CSNB Mapping Applied to Regular Bodies

  • Pamela Elizabeth Clark
  • Chuck Clark
Chapter
Part of the SpringerBriefs in Astronomy book series (BRIEFSASTRON)

Abstract

In this chapter, we apply CSNB technique to regular solar system bodies to illustrate the nature of processes prevailing on these bodies. These oblate spheroids include the Moon, clearly dominated by external bombardment, Venus, apparently dominated by volcanism, and Mars, where externally and internally driven processes compete and have dominated at different times in the planet’s history. We also outline our plans to apply this technique to Mercury, and to icy and outer solar system bodies.

Keywords

Migration Depression Mercury Azimuth Alba 

References

  1. Banerdt, W.A., Vidal, A.: Surface drainage on Mars. Lunar and Planetary Science XXXII, 1488.pdf (2001)Google Scholar
  2. Cadogan, P.H.: Oldest and largest lunar basin? Nature 250(5465), 315–316 (1974)CrossRefGoogle Scholar
  3. Clark, P.E.: Geochemical differentiation of the Maria on the early Moon. Lunar. Planet. Sci. XVI, 137–138 (1985)Google Scholar
  4. Clark, C.S.: World maps with constant-scale natural boundaries: CSNB 2007. Advances in Planetary Mapping 2007, ISPRS WG IV/7 Extraterrestrial Mapping Workshop, 8–9. Lunar and Planetary Institute (2007)Google Scholar
  5. Clark, C.S., Clark, P.E.: Using boundary-based mapping projections to reveal patterns in depositions and erosional features on 433 Eros. Lunar and Planetary Science XXXVII, 1189.pdf (2006a)Google Scholar
  6. Clark, P.E., Clark, C.S.: Using boundary-based maps to illustrate the palimpsest effort of early impacts on lunar surface formation. Lunar and Planetary Science XXXVII, 1153.pdf (2006b)Google Scholar
  7. Clark, C.S., Clark, P.E.: Venus on two world maps with constant-scale natural boundaries. Advances in Planetary Mapping 2007, ISPRS WG IV/7 Extraterrestrial Mapping Workshop, 11–12. Lunar and Planetary Institute (2007)Google Scholar
  8. Clark, P.E., McFadden, L.A.: New results and implications for lunar crustal iron distribution using sensor data fusion techniques. Geophys. Res. Lett. Planet. 105, 4291–4316 (2000)CrossRefGoogle Scholar
  9. Connerney, J.E.P.: A magnetic perspective on the Martian crustal dichotomy. Lunar and Planetary Institute Workshop on Hemispheres Apart, Contribution No. 1213.pdf. Lunar and Planetary Institute (2004)Google Scholar
  10. De Hon, R.A.: Hydrogeologic provinces of Mars. Lunar. Planet. Sci. XXVI(26), 327–329 (1995)Google Scholar
  11. De Hon, R.A.: Hydrologic provinces of Mars: Physiographic controls on drainage and ponding. In: Cabrol, N., Grin, E. (eds.) Lakes on Mars, pp. 68–89. Elsevier, Amsterdam (2010)Google Scholar
  12. Dohm, J.M., Kerry, K., Keller, J., Baker, V.R., Boynton, W., Maruyama, S., Anderson, R.C.: Mars geological province designations for the interpretation of GRS data. Lunar and Planetary Science XXXVI, 1567.pdf (2005)Google Scholar
  13. Dohm, J.M., Ferris, J.C., Baker, V., Anderson, R.C., Hare, T.M., Strom, R.C., Barlow, N.G., Tanaka, K.L., Klemaszewski, J.E., Scott, D.H.: Ancient drainage basin of the Tharsis region Mars: potential source for outflow channel systems and putative oceans or paleolakes. J. Geophys. Res. Planet. 106(E12), 32,943–32,958 (2001)CrossRefGoogle Scholar
  14. Fairén, A.G., Dohm, J.M., Baker, V.R., de Pablo, M.A., Ruiz, J., Ferris, J.C., Anderson, R.C.: Episodic flood inundations of the northern plains of Mars. Icarus 165(1), 53–67 (2003). doi: 10.1016/S0019-1035(03)00144-1 CrossRefGoogle Scholar
  15. Frey, H., Roark, J., Shockey, K., Frey, E., Sakimoto, S.: Ancient lowlands on Mars. Geophys. Res. Lett. 29, 10 (2002). doi: 10.1029/2001GL013832 CrossRefGoogle Scholar
  16. Kreslavsky, M.A., Head, J.W.: New observational evidence of global seismic effects of basin-forming impacts on the moon from lunar reconnaissance orbiter lunar orbiter laser altimeter data. J. Geophys. Res. 117, E00H24 (2012). doi:10.1029.2011JE003975CrossRefGoogle Scholar
  17. Maxwell, J.C.: On hills and dales. Philos. Mag. 40(269), 421–427 (1870). doi:10.1080/14786447008640422 (2009)Google Scholar
  18. McNamee, J.B., Borderies, N.J., Sjogren, W.L.: Venus global gravity and topography. J. Geophys. Res. Planet. 98(E5), 9113–9128 (1993). doi: 10.1029/93JE00382 CrossRefGoogle Scholar
  19. Smith, D.E., Zuber, M.T., Frey, H.V., Garvin, J.B., Head, J.W., Muhleman, D.O., Pettengill, G.H., Phillips, R.J., Solomon, S.C., Zwally, H.J., Banerdt, W.B., Duxbury, T.C., Golombek, M.P., Lemoine, F.G., Neumann, G.A., Rowlands, D.D., Aharonson, O., Ford, P.G., Ivanov, C.L., Johnson, C.L., McGovern, P.J., Abshire, J.B., Afzal, R.S., Sun, X.: Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. Planet. 106(E10), 23689–23722 (2001). doi: 10.1029/2000JE001364 CrossRefGoogle Scholar
  20. USGS: Map showing relief and surface markings of the lunar polar regions. I1236A (1981)Google Scholar
  21. USGS: Map showing relief and surface markings on the lunar far side. I1218A (1980)Google Scholar
  22. USGS: Shaded relief map of the lunar near side. I2276B (1992)Google Scholar
  23. Whitaker, E.A.: The lunar Procellarum basin. In: Multi-ring Basins, Proceedings of the Lunar and Planetary Science Conference, vol. 12A, pp. 105–111 (1981)Google Scholar
  24. Wilhelms, D.: Procellarum, a giant planetary basin. NASA Technical Memorandum 85127, Reports of the Planetary Geology Program, NASA/OSSA (1982)Google Scholar
  25. Wilhelms, D.: The Geologic History of the Moon. USGS Professional Paper 1348, US Government Printing Office (1987)Google Scholar
  26. Wilhelms, D., Squyres, S.: The Martian hemispheric dichotomy may be due to a giant impact. Nature 309, 138–140 (1984)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Pamela Elizabeth Clark
    • 1
  • Chuck Clark
    • 2
  1. 1.Institute of Astrophysics and Computational SciencesCatholic University of AmericaWashington, DCUSA
  2. 2.Chuck Clark, ArchitectAtlantaUSA

Personalised recommendations