAS  Google Scholar 

  • Corzett M, Mazrimas J, Balhorn R (2002) Protamine 1: protamine 2 stoichiometry in the sperm of eutherian mammals. Mol Reprod Dev 61:519–527

    PubMed  CAS  Google Scholar 

  • Dacheux JL, Belleannee C, Guyonnet B et al (2012) The contribution of proteomics to understanding epididymal maturation of mammalian spermatozoa. Syst Biol Reprod Med 58:197–210

    PubMed  CAS  Google Scholar 

  • Dahm R (2005) Friedrich Miescher and the discovery of DNA. Dev Biol 278:274–288

    PubMed  CAS  Google Scholar 

  • de Mateo S, Martinez-Heredia J, Estanyol JM et al (2007) Marked correlations in protein expression identified by proteomic analysis of human spermatozoa. Proteomics 7:4264–4277

    PubMed  Google Scholar 

  • de Mateo S, Gazquez C, Guimera M et al (2009) Protamine 2 precursors (Pre-P2), protamine 1 to protamine 2 ratio (P1/P2), and assisted reproduction outcome. Fertil Steril 91:715–722

    PubMed  Google Scholar 

  • de Mateo S, Castillo J, Estanyol JM et al (2011a) Proteomic characterization of the human sperm nucleus. Proteomics 11:2714–2726

    PubMed  Google Scholar 

  • de Mateo S, Ramos L, de Boer P et al (2011b) Protamine 2 precursors and processing. Protein Pept Lett 18:778–785

    PubMed  Google Scholar 

  • de Mateo S, Estanyol JM, Oliva R (2013) Methods for the analysis of the sperm proteome. Methods Mol Biol 927:411–422

    PubMed  Google Scholar 

  • de Vries M, Vosters S, Merkx G et al (2012) Human male meiotic sex chromosome inactivation. PLoS One 7:e31485

    PubMed  Google Scholar 

  • de Yebra L, Oliva R (1993) Rapid analysis of mammalian sperm nuclear proteins. Anal Biochem 209:201–203

    PubMed  Google Scholar 

  • de Yebra L, Ballesca JL, Vanrell JA et al (1993) Complete selective absence of protamine P2 in humans. J Biol Chem 268:10553–10557

    PubMed  Google Scholar 

  • de Yebra L, Ballesca JL, Vanrell JA et al (1998) Detection of P2 precursors in the sperm cells of infertile patients who have reduced protamine P2 levels. Fertil Steril 69:755–759

    PubMed  Google Scholar 

  • Depa-Martynow M, Kempisty B, Lianeri M et al (2007) Association between fertilin beta, protamines 1 and 2 and spermatid-specific linker histone H1-like protein mRNA levels, fertilization ability of human spermatozoa, and quality of preimplantation embryos. Folia Histochem Cytobiol 45(Suppl 1):S79–S85

    PubMed  Google Scholar 

  • Depa-Martynow M, Kempisty B, Jagodzinski PP et al (2012) Impact of protamine transcripts and their proteins on the quality and fertilization ability of sperm and the development of preimplantation embryos. Reprod Biol 12:57–72

    PubMed  Google Scholar 

  • Dorus S, Skerget S, Karr TL (2012) Proteomic discovery of diverse immunity molecules in mammalian spermatozoa. Syst Biol Reprod Med 58:218–228

    PubMed  CAS  Google Scholar 

  • Eirin-Lopez JM, Ausio J (2009) Origin and evolution of chromosomal sperm proteins. Bioessays 31:1062–1070

    PubMed  CAS  Google Scholar 

  • Eirin-Lopez JM, Frehlick LJ, Ausio J (2006) Protamines, in the footsteps of linker histone evolution. J Biol Chem 281:1–4

    PubMed  CAS  Google Scholar 

  • Evenson DP, Wixon R (2005) Comparison of the Halosperm test kit with the sperm chromatin structure assay (SCSA) infertility test in relation to patient diagnosis and prognosis. Fertil Steril 84:846–849

    PubMed  Google Scholar 

  • Freiman RN (2009) Specific variants of general transcription factors regulate germ cell development in diverse organisms. Biochim Biophys Acta 1789:161–166

    PubMed  CAS  Google Scholar 

  • Ganguly I, Gaur GK, Kumar S et al (2012) Differential expression of protamine 1 and 2 genes in mature spermatozoa of normal and motility impaired semen producing crossbred Frieswal (HFxSahiwal) bulls. Res Vet Sci 94(2):256–262

    PubMed  Google Scholar 

  • Gazquez C, Oriola J, de Mateo S et al (2008) A common protamine 1 promoter polymorphism (−190 C->A) correlates with abnormal sperm morphology and increased protamine P1/P2 ratio in infertile patients. J Androl 29:540–548

    PubMed  CAS  Google Scholar 

  • Govin J, Gaucher J, Ferro M et al (2012) Proteomic strategy for the identification of critical actors in reorganization of the post-meiotic male genome. Mol Hum Reprod 18:1–13

    PubMed  CAS  Google Scholar 

  • Hammoud S, Emery BR, Aoki VW et al (2007) Identification of genetic variation in the 5’ and 3’ non-coding regions of the protamine genes in patients with protamine deregulation. Arch Androl 53:267–274

    PubMed  CAS  Google Scholar 

  • Hammoud SS, Nix DA, Zhang H et al (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478

    PubMed  CAS  Google Scholar 

  • Hammoud SS, Nix DA, Hammoud AO et al (2011) Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod 26:2558–2569

    PubMed  CAS  Google Scholar 

  • Hud NV, Allen MJ, Downing KH et al (1993) Identification of the elemental packing unit of DNA in mammalian sperm cells by atomic force microscopy. Biochem Biophys Res Commun 193:1347–1354

    PubMed  CAS  Google Scholar 

  • Iguchi N, Yang S, Lamb DJ et al (2006) An SNP in protamine 1: a possible genetic cause of male infertility? J Med Genet 43:382–384

    PubMed  CAS  Google Scholar 

  • Imken L, Rouba H, El Houate B et al (2009) Mutations in the protamine locus: association with spermatogenic failure? Mol Hum Reprod 15:733–738

    PubMed  CAS  Google Scholar 

  • Jodar M, Oriola J, Mestre G et al (2011) Polymorphisms, haplotypes and mutations in the protamine 1 and 2 genes. Int J Androl 34:470–485

    PubMed  CAS  Google Scholar 

  • Jodar M, Kalko S, Castillo J et al (2012) Differential RNAs in the sperm cells of asthenozoospermic patients. Hum Reprod 27:1431–1438

    PubMed  CAS  Google Scholar 

  • Kasinsky HE, Eirin-Lopez JM, Ausio J (2011) Protamines: structural complexity, evolution and chromatin patterning. Protein Pept Lett 18:755–771

    PubMed  CAS  Google Scholar 

  • Kempisty B, Depa-Martynow M, Lianeri M et al (2007) Evaluation of protamines 1 and 2 transcript contents in spermatozoa from asthenozoospermic men. Folia Histochem Cytobiol 45(Suppl 1):S109–S113

    PubMed  Google Scholar 

  • Khara KK, Vlad M, Griffiths M et al (1997) Human protamines and male infertility. J Assist Reprod Genet 14:282–290

    PubMed  CAS  Google Scholar 

  • Kichine E, Msaidie S, Bokilo AD et al (2008) Low-frequency protamine 1 gene transversions c.102G->T and c.-107G->C do not correlate with male infertility. J Med Genet 45:255–256

    PubMed  CAS  Google Scholar 

  • Kleene KC (2003) Patterns, mechanisms, and functions of translation regulation in mammalian spermatogenic cells. Cytogenet Genome Res 103:217–224

    PubMed  CAS  Google Scholar 

  • Krawetz SA, Dixon GH (1988) Sequence similarities of the protamine genes: implications for regulation and evolution. J Mol Evol 27:291–297

    PubMed  CAS  Google Scholar 

  • Lambard S, Galeraud-Denis I, Martin G et al (2004) Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation. Mol Hum Reprod 10:535–541

    PubMed  CAS  Google Scholar 

  • Lee K, Haugen HS, Clegg CH et al (1995) Premature translation of protamine 1 mRNA causes precocious nuclear condensation and arrests spermatid differentiation in mice. Proc Natl Acad Sci U S A 92:12451–12455

    PubMed  CAS  Google Scholar 

  • Lescoat D, Colleu D, Boujard D et al (1988) Electrophoretic characteristics of nuclear proteins from human spermatozoa. Arch Androl 20:35–40

    PubMed  CAS  Google Scholar 

  • Lewis JD, Song Y, de Jong ME et al (2003) A walk though vertebrate and invertebrate protamines. Chromosoma 111:473–482

    PubMed  Google Scholar 

  • Liu D, Brockman JM, Dass B et al (2007) Systematic variation in mRNA 3’-processing signals during mouse spermatogenesis. Nucleic Acids Res 35:234–246

    PubMed  CAS  Google Scholar 

  • Luke B, Brown MB, Wantman E et al (2012) Cumulative birth rates with linked assisted reproductive technology cycles. N Engl J Med 366:2483–2491

    PubMed  CAS  Google Scholar 

  • Maier WM, Nussbaum G, Domenjoud L et al (1990) The lack of protamine 2 (P2) in boar and bull spermatozoa is due to mutations within the P2 gene. Nucleic Acids Res 18:1249–1254

    PubMed  CAS  Google Scholar 

  • Martin-Coello J, Dopazo H, Arbiza L et al (2009) Sexual selection drives weak positive selection in protamine genes and high promoter divergence, enhancing sperm competitiveness. Proc Biol Sci 276:2427–2436

    PubMed  CAS  Google Scholar 

  • Martin-Coello J, Gomendio M, Roldan ER (2011) Protamine 3 shows evidence of weak, positive selection in mouse species (genus Mus)–but it is not a protamine. Biol Reprod 84:320–326

    PubMed  CAS  Google Scholar 

  • Martinez-Heredia J, de Mateo S, Vidal-Taboada JM et al (2008) Identification of proteomic differences in asthenozoospermic sperm samples. Hum Reprod 23:783–791

    PubMed  CAS  Google Scholar 

  • Martins RP, Krawetz SA (2007) Decondensing the protamine domain for transcription. Proc Natl Acad Sci U S A 104:8340–8345

    PubMed  CAS  Google Scholar 

  • Martins RP, Ostermeier GC, Krawetz SA (2004) Nuclear matrix interactions at the human protamine domain: a working model of potentiation. J Biol Chem 279:51862–51868

    PubMed  CAS  Google Scholar 

  • McKay DJ, Renaux BS, Dixon GH (1986) Human sperm protamines. Amino-acid sequences of two forms of protamine P2. Eur J Biochem 156:5–8

    PubMed  CAS  Google Scholar 

  • Mengual L, Ballesca JL, Ascaso C et al (2003) Marked differences in protamine content and P1/P2 ratios in sperm cells from percoll fractions between patients and controls. J Androl 24:438–447

    PubMed  Google Scholar 

  • Mezquita C (1985) Chromatin composition, structure and function in spermatogenesis. Revis Biol Celular 5:1–124

    Google Scholar 

  • Miescher F (1874) Das Protamin – Eine neue organische Basis aus denSamenf – den des Rheinlachses. Ber Dtsch Chem Ges 7:376

    Google Scholar 

  • Mitchell V, Steger K, Marchetti C et al (2005) Cellular expression of protamine 1 and 2 transcripts in testicular spermatids from azoospermic men submitted to TESE-ICSI. Mol Hum Reprod 11:373–379

    PubMed  CAS  Google Scholar 

  • Nanassy L, Liu L, Griffin J et al (2011) The clinical utility of the protamine 1/protamine 2 ratio in sperm. Protein Pept Lett 18:772–777

    PubMed  CAS  Google Scholar 

  • Nasr-Esfahani MH, Salehi M, Razavi S et al (2004) Effect of protamine-2 deficiency on ICSI outcome. Reprod Biomed Online 9:652–658

    PubMed  CAS  Google Scholar 

  • Nelson JE, Krawetz SA (1995) Mapping the clonally unstable recombinogenic PRM1–>PRM2–>TNP2 region of human 16p13.2. DNA Seq 5:163–168

    PubMed  CAS  Google Scholar 

  • Oliva R (2006) Protamines and male infertility. Hum Reprod Update 12:417–435

    PubMed  CAS  Google Scholar 

  • Oliva R (2012) SBiRM: focus on proteomics and reproduction. Preface. Syst Biol Reprod Med 58:177–178

    PubMed  Google Scholar 

  • Oliva R, Ballesca JL (2012) Altered histone retention and epigenetic modifications in the sperm of infertile men. Asian J Androl 14:239–240

    PubMed  CAS  Google Scholar 

  • Oliva R, Castillo J (2011) Proteomics and the genetics of sperm chromatin condensation. Asian J Androl 13:24–30

    PubMed  Google Scholar 

  • Oliva R, Dixon GH (1990) Vertebrate protamine gene evolution I. Sequence alignments and gene structure. J Mol Evol 30:333–346

    PubMed  CAS  Google Scholar 

  • Oliva R, Dixon GH (1991) Vertebrate protamine genes and the histone-to-protamine replacement reaction. Prog Nucleic Acid Res Mol Biol 40:25–94

    PubMed  CAS  Google Scholar 

  • Oliva R, Mezquita C (1986) Marked differences in the ability of distinct protamines to disassemble nucleosomal core particles in vitro. Biochemistry 25:6508–6511

    PubMed  CAS  Google Scholar 

  • Oliva R, Bazett-Jones D, Mezquita C et al (1987) Factors affecting nucleosome disassembly by protamines in vitro. Histone hyperacetylation and chromatin structure, time dependence, and the size of the sperm nuclear proteins. J Biol Chem 262:17016–17025

    PubMed  CAS  Google Scholar 

  • Oliva R, Mezquita J, Mezquita C et al (1988) Haploid expression of the rooster protamine mRNA in the postmeiotic stages of spermatogenesis. Dev Biol 125:332–340

    PubMed  CAS  Google Scholar 

  • Oliva R, Bazett-Jones DP, Locklear L et al (1990) Histone hyperacetylation can induce unfolding of the nucleosome core particle. Nucleic Acids Res 18:2739–2747

    PubMed  CAS  Google Scholar 

  • Oliva R, de Mateo S, Estanyol JM (2009) Sperm cell proteomics. Proteomics 9:1004–1017

    PubMed  CAS  Google Scholar 

  • Queralt R, Oliva R (1993) Identification of conserved potential regulatory sequences of the protamine-encoding P1 genes from ten different mammals. Gene 133:197–204

    PubMed  CAS  Google Scholar 

  • Queralt R, Oliva R (1995) Demonstration of trans-acting factors binding to the promoter region of the testis-specific rat protamine P1 gene. Biochem Biophys Res Commun 208:802–812

    PubMed  CAS  Google Scholar 

  • Queralt R, Adroer R, Oliva R et al (1995) Evolution of protamine P1 genes in mammals. J Mol Evol 40:601–607

    PubMed  CAS  Google Scholar 

  • Ravel C, Chantot-Bastaraud S, El Houate B et al (2007) Mutations in the protamine 1 gene associated with male infertility. Mol Hum Reprod 13:461–464

    PubMed  CAS  Google Scholar 

  • Retief JD, Winkfein RJ, Dixon GH et al (1993) Evolution of protamine P1 genes in primates. J Mol Evol 37:426–434

    PubMed  CAS  Google Scholar 

  • Rooney AP, Zhang J, Nei M (2000) An unusual form of purifying selection in a sperm protein. Mol Biol Evol 17:278–283

    PubMed  CAS  Google Scholar 

  • Rousseaux S, Khochbin S (2012) Combined proteomic and in silico approaches to decipher post-meiotic male genome reprogramming in mice. Syst Biol Reprod Med 58:191–196

    PubMed  CAS  Google Scholar 

  • Saowaros W, Panyim S (1979) The formation of disulfide bonds in human protamines during sperm maturation. Experientia 35:191–192

    PubMed  CAS  Google Scholar 

  • Simon L, Castillo J, Oliva R et al (2011) Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod Biomed Online 23:724–734

    PubMed  CAS  Google Scholar 

  • Steger K (1999) Transcriptional and translational regulation of gene expression in haploid spermatids. Anat Embryol (Berl) 199:471–487

    CAS  Google Scholar 

  • Steger K, Failing K, Klonisch T, Behre HM, Manning M, Weidner W et al (2001) Round spermatids from infertile men exhibit decreased protamine-1 and −2 mRNA. Hum Reprod 16:709–716

    PubMed  CAS  Google Scholar 

  • Steger K, Fink L, Failing K et al (2003) Decreased protamine-1 transcript levels in testes from infertile men. Mol Hum Reprod 9:331–336

    PubMed  CAS  Google Scholar 

  • Steger K, Wilhelm J, Konrad L et al (2008) Both protamine-1 to protamine-2 mRNA ratio and Bcl2 mRNA content in testicular spermatids and ejaculated spermatozoa discriminate between fertile and infertile men. Hum Reprod 23:11–16

    PubMed  CAS  Google Scholar 

  • Tamburrino L, Marchiani S, Montoya M et al (2012) Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl 14:24–31

    PubMed  CAS  Google Scholar 

  • Tanaka H, Miyagawa Y, Tsujimura A et al (2003) Single nucleotide polymorphisms in the protamine-1 and −2 genes of fertile and infertile human male populations. Mol Hum Reprod 9:69–73

    PubMed  CAS  Google Scholar 

  • Torregrosa N, Dominguez-Fandos D, Camejo MI et al (2006) Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients. Hum Reprod 21:2084–2089

    PubMed  CAS  Google Scholar 

  • Tuttelmann F, Krenkova P, Romer S et al (2010) A common haplotype of protamine 1 and 2 genes is associated with higher sperm counts. Int J Androl 33:e240–e248

    PubMed  CAS  Google Scholar 

  • Venkatesh S, Kumar R, Deka D et al (2011) Analysis of sperm nuclear protein gene polymorphisms and DNA integrity in infertile men. Syst Biol Reprod Med 57:124–132

    PubMed  CAS  Google Scholar 

  • Vilfan ID, Conwell CC, Hud NV (2004) Formation of native-like mammalian sperm cell chromatin with folded bull protamine. J Biol Chem 279:20088–20095

    PubMed  CAS  Google Scholar 

  • Wang G, Guo Y, Zhou T et al (2012) In-depth proteomic analysis of the human sperm reveals complex protein compositions. J Proteomics 79C:114–122

    Google Scholar 

  • Ward WS (2010) Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod 16:30–36

    PubMed  CAS  Google Scholar 

  • Wu JY, Ribar TJ, Cummings DE et al (2000) Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4. Nat Genet 25:448–452

    PubMed  CAS  Google Scholar 

  • Wykes SM, Visscher DW, Krawetz SA (1997) Haploid transcripts persist in mature human spermatozoa. Mol Hum Reprod 3:15–19

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Oliva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jodar, M., Oliva, R. (2014). Protamine Alterations in Human Spermatozoa. In: Baldi, E., Muratori, M. (eds) Genetic Damage in Human Spermatozoa. Advances in Experimental Medicine and Biology, vol 791. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7783-9_6

Download citation

Publish with us

Policies and ethics