Skip to main content

On the Eco-Evolutionary Relationships of Fresh and Salt Water Bacteria and the Role of Gene Transfer in Their Adaptation

  • Chapter
  • First Online:
Lateral Gene Transfer in Evolution

Abstract

Bacteria are ubiquitous and important members of aquatic ecosystems ranging from inland lakes to the open ocean. Since the advent of molecular approaches for investigating bacteria community composition (BCC), the biogeography of aquatic bacteria has been investigated across a wide variety of environments. In addition to illuminating important aspects of microbial ecology, these studies have unveiled the evolutionary relationships between freshwater and marine bacteria. It is now clear that marine and freshwater ecosystems are inhabited by evolutionarily distinct bacterial lineages, suggesting that environmental transitions across the marine–freshwater boundary have occurred rarely during the evolution of bacteria. In this chapter, we consider successful freshwater–marine transitions as a form of evolutionary innovation in bacteria. Here, we discuss recent genomic insights into the evolution of marine and freshwater bacteria, and the metabolic and physiological traits of aquatic bacteria that may either restrict or facilitate cross-colonization of freshwater and marine habitats. In doing so, we will also highlight the potential role that lateral gene transfer (LGT) has played in marine–freshwater transitions over the course of bacterial evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allgaier M, Grossart HP (2006a) Diversity and seasonal dynamics of Actinobacteria populations in four lakes in northeastern Germany. Appl Environ Microbiol 72:3489–3497

    Article  CAS  Google Scholar 

  2. Allgaier M, Grossart HP (2006b) Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in northeastern Germany. Aquat Microbial Ecol 45:115–128

    Article  Google Scholar 

  3. Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front Microbiol 2:158

    Article  PubMed  Google Scholar 

  4. Angles ML, Marshall KC, Goodman AE (1993) Plasmid transfer between marine bacteria in the aqueous phase and biofilms in reactor microcosms. Appl Environ Microbiol 59:843–850

    PubMed  CAS  Google Scholar 

  5. Arnds J, Knittel K, Buck U, Winkel M, Amann R (2010) Development of a 16S rRNA-targeted probe set for Verrucomicrobia and its application for fluorescence in situ hybridization in a humic lake. Syst Appl Microbiol 33:139–148

    Article  PubMed  CAS  Google Scholar 

  6. Bahr M, Hobbie JE, Sogin ML (1996) Bacterial diversity in an arctic lake: a freshwater SAR 11 cluster. Aquat Microbial Ecol 11:271–277

    Article  Google Scholar 

  7. Barberán A, Casamayor E (2010) Global phylogenetic community structure and β-diversity patterns in surface bacterioplankton metacommunities. Aquat Microbial Ecol 59:1–10

    Article  Google Scholar 

  8. Bauer M, Kube M, Teeling H, Richter M, Lombardot T, Allers E, Wurdemann CA, Quast C, Kuhl H, Knaust F, Woebken D, Bischof K, Mussmann M, Choudhuri JV, Meyer F, Reinhardt R, Amann RI, Glockner FO (2006) Whole genome analysis of the marine Bacteroidetes’Gramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ Microbiol 8:2201–2213

    Article  PubMed  CAS  Google Scholar 

  9. Berggren M, Ström L, Laudon H, Karlsson J, Jonsson A, Giesler R, Bergström AK, Jansson M (2010) Lake secondary production fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers. Ecol Lett 13:870–880

    Article  PubMed  CAS  Google Scholar 

  10. Boucher Y, Cordero OX, Takemura A, Hunt DE, Schliep K, Bapteste E, Lopez P, Tarr CL, Polz MF (2011) Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. MBio 2(2)

    Google Scholar 

  11. Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau MER, Nesbø CL, Case RJ, Doolittle WF (2003) Lateral gene transfer and the origins of prokaryotic groups. Ann Rev Genet 37:283–328

    Article  PubMed  CAS  Google Scholar 

  12. Bouvier TC, del Giorgio PA (2002) Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnol Oceanogr 453–470

    Google Scholar 

  13. Brown MV, Lauro FM, DeMaere MZ et al (2012) Global biogeography of SAR11 marine bacteria. Mol Syst 8:595

    Google Scholar 

  14. Buchan A, Gonzalez JM, Moran MA (2005) Overview of the marine roseobacter lineage. Appl Environ Microbiol 71:5665–5677

    Article  PubMed  CAS  Google Scholar 

  15. Buck U, Grossart HP, Amann R, Pernthaler J (2009) Substrate incorporation patterns of bacterioplankton populations in stratified and mixed waters of a humic lake. Environ Microbiol 11:1854–1865

    Article  PubMed  CAS  Google Scholar 

  16. Burd AB, Jackson GA (2009) Particle aggregation. Ann Rev Mar Sci 1:65–90

    Article  PubMed  Google Scholar 

  17. Chan LK, Newton RJ, Sharma S, Smith CB, Rayapati P, Limardo AJ, Meile C, Moran MA (2012) Transcriptional changes underlying elemental stoichiometry shifts in a marine heterotrophic bacterium. Front Microbiol 3:159

    Article  PubMed  CAS  Google Scholar 

  18. Cho JC, Giovannoni SJ (2004) Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol 70:432–440

    Article  PubMed  CAS  Google Scholar 

  19. Clum A, Tindall BJ, Sikorski J, Ivanova N, Mavrommatis K, Lucas S, Glavina T, Del R, Nolan M, Chen F, Tice H, Pitluck S, Cheng JF, Chertkov O, Brettin T, Han C, Detter JC, Kuske C, Bruce D, Goodwin L, Ovchinikova G, Pati A, Mikhailova N, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Chain P, Rohde M, Goker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2009) Complete genome sequence of Pirellula staleyi type strain (ATCC 27377). Stand Genomic Sci 1:308–316

    Article  PubMed  Google Scholar 

  20. Crawford JW, Harris JA, Ritz K, Young IM (2005) Towards an evolutionary ecology of life in soil. Trends Ecol Evol 20:81–87

    Article  PubMed  Google Scholar 

  21. DeLong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 924–934

    Google Scholar 

  22. Drapeau GR, Matula TI, MacLeod RA (1966) Nutrition and metabolism of marine bacteria XV. Relation of Na+-activated transport to the Na+ requirement of a marine pseudomonad for growth. J Bacteriol 92:63–71

    PubMed  CAS  Google Scholar 

  23. Eiler A, Bertilsson S (2007) Flavobacteria blooms in four eutrophic lakes: linking population dynamics of freshwater bacterioplankton to resource availability. Appl Environ Microbiol 73:3511–3518

    Article  PubMed  CAS  Google Scholar 

  24. Empadinhas N, da Costa MS (2008) Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol 11:151–161

    PubMed  CAS  Google Scholar 

  25. Fagerbakke KM, Norland S, Heldal M (1999) The inorganic ion content of native aquatic bacteria. Can J Microbiol 45:304–311

    Article  PubMed  CAS  Google Scholar 

  26. Fortunato C, Herfort L, Zuber P, Baptista A, Crump B (2011) Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient. ISME J 6:554–563

    Article  PubMed  CAS  Google Scholar 

  27. Freitas S, Hatosy S, Fuhrman JA, Huse SM, Welch DB, Sogin ML, Martiny AC (2012) Global distribution and diversity of marine Verrucomicrobia. ISME J 6:1499–1505

    Article  PubMed  CAS  Google Scholar 

  28. Fujiwara-Nagata E, Kogure K, Kita-Tsukamoto K, Wada M, Eguchi M (2006) Characteristics of Na+-dependent respiratory chain in Vibrio anguillarum, a fish pathogen, in comparison with other marine Vibrios. FEMS Microbiol Ecol 44:225–230

    Article  CAS  Google Scholar 

  29. Galand PE, Casamayor EO, Kirchman DL, Lovejoy C (2009) Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci U S A 106:22427–22432

    Article  PubMed  CAS  Google Scholar 

  30. Garcia SL, McMahon KD, Martinez-Garcia M, Srivastava A, Sczyrba A, Stepanauskas R, Grossart HP, Woyke T, Warnecke F (2012) Metabolic potential of a single cell belonging to one of the most abundant lineages in freshwater bacterioplankton. ISME J 7(1):137–147

    Google Scholar 

  31. Ghai R, Rodriguez-Valera F, McMahon KD, Toyama D, Rinke R, Cristina Souza de Oliveira T, Wagner Garcia J, Pellon de Miranda F, Henrique-Silva F (2011) Metagenomics of the water column in the pristine upper course of the Amazon river. PLoS One 6:e23785

    Article  PubMed  CAS  Google Scholar 

  32. Giovannoni S, Stingl U (2005) Molecular diversity and ecology of microbial plankton. Nature 437:343–348

    Article  PubMed  CAS  Google Scholar 

  33. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappe MS, Short JM, Carrington JC, Mathur EJ (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245

    Article  PubMed  CAS  Google Scholar 

  34. Glöckner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726

    PubMed  Google Scholar 

  35. Glockner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci U S A 100:8298–8303

    Article  PubMed  CAS  Google Scholar 

  36. Gomez-Consarnau L, Lindh MV, Gasol JM, Pinhassi J (2012) Structuring of bacterioplankton communities by specific dissolved organic carbon compounds. Environ Microbiol 14:2361–2378

    Article  PubMed  CAS  Google Scholar 

  37. Gómez-Pereira PR, Fuchs BM, Alonso C, Oliver MJ, van Beusekom JEE, Amann R (2010) Distinct flavobacterial communities in contrasting water masses of the North Atlantic Ocean. ISME J 4:472–487

    Article  PubMed  CAS  Google Scholar 

  38. Gómez-Pereira PR, Schüler M, Fuchs BM, Bennke C, Teeling H, Waldmann J, Richter M, Barbe V, Bataille E, Glöckner FO (2011) Genomic content of uncultured Bacteroidetes from contrasting oceanic provinces in the North Atlantic Ocean. Environ Microbiol 14:52–66

    Article  PubMed  CAS  Google Scholar 

  39. Gonzalez JM, Fernandez-Gomez B, Fernandez-Guerra A, Gomez-Consarnau L, Sanchez O, Coll-Llado M, Del Campo J, Escudero L, Rodriguez-Martinez R, Alonso-Saez L, Latasa M, Paulsen I, Nedashkovskaya O, Lekunberri I, Pinhassi J, Pedros-Alio C (2008) Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc Natl Acad Sci U S A 105:8724–8729

    Article  PubMed  CAS  Google Scholar 

  40. Grossart HP (2010) Ecological consequences of bacterioplankton lifestyles: changes in concepts are needed. Environ Microbiol Rep 2:706–714

    Article  PubMed  Google Scholar 

  41. Grossart HP, Simon M (2007) Interactions of planktonic algae and bacteria: effects on algal growth and organic matter dynamics. Aquat Microbial Ecol 47:163

    Article  Google Scholar 

  42. Hahn MW, Scheuerl T, Jezberova J, Koll U, Jezbera J, Simek K, Vannini C, Petroni G, Wu QL (2012) The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living polynucleobacter population. PLoS One 7:e32772

    Article  PubMed  CAS  Google Scholar 

  43. Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Organ Geochem 27:195–212

    Article  CAS  Google Scholar 

  44. Heldal M, Norland S, Erichsen ES, Sandaa RA, Larsen A, Thingstad F, Bratbak G (2012) Mg2+ as an indicator of nutritional status in marine bacteria. ISME J 6:524–530

    Article  PubMed  CAS  Google Scholar 

  45. Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579

    Article  PubMed  CAS  Google Scholar 

  46. Hobbie JE (1988) A comparison of the ecology of planktonic bacteria in fresh and salt water. Limnol Oceanogr 750–764

    Google Scholar 

  47. Imae Y, Atsumi T (1989) Na+-driven bacterial flagellar motors. J Bioenerget Biomembran 21:705–716

    Article  CAS  Google Scholar 

  48. Jezbera J, Jezberová J, Koll U (2012) Contrasting trends in distribution of four major planktonic betaproteobacterial groups along a pH gradient of epilimnia of 72 freshwater habitats. FEMS Microbiol Ecol 81(2):467–479

    Google Scholar 

  49. Jiang W, Hermolin J, Fillingame RH (2001) The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10. Proc Natl Acad Sci U S A 98:4966–4971

    Article  PubMed  CAS  Google Scholar 

  50. Joint I, Doney SC, Karl DM (2010) Will ocean acidification affect marine microbes? ISME J 5:1–7

    Article  PubMed  Google Scholar 

  51. Kan J, Evans SE, Chen F, Suzuki MT (2008) Novel estuarine bacterioplankton in rRNA operon libraries from the Chesapeake Bay. Aquat Microbial Ecol 51:55

    Article  Google Scholar 

  52. Kent AD, Jones SE, Lauster GH, Graham JM, Newton RJ, McMahon KD (2006) Experimental manipulations of microbial food web interactions in a humic lake: shifting biological drivers of bacterial community structure. Environ Microbiol 8:1448–1459

    Article  PubMed  CAS  Google Scholar 

  53. Kimura H, Young CR, Martinez A, DeLong EF (2011) Light-induced transcriptional responses associated with proteorhodopsin-enhanced growth in a marine flavobacterium. ISME J 5:1641–1651

    Article  PubMed  CAS  Google Scholar 

  54. Kirchman DL, Dittel AI, Malmstrom RR, Cottrell MT (2005) Biogeography of major bacterial groups in the Delaware Estuary. Limnol Oceanogr 1697–1706

    Google Scholar 

  55. Kirchman DL, Mitchell R (2008) Microbial ecology of the oceans. Wiley Online Library

    Google Scholar 

  56. Kogure K (1998) Bioenergetics of marine bacteria. Curr Opin Biotechnol 9:278–282

    Article  PubMed  CAS  Google Scholar 

  57. Konings WN (2006) Microbial transport: adaptations to natural environments. Antonie Van Leeuwenhoek 90:325–342

    Article  PubMed  CAS  Google Scholar 

  58. Kronberg L (1999) Content of humic substances in freshwater: Limnology of humic waters, vol. 9–10. Leiden, The Netherlands

    Google Scholar 

  59. Krulwich TA (1995) Alkaliphiles: ’basic’ molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410

    Article  PubMed  CAS  Google Scholar 

  60. Kujawinski EB (2011) The impact of microbial metabolism on marine dissolved organic matter. Ann Rev Mar Sci 3:567–599

    Article  PubMed  Google Scholar 

  61. Labutti K, Sikorski J, Schneider S, Nolan M, Lucas S, Glavina Del Rio T, Tice H, Cheng JF, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Tindall BJ, Rohde M, Goker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2010) Complete genome sequence of Planctomyces limnophilus type strain (Mu 290). Stand Genomic Sci 3:47–56

    Article  PubMed  Google Scholar 

  62. Lavik G, Stuhrmann T, Bruchert V, Van der Plas A, Mohrholz V, Lam P, Mussmann M, Fuchs BM, Amann R, Lass U, Kuypers MMM (2009) Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457:581–586

    Article  PubMed  CAS  Google Scholar 

  63. Lee CE, Bell MA (1999) Causes and consequences of recent freshwater invasions by saltwater animals. Trends Ecol Evol 14:284–288

    Article  PubMed  CAS  Google Scholar 

  64. Lee KC, Webb RI, Janssen PH, Sangwan P, Romeo T, Staley JT, Fuerst JA (2009) Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes. BMC Microbiol 9:5

    Article  PubMed  Google Scholar 

  65. Logan BE, Grossart HP, Simon M (1994) Direct observation of phytoplankton, TEP and aggregates on polycarbonate filters using brightfield microscopy. J Plankton Res 16:1811–1815

    Article  Google Scholar 

  66. Logares R, Bråte J, Heinrich F, Shalchian-Tabrizi K, Bertilsson S (2010) Infrequent transitions between saline and fresh waters in one of the most abundant microbial lineages (SAR11). Mol Biol Evol 27:347–357

    Article  PubMed  CAS  Google Scholar 

  67. Lorenz MG, Aardema BW, Wackernagel W (1988) Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. J Gen Microbiol 134:107–112

    PubMed  CAS  Google Scholar 

  68. Lorenz MG, Wackernagel W (1990) Natural genetic transformation of Pseudomonas stutzeri by sand-adsorbed DNA. Arch Microbiol 154:380–385

    Article  PubMed  CAS  Google Scholar 

  69. Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci U S A 104:11436–11440

    Article  PubMed  CAS  Google Scholar 

  70. Maberly SC (2008) Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshwater Biol 35:579–598

    Article  Google Scholar 

  71. MacLeod RA (1965) The question of the existence of specific marine bacteria. Bacteriol Rev 29:9

    Google Scholar 

  72. Martinez-Garcia M, Brazel DM, Swan BK, Arnosti C, Chain PS, Reitenga KG, Xie G, Poulton NJ, Lluesma Gomez M, Masland DE, Thompson B, Bellows WK, Ziervogel K, Lo CC, Ahmed S, Gleasner CD, Detter CJ, Stepanauskas R (2012) Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia. PLoS One 7:e35314

    Article  PubMed  CAS  Google Scholar 

  73. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    Article  PubMed  CAS  Google Scholar 

  74. McBride MJ, Xie G, Martens EC, Lapidus A, Henrissat B, Rhodes RG, Goltsman E, Wang W, Xu J, Hunnicutt DW, Staroscik AM, Hoover TR, Cheng YQ, Stein JL (2009) Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 75:6864–6875

    Article  PubMed  CAS  Google Scholar 

  75. Moliner C, Fournier PE, Raoult D (2010) Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol Rev 34:281–294

    Article  PubMed  CAS  Google Scholar 

  76. Morris RM, Rappé MS, Connon SA, Vergin KL, Siebold WA, Carlson CA, Giovannoni SJ (2002) SAR 11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810

    Article  PubMed  CAS  Google Scholar 

  77. Mou X, Sun S, Edwards RA, Hodson RE, Moran MA (2008) Bacterial carbon processing by generalist species in the coastal ocean. Nature 451:708–711

    Article  PubMed  CAS  Google Scholar 

  78. Mulkidjanian AY, Dibrov P, Galperin MY (2008) The past and present of sodium energetics: may the sodium-motive force be with you. Biochim Biophys Acta 1777:985–992

    Article  PubMed  CAS  Google Scholar 

  79. Naughton LM, Blumerman SL, Carlberg M, Boyd EF (2009) Osmoadaptation among Vibrio species and unique genomic features and physiological responses of Vibrio parahaemolyticus. Appl Environ Microbiol 75:2802–2810

    Article  PubMed  CAS  Google Scholar 

  80. Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, Howard EC, King E, Oakley CA, Reisch CR (2010) Genome characteristics of a generalist marine bacterial lineage. ISME J 4:784–798

    Article  PubMed  CAS  Google Scholar 

  81. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49

    Article  PubMed  CAS  Google Scholar 

  82. Newton RJ, Jones SE, Helmus MR, McMahon KD (2007) Phylogenetic ecology of the freshwater Actinobacteria acI lineage. Appl Environ Microbiol 73:7169–7176

    Article  PubMed  CAS  Google Scholar 

  83. Newton RJ, McMahon KD (2011) Seasonal differences in bacterial community composition following nutrient additions in a eutrophic lake. Environ Microbiol 13:887–899

    Google Scholar 

  84. Nishimura Y, Kim C, Nagata T (2005) Vertical and seasonal variations of bacterioplankton subgroups with different nucleic Acid contents: possible regulation by phosphorus. Appl Environ Microbiol 71:5828–5836

    Article  PubMed  CAS  Google Scholar 

  85. Nold S, Zwart G (1998) Patterns and governing forces in aquatic microbial communities. Aquat Ecol 32:17–35

    Article  CAS  Google Scholar 

  86. Oh HM, Giovannoni SJ, Lee K, Ferriera S, Johnson J, Cho JC (2009) Complete genome sequence of Robiginitalea biformata HTCC2501. J Bacteriol 191:7144–7145

    Article  PubMed  CAS  Google Scholar 

  87. Oh HM, Kang I, Ferriera S, Giovannoni SJ, Cho JC (2010) Complete genome sequence of Croceibacter atlanticus HTCC2559T. J Bacteriol 192:4796–4797

    Article  PubMed  CAS  Google Scholar 

  88. Oh S, Caro-Quintero A, Tsementzi D, DeLeon-Rodriguez N, Luo C, Poretsky R, Konstantinidis KT (2011) Metagenomic insights into the evolution, function, and complexity of the planktonic microbial community of Lake Lanier, a temperate freshwater ecosystem. Appl Environ Microbiol 77:6000–6011

    Article  PubMed  CAS  Google Scholar 

  89. Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiologia 466:61–72

    Article  CAS  Google Scholar 

  90. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:13

    Article  CAS  Google Scholar 

  91. Penn K, Jensen PR (2012) Comparative genomics reveals evidence of marine adaptation in Salinispora species. BMC Genomics 13:86

    Article  PubMed  Google Scholar 

  92. Pernthaler J, Posch T, Simek K, Vrba J, Pernthaler A, Glöckner FO, Nübel U, Psenner R, Amann R (2001) Predator-specific enrichment of actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture. Appl Environ Microbiol 67:2145–2155

    Article  PubMed  CAS  Google Scholar 

  93. Polz MF, Hunt DE, Preheim SP, Weinreich DM, Polz MF, Hunt DE, Preheim SP, Weinreich DM (2006) Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes. Philo Trans R Soc B: Biol Sci 361:2009–2021

    Article  Google Scholar 

  94. Rappe MS, Vergin K, Giovannoni SJ (2000) Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems. FEMS Microbiol Ecol 33:219–232

    Article  PubMed  CAS  Google Scholar 

  95. Riemann L, Grossart HP (2008) Elevated lytic phage production as a consequence of particle colonization by a marine Flavobacterium (Cellulophaga sp.). Microbiol Ecol 56:505–512

    Article  Google Scholar 

  96. Sarmento H, Gasol JM (2012) Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ Microbiol 14:2348–2360

    Article  PubMed  CAS  Google Scholar 

  97. Schwalbach MS, Tripp HJ, Steindler L, Smith DP, Giovannoni SJ (2010) The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ Microbiol 12:490–500

    Article  PubMed  CAS  Google Scholar 

  98. Semenov AM (1991) Physiological bases of oligotrophy of microorganisms and the concept of microbial community. Microbial Ecol 22:239–247

    Article  Google Scholar 

  99. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  100. Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microbial Ecol 28:175–211

    Article  Google Scholar 

  101. Skippington E, Ragan MA (2011) Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev 35:707–735

    Article  PubMed  CAS  Google Scholar 

  102. Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ (2011) Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241–244

    Article  PubMed  CAS  Google Scholar 

  103. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc Natl Acad Sci U S A 103:12115–12120

    Article  PubMed  CAS  Google Scholar 

  104. Steindler L, Schwalbach MS, Smith DP, Chan F, Giovannoni SJ (2011) Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLoS One 6:e19725.

    Article  PubMed  CAS  Google Scholar 

  105. Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, Kassabgy M, Huang S, Mann AJ, Waldmann J, Weber M, Klindworth A, Otto A, Lange J, Bernhardt J, Reinsch C, Hecker M, Peplies J, Bockelmann FD, Callies U, Gerdts G, Wichels A, Wiltshire KH, Glockner FO, Schweder T, Amann R (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336:608–611

    Article  PubMed  CAS  Google Scholar 

  106. Tokuda H, Asano M, Shimamura Y, Unemoto T, Sugiyama S, Imae Y (1988) Roles of the respiratory Na+ pump in bioenergetics of Vibrio alginolyticus. J Biochem 103:650–655

    PubMed  CAS  Google Scholar 

  107. Tokuda H, Nakamura T, Unemoto T (1981) Potassium ion is required for the generation of pH-dependent membrane potential and delta pH by the marine bacterium Vibrio alginolyticus. Biochemistry 20:4198–4203

    Article  PubMed  CAS  Google Scholar 

  108. Tokuda H, Unemoto T (1982) Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus. J Biol Chem 257:10007–10014

    PubMed  CAS  Google Scholar 

  109. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5:e1000344

    Article  PubMed  CAS  Google Scholar 

  110. Unemoto T, Akagawa A, Mizugaki M, Hayashi M (1992) Distribution of Na+-dependent respiration and a respiration-driven electrogenic Na+ pump in moderately halophilic bacteria. J General Microbiol 138:1999–2005

    Article  CAS  Google Scholar 

  111. Ward N, Rainey FA, Stackebrandt E, Schlesner H (1995) Unraveling the extent of diversity within the order Planctomycetales. Appl Environ Microbiol 61:2270–2275

    PubMed  CAS  Google Scholar 

  112. Wetzel R (2001) Limnology, 3 E. Lake and River Ecosystems, vol 850. Academic Press, San Diego, CA

    Google Scholar 

  113. Wiedenbeck J, Cohan FM (2011) Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35:957–976

    Article  PubMed  CAS  Google Scholar 

  114. Woebken D, Teeling H, Wecker P, Dumitriu A, Kostadinov I, Delong EF, Amann R, Glockner FO (2007) Fosmids of novel marine Planctomycetes from the Namibian and Oregon coast upwelling systems and their cross-comparison with planctomycete genomes. ISME J 1:419–435

    Article  PubMed  CAS  Google Scholar 

  115. Yannarell AC, Triplett EW (2005) Geographic and environmental sources of variation in lake bacterial community composition. Appl Environ Microbiol 71:227–239

    Article  PubMed  CAS  Google Scholar 

  116. Zeng Y, Kasalicky V, Simek K, Koblizek M (2012) Genome sequences of two freshwater betaproteobacterial isolates, limnohabitans species strains rim28 and rim47, indicate their capabilities as both photoautotrophs and ammonia oxidizers. J Bacteriol 194:6302–6303

    Article  PubMed  CAS  Google Scholar 

  117. Zhao JS, Deng Y, Manno D, Hawari J (2010) Shewanella spp. genomic evolution for a cold marine lifestyle and in-situ explosive biodegradation. PloS One 5:e9109

    Article  PubMed  CAS  Google Scholar 

  118. Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han SK (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microbial Ecol 28:141–155

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Canada Research Chair (CRC:950-221184) Program, the Natural Sciences and Engineering Research Council (NSERC:402214-2011) of Canada, and the Fond Quebecois de la Recherche sure la Nature et les Technologies (FQRNT: 2012-RS-144365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A Walsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walsh, D., Lafontaine, J., Grossart, HP. (2013). On the Eco-Evolutionary Relationships of Fresh and Salt Water Bacteria and the Role of Gene Transfer in Their Adaptation. In: Gophna, U. (eds) Lateral Gene Transfer in Evolution. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7780-8_3

Download citation

Publish with us

Policies and ethics