Lateral Gene Transfer in Multicellular Organisms

  • Julie C. Dunning Hotopp


The transfer of genetic material in the absence of sex, lateral gene transfer (LGT), is ubiquitous in prokaryotes and increasingly described in eukaryotes, including animals. Here, we provide an overview and discussion of the many recent examples of LGT in animals with examination of important studies in plant LGT and differentiate LGT from adaptive hybridization. LGT involving both retroelements and Wolbachia endosymbionts is rampant. LGT occurs from bacteria to asexual animals and from endosymbionts to their invertebrates hosts where it is frequently transcribed, albeit at low levels. When LGT is adaptive, meaning that it confers a selective advantage, it is frequently followed by gene duplication and gene conversion.


Lateral Gene Transfer Antifreeze Protein Wolbachia Strain Filarial Nematode Organelle Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the National Institutes of Health through the NIH Director’s New Innovator Award Program (1-DP2-0D007372).


  1. 1.
    Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, Nesbo CL et al (2003) Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37:283–328PubMedCrossRefGoogle Scholar
  2. 2.
    de la Cruz F, Davies J (2000) Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8(3):128–133PubMedCrossRefGoogle Scholar
  3. 3.
    Beiko RG, Harlow TJ, Ragan MA (2005) Highways of gene sharing in prokaryotes. Proc Natl Acad Sci U S A 102(40):14332–14337PubMedCrossRefGoogle Scholar
  4. 4.
    Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67(1):16–37PubMedCrossRefGoogle Scholar
  5. 5.
    Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51:223–256PubMedCrossRefGoogle Scholar
  6. 6.
    Tzfira T, Rhee Y, Chen MH, Kunik T, Citovsky V (2000) Nucleic acid transport in plant- microbe interactions: the molecules that walk through the walls. Annu Rev Microbiol 54:187–219PubMedCrossRefGoogle Scholar
  7. 7.
    Intrieri MC, Buiatti M (2002) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the Genus Nicotiana. Mol Phyl Evol 20(1):100–110CrossRefGoogle Scholar
  8. 8.
    Xi Z, Bradley RK, Wurdack KJ, Wong KM, Sugumaran M, Bomblies K et al (2012) Horizontal transfer of expressed genes in a parasitic flowering plant. BMC Genomics 13(1):227 (Epub 2012/06/12)Google Scholar
  9. 9.
    Hall C, Brachat S, Dietrich FS (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot Cell 4(6):1102–1115 (Epub 2005/06/11)Google Scholar
  10. 10.
    Hall C, Dietrich FS (2007) The reacquisition of biotin prototrophy in Saccharomyces cerevisiae involved horizontal gene transfer, gene duplication and gene clustering. Genetics 177(4):2293–2307 (Epub 2007/12/13)Google Scholar
  11. 11.
    Pombert JF, Selman M, Burki F, Bardell FT, Farinelli L, Solter LF et al (2012) Gain and loss of multiple functionally related, horizontally transferred genes in the reduced genomes of two microsporidian parasites. Proc Natl Acad Sci U S A 109(31):12638–12643 (Epub 2012/07/18)Google Scholar
  12. 12.
    Daniels SB, Peterson KR, Strausbaugh LD, Kidwell MG, Chovnick A (1990) Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124(2):339–355PubMedGoogle Scholar
  13. 13.
    Engels WR (1997) Invasions of P elements. Genetics 145(1):11–15PubMedGoogle Scholar
  14. 14.
    Graham LA, Lougheed SC, Ewart KV, Davies PL (2008) Lateral transfer of a lectin-like antifreeze protein gene in fishes. PLoS One 3(7):e2616 (Epub 2008/07/10)Google Scholar
  15. 15.
    Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328(5978):624–627 (Epub 2010/05/01)Google Scholar
  16. 16.
    Altincicek B, Kovacs JL, Gerardo NM (2012) Horizontally transferred fungal carotenoid genes in the two-spotted spider mite Tetranychus urticae. Biol Lett 8(2):253–257 (Epub 2011/09/17)Google Scholar
  17. 17.
    Schaack S, Gilbert C, Feschotte C (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 25(9):537–546 (Epub 2010/07/02)Google Scholar
  18. 18.
    Gladyshev EA, Arkhipova IR (2009) A single-copy IS5-like transposon in the genome of a bdelloid rotifer. Mol Biol Evol 26(8):1921–1929 (Epub 2009/05/16)Google Scholar
  19. 19.
    Pace JK 2nd, Gilbert C, Clark MS, Feschotte C (2008) Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. Proc Natl Acad Sci U S A 105(44):17023–17028 (Epub 2008/10/22)Google Scholar
  20. 20.
    Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L et al (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403(6771):785–789 (Epub 2000/02/29)Google Scholar
  21. 21.
    Haig D (2012) Retroviruses and the placenta. Curr Biol 22:R609–R13Google Scholar
  22. 22.
    Smith K, Spadafora C (2005) Sperm-mediated gene transfer: applications and implications. Bioessays 27(5):551–562 (Epub 2005/04/16)Google Scholar
  23. 23.
    Novakova E, Moran NA (2012) Diversification of genes for carotenoid biosynthesis in aphids following an ancient transfer from a fungus. Mol Biol Evol 29(1):313–323 (Epub 2011/09/01)Google Scholar
  24. 24.
    Clop A, Vidal O, Amills M (2012) Copy number variation in the genomes of domestic animals. Anim Genet (Epub 2012/04/14)Google Scholar
  25. 25.
    Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10(8):551–564 (Epub 2009/07/15)Google Scholar
  26. 26.
    Lind PA, Tobin C, Berg OG, Kurland CG, Andersson DI (2010) Compensatory gene amplification restores fitness after inter-species gene replacements. Microbiol 75(5):1078–1089Google Scholar
  27. 27.
    Song Y, Endepols S, Klemann N, Richter D, Matuschka FR, Shih CH et al (2011) Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol 21(15):1296–1301 (Epub 2011/07/26)Google Scholar
  28. 28.
    Gray MW, Burger G, Lang BF (2001) The origin and early evolution of mitochondria. Genome Biol 2(6):REVIEWS1018 (Epub 2001/06/26)Google Scholar
  29. 29.
    Richly E, Leister D (2004) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21(6):1081–1084 (Epub 2004/03/12)Google Scholar
  30. 30.
    Lin X, Kaul S, Rounsley S, Shea TP, Benito MI, Town CD et al (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402(6763):761–768PubMedCrossRefGoogle Scholar
  31. 31.
    Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New HavenGoogle Scholar
  32. 32.
    Bilewitch JP, Degnan SM (2011) A unique horizontal gene transfer event has provided the octocoral mitochondrial genome with an active mismatch repair gene that has potential for an unusual self-contained function. BMC Evol Biol 11:228 (Epub 2011/08/02)Google Scholar
  33. 33.
    Delwiche CF, Palmer JD (1996). Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol 13(6):873–882 (Epub 1996/07/01)Google Scholar
  34. 34.
    Rice DW, Palmer JD (2006) An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol 4:31 (Epub 2006/09/08)Google Scholar
  35. 35.
    Koulintchenko M, Konstantinov Y, Dietrich A (2003) Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J 22(6):1245–1254 (Epub 2003/03/12)Google Scholar
  36. 36.
    Arimura S, Yamamoto J, Aida GP, Nakazono M, Tsutsumi N (2004) Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci U S A. 101(20):7805–7808 (Epub 2004/05/12)Google Scholar
  37. 37.
    Hao W, Richardson AO, Zheng Y, Palmer JD (2010) Gorgeous mosaic of mitochondrial genes created by horizontal transfer and gene conversion. Proc Natl Acad Sci U S A. 107(50):21576–21581 (Epub 2010/12/01)Google Scholar
  38. 38.
    Hao W, Palmer JD (2011) HGT turbulence: Confounding phylogenetic influence of duplicative horizontal transfer and differential gene conversion. Mob Genet Elements 1(4):256–261 (Epub 2012/05/01)Google Scholar
  39. 39.
    Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS, Bhattacharya D et al (2008) Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc Natl Acad Sci U S A. 105(46):17867–17871 (Epub 2008/11/14)Google Scholar
  40. 40.
    Pierce SK, Curtis NE, Schwartz JA (2009) Chlorophyll A synthesis by an animal using transferred algal nuclear genes. Symbiosis 49:121–131CrossRefGoogle Scholar
  41. 41.
    Schwartz JA, Curtis NE, Pierce SK (2010) Using algal transcriptome sequences to identify transferred genes in the sea slug, Elysia chlorotica. Evol Biol 37:29–37CrossRefGoogle Scholar
  42. 42.
    Rumpho ME, Pelletreau KN, Moustafa A, Bhattacharya D (2011) The making of a photosynthetic animal. J Exp Biol 214(Pt 2):303–311 (Epub 2010/12/24)Google Scholar
  43. 43.
    Wagele H, Deusch O, Handeler K, Martin R, Schmitt V, Christa G et al (2011) Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobranchus ocellatus does not entail lateral transfer of algal nuclear genes. Mol Biol Evol 28(1):699–706 (Epub 2010/09/11)Google Scholar
  44. 44.
    Wisecaver JH, Hackett JD (2010) Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata. BMC Genomics 11:366 (Epub 2010/06/12)Google Scholar
  45. 45.
    Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT et al (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410(6832):1091–1096 (Epub 2001/04/27)Google Scholar
  46. 46.
    Johnson MD, Oldach D, Delwiche CF, Stoecker DK (2007) Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature 445(7126):426–428 (Epub 2007/01/26)Google Scholar
  47. 47.
    Park MG, Park JS, Kim M, Yih W (2008) Plastid dynamics during survival of Dinophysis caudata without its ciliate prey. J Phycol 44:1154–1163CrossRefGoogle Scholar
  48. 48.
    Ricchetti M, Tekaia F, Dujon B (2004) Continued colonization of the human genome by mitochondrial DNA. PLoS Biol 2(9):E273 (Epub 2004/09/14)Google Scholar
  49. 49.
    Hazkani-Covo E, Graur D (2007) A comparative analysis of numt evolution in human and chimpanzee. Mol Biol Evol 24(1):13–18 (Epub 2006/10/24)Google Scholar
  50. 50.
    Stouthamer R, Breeuwer JA, Hurst GD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102PubMedCrossRefGoogle Scholar
  51. 51.
    Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609PubMedCrossRefGoogle Scholar
  52. 52.
    Fast EM, Toomey ME, Panaram K, Desjardins D, Kolaczyk ED, Frydman HM (2011) Wolbachia enhance Drosophila stem cell proliferation and target the germline stem cell niche. Science 334(6058):990–992 (Epub 2011/10/25)Google Scholar
  53. 53.
    Dunning Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, Torres MC et al (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317(5845):1753–1756PubMedCrossRefGoogle Scholar
  54. 54.
    Salzberg SL, Dunning Hotopp JC, Delcher AL, Pop M, Smith DR, Eisen MB et al (2005) Correction: Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol 6(7):402PubMedCrossRefGoogle Scholar
  55. 55.
    Kondo N, Nikoh N, Ijichi N, Shimada M, Fukatsu T (2002) Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc Natl Acad Sci U S A 99(22):14280–14285PubMedCrossRefGoogle Scholar
  56. 56.
    Nikoh N, Tanaka K, Shibata F, Kondo N, Hizume M, Shimada M et al (2008) Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Genome Res 18(2):272–280 (Epub 2007/12/13)Google Scholar
  57. 57.
    Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK et al (2010) Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327(5963):343–348 (Epub 2010/01/16)Google Scholar
  58. 58.
    Aikawa T, Anbutsu H, Nikoh N, Kikuchi T, Shibata F, Fukatsu T (2009) Longicorn beetle that vectors pinewood nematode carries many Wolbachia genes on an autosome. Proc Biol Sci 276(1674):3791–3798 (Epub 2009/08/21)Google Scholar
  59. 59.
    Doudoumis V, Alam U, Aksoy E, Abd-Alla A, Tsiamis G, Brelsfoard C et al (2012) Tsetse-Wolbachia Symbiosis: Comes of age and has great potential for pest and disease control. J Invertebr Pathol (Epub 2012/07/28)Google Scholar
  60. 60.
    Doudoumis V, Tsiamis G, Wamwiri F, Brelsfoard C, Alam U, Aksoy E et al (2012) Detection and characterization of Wolbachia infections in laboratory and natural populations of different species of tsetse flies (genus Glossina). BMC Microbiol 12(Suppl 1):S3–S (Epub 2012/03/02)PubMedCrossRefGoogle Scholar
  61. 61.
    Casiraghi M, Bain O, Guerrero R, Martin C, Pocacqua V, Gardner SL et al (2004) Mapping the presence of Wolbachia pipientis on the phylogeny of filarial nematodes: evidence for symbiont loss during evolution. Int J Parasitol 34(2):191–203PubMedCrossRefGoogle Scholar
  62. 62.
    Fenn K, Blaxter M (2004) Are filarial nematode Wolbachia obligate mutualist symbionts? Trends Ecol Evol 19(4):163–166PubMedCrossRefGoogle Scholar
  63. 63.
    Taylor MJ, Bandi C, Hoerauf A (2005) Wolbachia bacterial endosymbionts of filarial nematodes. Adv Parasitol 60:245–284 (Epub 2005/10/19)Google Scholar
  64. 64.
    McGarry HF, Egerton GL, Taylor MJ (2004) Population dynamics of Wolbachia bacterial endosymbionts in Brugia malayi. Mol Biochem Parasitol 135(1):57–67 (Epub 2004/08/04)Google Scholar
  65. 65.
    McNulty SN, Foster JM, Mitreva M, Dunning Hotopp JC, Martin J, Fischer K et al (2010) Endosymbiont DNA in endobacteria-free filarial nematodes indicates ancient horizontal genetic transfer. PLoS One 5(6):e11029 (Epub 2010/06/15)Google Scholar
  66. 66.
    Baumann P, Baumann L, Lai CY, Rouhbakhsh D, Moran NA, Clark MA (1995) Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu Rev Microbiol 49:55–94 (Epub 1995/01/01)Google Scholar
  67. 67.
    van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U et al (2003) Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci U S A 100(2):581–586PubMedCrossRefGoogle Scholar
  68. 68.
    Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407(6800):81–86PubMedCrossRefGoogle Scholar
  69. 69.
    Nikoh N, McCutcheon JP, Kudo T, Miyagishima SY, Moran NA, Nakabachi A (2010) Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genet 6(2):e1000827 (Epub 2010/03/03)Google Scholar
  70. 70.
    Nikoh N, Nakabachi A (2009) Aphids acquired symbiotic genes via lateral gene transfer. BMC Biol 7:12 (Epub 2009/03/17)Google Scholar
  71. 71.
    Hecht MM, Nitz N, Araujo PF, Sousa AO, Rosa Ade C, Gomes DA et al (2010) Inheritance of DNA transferred from American trypanosomes to human hosts. PLoS One 5(2):e9181 (Epub 2010/02/20)Google Scholar
  72. 72.
    Teixeira AR, Gomes C, Nitz N, Sousa AO, Alves RM, Guimaro MC et al (2011) Trypanosoma cruzi in the chicken model: Chagas-like heart disease in the absence of parasitism. PLoS Negl Trop Dis 5(3):e1000 (Epub 2011/04/07)Google Scholar
  73. 73.
    Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T et al (2010) The dynamic genome of Hydra. Nature 464(7288):592–596 (Epub 2010/03/17)Google Scholar
  74. 74.
    Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science320(5880):1210–1213 (Epub 2008/05/31)Google Scholar
  75. 75.
    Acuna R, Padilla BE, Florez-Ramos CP, Rubio JD, Herrera JC, Benavides P et al (2012) Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proc Natl Acad Sci U S A 109(11):4197–4202 (Epub 2012/03/01)Google Scholar
  76. 76.
    Craig JP, Bekal S, Hudson M, Domier L, Niblack T, Lambert KN (2008) Analysis of a horizontally transferred pathway involved in vitamin B-6 biosynthesis from the soybean cyst nematode Heterodera glycines. Mol Biol Evol 25(10):2085–2098PubMedCrossRefGoogle Scholar
  77. 77.
    Danchin EGJ, Rossoa M-N, Vieiraa P, Almeida-Englera J, Coutinhob PM, Henrissatb B et al (2010) Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc Natl Acad Sci U S A 107(41):17651–17656PubMedCrossRefGoogle Scholar
  78. 78.
    Mayer WE, Schuster LN, Bartelmes G, Dieterich C, Sommer RJ (2011) Horizontal gene transfer of microbial cellulases into nematode genomes is associated with functional assimilation and gene turnover. BMC Evol Biol 11:13 (Epub 2011/01/15)Google Scholar
  79. 79.
    Dieterich C, Clifton SW, Schuster LN, Chinwalla A, Delehaunty K, Dinkelacker I et al (2008) The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nat Genet 40(10):1193–1198 (Epub 2008/09/23)Google Scholar
  80. 80.
    Dunning Hotopp JC (2011) Horizontal gene transfer between bacteria and animals. Trends Genet 27(4):157–163 (Epub 2011/02/22)Google Scholar
  81. 81.
    Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9(8):605–618 (Epub 2008/07/02)Google Scholar
  82. 82.
    Ishmael N, Dunning Hotopp JC, Ioannidis P, Biber S, Sakamoto J, Siozios S et al (2009) Extensive genomic diversity of closely related Wolbachia strains. Microbiology 155(Pt 7):2211–2222 (Epub 2009/04/25)Google Scholar
  83. 83.
    Iturbe-Ormaetxe I, Burke GR, Riegler M, O’Neill SL (2005) Distribution, expression, and motif variability of ankyrin domain genes in Wolbachia pipientis. J Bacteriol 187(15):5136–5145 (Epub 2005/07/21)Google Scholar
  84. 84.
    Arca B, Lombardo F, Valenzuela JG, Francischetti IM, Marinotti O, Coluzzi M et al (2005) An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae. J Exp Biol 208(Pt 20):3971–3986PubMedCrossRefGoogle Scholar
  85. 85.
    Korochkina S, Barreau C, Pradel G, Jeffery E, Li J, Natarajan R et al (2006) A mosquito-specific protein family includes candidate receptors for malaria sporozoite invasion of salivary glands. Cell Microbiol 8(1):163–175 (Epub 2005/12/22)Google Scholar
  86. 86.
    Klasson L, Kambris Z, Cook PE, Walker T, Sinkins SP (2009) Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti. BMC Genomics 10:33 (Epub 2009/01/22)Google Scholar
  87. 87.
    Woolfit M, Iturbe-Ormaetxe I, McGraw EA, O’Neill SL (2009) An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis. Mol Biol Evol 26(2):367–374 (Epub 2008/11/08)Google Scholar
  88. 88.
    Guljamow A, Jenke-Kodama H, Saumweber H, Quillardet P, Frangeul L, Castets AM et al (2007) Horizontal gene transfer of two cytoskeletal elements from a eukaryote to a cyanobacterium. Curr Biol 17(17):R757–R759 (Epub 2007/09/07)Google Scholar
  89. 89.
    Jenkins C, Samudrala R, Anderson I, Hedlund BP, Petroni G, Michailova N et al (2002) Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc Natl Acad Sci U S A 99(26):17049–17054 (Epub 2002/12/18)Google Scholar
  90. 90.
    Schlieper D, Oliva MA, Andreu JM, Lowe J (2005) Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc Natl Acad Sci U S A 102(26):9170–9175 (Epub 2005/06/22)Google Scholar
  91. 91.
    Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14(8):307–311PubMedCrossRefGoogle Scholar
  92. 92.
    Race HL, Herrmann RG, Martin W (1999) Why have organelles retained genomes? Trends Genet 15(9):364–370 (Epub 1999/08/26)Google Scholar
  93. 93.
    Debrah AY, Mand S, Specht S, Marfo-Debrekyei Y, Batsa L, Pfarr K et al (2006) Doxycycline reduces plasma VEGF-C/sVEGFR-3 and improves pathology in lymphatic filariasis. PLoS Pathog 2(9):e92PubMedCrossRefGoogle Scholar
  94. 94.
    Turner JD, Tendongfor N, Esum M, Johnston KL, Langley RS, Ford L et al (2010) Macrofilaricidal activity after doxycycline only treatment of Onchocerca volvulus in an area of Loa loa co-endemicity: a randomized controlled trial. PLoS Negl Trop Dis 4(4):e660 (Epub 2010/04/21)Google Scholar
  95. 95.
    Margulis L, Sagan D (2002) Acquiring genomes. Basic Books, New York p 240Google Scholar
  96. 96.
    Kozo-Polyansky BM (2010) Symbiogenesis: a new principle of evolution. In: Fet V, Margulis L (eds) Harvard University Press, Cambridge p 198Google Scholar
  97. 97.
    Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3(11):838–849 (Epub 2002/11/05)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute for Genome ScienceUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations