Skip to main content

Feedback in SISO Single User Wireless Communication

  • Chapter
  • First Online:
  • 931 Accesses

Abstract

In this chapter, we study the different feedback strategies for the case of a single user wireless communication system where both the transmitter and the receiver are equipped with a single antenna. After a review of the capacity of finite state and Rayleigh fading channel, we have studied the adaptive transmission over time and frequency where rate and power are adapted in order to maximize the spectral efficiency. We have shown that depending on the availability of the channel state information (CSI) at the transmitter (CSIT) and at the receiver (CSIR), the capacity can significantly increase by exploiting the time variation of the channel. We extend the study to consider the important class of frequency selective channel where the power can be optimally shared among the frequencies. We study the adaptive transmission over time and frequency where rate and power are adapted in order to maximize the spectral efficiency. The adaptive modulation and coding where a joint optimization of the coding rate and modulation is a practical scheme to approach capacity. We then study channel prediction at the transmitter to compensate the delay due to feedback link. While average spectral efficiency is not affected by the time delay, there is a significant degradation on the average bit error depending on the length of the prediction filter. For wideband channel, due to correlation of the channel in frequency, the amount of feedback can be reduced by performing data compression. Finally, we consider the Automatic Repeat Request (ARQ) schemes that allow to build a reliable data transmission using ACK/NACK feedback message and data retransmission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abou-Faycal I C, Trott M D, Shamai S (2001) The capacity of discrete-time memoryless Rayleigh fading channels. IEEE Trans. Inform. Theory. 1290–1301

    Google Scholar 

  2. Alamouti S M, Kallel S (1994) Adaptive Trellis-Coded Multiple-Phase-Shift Keying for Rayleigh Fading Channels. IEEE Trans. Commun. 42: 2305–2314

    Article  Google Scholar 

  3. Alouini M S, Tang X, Goldsmith A J (1999) An adaptive modulation scheme for simultaneous voice and data transmission over fading channels. IEEE Jour. Select. Areas in Commun. 17: 837–850

    Article  Google Scholar 

  4. Alouini M S, Goldsmith A J (2000) Adaptive modulation over Nakagami fading channels. Kluwer Journal on Wireless Personal Communications. 119–143

    Google Scholar 

  5. Ausavapattanakun K, Nosratinia A (2007) Analysis of Go-Back-N ARQ in block fading channels. IEEE Trans. Wireless Comm. 6: 2793–2797

    Article  Google Scholar 

  6. Ausavapattanakun K, Nosratinia A (2007) Analysis of selective-repeat ARQ via matrix signal-flow graphs. IEEE Trans. Commun. 55: 198–204

    Article  Google Scholar 

  7. Bello P A, Cowan W M (1962) Theoretical study of on/off transmission over Gaussian multiplicative circuits. Proc. IRE Nat. Commun. Symp. Utica, New York.

    Google Scholar 

  8. Brueninghaus K, Astely D, Salzer T, Visuri S, Alexiou A, Karger S, Seraji G A (2005) Link Performance Models for System Level Simulations of Broadband Radio Access Systems. 16th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Germany. 2306–2311

    Google Scholar 

  9. Caire G, Taricco G, Biglieri E (1998) Bit-interleaved coded modulation. IEEE Trans. Inform. Theory. 44: 927–946

    Article  MathSciNet  MATH  Google Scholar 

  10. Caire G, Shamai S (1998) On the capacity of some channels with channel state information. Proc. IEEE Int. Symp. Information Theory, Cambridge, MA. 42–42

    Google Scholar 

  11. Caire G, Taricco G, Biglieri E (1999) Optimum power control over fading channels. IEEE Trans. Info. Theory. 5:1468–1489

    Article  MathSciNet  Google Scholar 

  12. Caire G, Kumar K R (2007) Information theoretic foundations of adaptive coded modulation. Proc. IEEE. 85: 2274–2298

    Article  Google Scholar 

  13. Cavers J (1972) Variable-rate transmission for Rayleigh fading channels. IEEE Trans. Commun. 20: 15–22

    Article  Google Scholar 

  14. Cavers J (1991) An analysis of pilot symbol assisted modulation for rayleigh fading channels. IEEE Transactions on Vehicular Technology. 40: 686–693

    Article  Google Scholar 

  15. Chase D (1973) A combined coding and modulation approach for communications over dispersive channels. IEEE Trans. Commun. 21: 159–174

    Article  Google Scholar 

  16. Chow P, Cioffi J, Bingham J (1995) A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels. IEEE Trans. Commun. 43: 772–775

    Article  Google Scholar 

  17. Duel-Hallen A, Hu S, Hallen H (2000) Long-range prediction of fading signals: Enabling adaptive transmission for mobile radio channels. IEEE Signal Process. Mag. 17: 62–75

    Article  Google Scholar 

  18. Duel-Hallen A (2007) Fading channel prediction for mobile radio adaptive transmission systems. Proc. IEEE. 95: 2299–2313

    Article  Google Scholar 

  19. Ekbatani S, Etemadi F, Jafarkhani H (2009) Throughput maximization over slowly fading channels using quantized and erroneous feedback, IEEE Trans. Commun. 57: 2528–2533

    Google Scholar 

  20. Ekpenyong A E, Huang Y (2007) Feedback constraints for adaptive transmission. IEEE Sig. Proc. Mag. 34: 69–78

    Article  Google Scholar 

  21. Eriksson T, Ottosson T (2007) Compression of Feedback for adaptive modulation and scheduling. Proceeding of the IEEE. 85: 2314–2321

    Article  Google Scholar 

  22. Eriksson T, Ottosson T (2007) Compression of feedback in adaptive OFDM-based systems using scheduling. IEEE Commun. Letters. 11: 859–861

    Article  Google Scholar 

  23. Frenger P, Parkvall S, Dahlman E (2001) Performance comparison of HARQ with Chase combining and incremental redundancy for HSDPA. in Proc. IEEE Veh. Technol. Conf. 1829–1833

    Google Scholar 

  24. Goeckel D L (1999) Adaptive coding for time-varying channels using outdated fading estimates. IEEE Trans. Commun. 47: 844–855

    Article  Google Scholar 

  25. Goldsmith A, Varaiya P (1993) Capacity of fading channels with channel side information. Proc. Int. Conf. Communications, Geneva, Switzerland. 600–604

    Google Scholar 

  26. Goldsmith A, Chua S G (1997) Variable-Rate Variable-Power MQAM for Fading Channels. IEEE Trans. Commun. 45: 1218–1230

    Article  Google Scholar 

  27. Goldsmith A, Chua S G (1998) Adaptive coded modulation for fading channels. IEEE Trans. Commun. 46: 595–602

    Article  Google Scholar 

  28. Goldsmith A (2005) Wireless Communications. New York, Cambridge University Press

    Book  Google Scholar 

  29. Falahati S, Svensson A, Ekman T, Sternad M (2003) Adaptive modulation systems for predicted wireless channels. Proc. IEEE VTC. 3: 1532–1536

    Google Scholar 

  30. Falahati S, Svensson A, Sternad M, Mei H (2004) Adaptive trellis-coded modulation over predicted flat fading channels. IEEE Trans. Commun. 42: 307–316

    Article  Google Scholar 

  31. Haleem M, Chandramouli R (2006) Adaptive downlink scheduling and rate selection: Cross-layer design. IEEE Jour. Select. Areas in Commun. 23: 1572–1581

    Google Scholar 

  32. Hayes J F (1968) Adaptive feedback communications. IEEE Trans. Commun. Technol. 16: 29–34

    Article  Google Scholar 

  33. Heegard C, Gamal A E (1983) On the capacity of computer memory with defects. IEEE Trans. Inform. Theory. 29: 731–739

    Article  MATH  Google Scholar 

  34. Hwang S, Kim B H, Kim Y (2001) A hybrid ARQ scheme with power ramping. Proceedings of IEEE Vehicular Technology Conference. 3: 1579–1583

    Google Scholar 

  35. Jimenez V, Eriksson T, Armada A, Garcia M, Ottosson T, Svensson A (2007) Methods for compression of feedback in adaptive multicarrier 4G schemes. Wireless Personal Commun. 47: 101–112

    Article  Google Scholar 

  36. Kalet I (1989) The multitone channel. IEEE Trans. Commun. 37: 119–124

    Article  Google Scholar 

  37. Kallel S (1992) Analysis of memory and incremental redundancy ARQ schemes over a nonstationary channel. IEEE Trans. Commun. 1474–1480

    Google Scholar 

  38. Kim T T, Skoglund M (2007) On the expected rate of slowly fading channels with quantized side information. IEEE Trans. Commun. 55: 820–829

    Article  Google Scholar 

  39. Köse C, Goeckel D L (2000) On power adaptation in adaptive signaling systems. IEEE Trans. Commun. 48: 1769–1773

    Google Scholar 

  40. Kurose J F, Ross K W (2013) Computer Networking: A Top-Down Approach. 6th Edition, Addison-Wesley

    Google Scholar 

  41. Leke A, Cioffi J M (1998) Multicarrier systems with imperfect channel knowledge. Proc. of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). 549–553

    Google Scholar 

  42. Lestable T, Bartelli M (2002) LZW adaptive bit loading. Proc. IEEE Int. Symp. on Advances Wireless Commun. (ISAWC), Victoria, Canada.

    Google Scholar 

  43. Li J, Narayanan K (2002) Rate-compatible low density parity check codes for capacity-approaching ARQ scheme in packet data communications. in Proc. Int. Conf. Communications, Internet, Information Technology (CIIT), U.S. Virgin Islands. 201–206

    Google Scholar 

  44. Lin S, Yu P S (1982) A hybrid ARQ scheme with parity retransmission for error control of satellite channels. IEEE Trans. Commun. 30: 1701–1719

    Article  MATH  Google Scholar 

  45. Lin S, Costello Jr D J, Miller M J (1984) Automatic-repeat-request error-control schemes. IEEE Commun. Magazine. 22: 5–17

    Article  Google Scholar 

  46. Lin L, Yates R, Spasojevic P (2003) Adaptive transmission with discrete code rates and power levels. IEEE Trans. Inf. Theory. 51: 2115–2125

    MathSciNet  Google Scholar 

  47. Liu Q, Zhou S, Giannakis G B (2004) Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links. IEEE Trans. Commun. 3: 1746–1755

    Google Scholar 

  48. Liu X, Yang H, Guo W, Yang D (2006) Capacity of fading channels with quantized channel side information. IEICE Trans. Commun. 89: 590–593

    Article  Google Scholar 

  49. Love D J, Heath Jr R W (2005) OFDM power loading using limited feedback. IEEE Trans. on Veh. Technol. 54: 1773–1780

    Article  Google Scholar 

  50. Mandelbaum D M (1974) Adaptive-feedback coding scheme using incremental redundancy. IEEE Trans. Inf. Theory 20: 388–389

    Article  MATH  Google Scholar 

  51. McEliece R J, Stark W E (1984) Channels with block interference. IEEE Trans. Inform. Theory. 30: 44–53

    Article  MATH  Google Scholar 

  52. Medard M, Goldsmith A (1997) Capacity of time-varying channels with channel side information. IEEE Int. Symp. on Information Theory (ISIT). 372–372

    Google Scholar 

  53. Narayanan K R, Stuber G L (1997) A novel ARQ technique using the turbo coding principle. IEEE Commun. Letters. 1:49–51

    Article  Google Scholar 

  54. Nguyen H, Lestable T (2004) Compression of bit loading power vectors for adaptive multi-carrier systems. Proc. IEEE Int. Midwest Symp. Circuits Syst. Hiroshima, Japan. 243–246

    Google Scholar 

  55. Øien G E, Holm H, Hole K J (2002) Channel prediction for adaptive coded modulation on Rayleigh fading channels. Proc. European Signal Processing Conference (EUSIPCO). Toulouse, France.

    Google Scholar 

  56. Ormeci P, Liu X, Goeckel D L, Wesel R D (2001) Adaptive bit-interleaved coded modulation. IEEE Trans. Commun. 49: 1572–1581

    Article  Google Scholar 

  57. Ozarow L, Shamai S, Wyner A D (1994) Information-theoretic considerations for cellular mobile radio. IEEE Transactions on Vehicular Technology. 43: 359–378

    Article  Google Scholar 

  58. Paris J F, del Carmen Aguayo-Torres M, Entrambasaguas J T (2001) Optimum discrete-power adaptive QAM scheme for Rayleigh fading channels. IEEE Commun. Lett. 5: 281–283

    Article  Google Scholar 

  59. Park S H, Kim J W, Kang C G (2007) Design of adaptive modulation and coding scheme for truncated HARQ. Proc of 2nd International Symposium on Wireless Pervasive Computing (ISWPC).

    Google Scholar 

  60. Rong Y, Vorobyov S A, Gershman A B (2006) Adaptive OFDM Techniques With One-Bit-Per- Subcarrier Channel-State Feedback. IEEE Trans. Commun. 54: 1993–2003

    Article  Google Scholar 

  61. Rowitch D N, Milstein L B (2000) On the performance of hybrid FEC/ARQ systems using rate compatible punctured turbo (RCPT) codes. IEEE Trans. Commun. 48: 55–67

    Article  Google Scholar 

  62. Shannon C E (1958) Channels with side information at the transmitter. IBM Journal Research and Dev. 2: 289–293

    Article  MathSciNet  Google Scholar 

  63. Song K B, Ekbal A, Chung S T, Cioffi J M (2006) Adaptive Modulation and Coding (AMC) for Bit-Interleaved Coded OFDM (BIC-OFDM). IEEE Transactions on Wireless Communications. 5: 1685–1694

    Article  Google Scholar 

  64. Stoica P, Moses R (2005) Spectral Analysis of Signals. Upper Saddle River, NJ: Prentice Hall

    MATH  Google Scholar 

  65. Sun Y, Honig M L (2003) Minimum feedback rates for multi-carrier transmission with correlated frequency-selective fading. Proc. IEEE Global Telecommunications Conf. San Francisco, CA. 3: 1628–1632

    Google Scholar 

  66. Svensson A (2007) An introduction to adaptive QAM modulation schemes for known and predicted channels. Proc. IEEE. 85: 2322–2336

    Article  Google Scholar 

  67. Torrance J M, Hanzo L (1996) Upper bound performance of adaptive modulation in a slow Rayleigh fading channel. Electron. Lett. 32: 718–719

    Article  Google Scholar 

  68. Tuninetti D (2007) Transmitter channel state information and repetition protocols in block fading channels. Proc. Information Theory Workshop. 505–510

    Google Scholar 

  69. Tuomaala E, Wang H (2005) Effective SINR Approach of Link to System Mapping in OFDM/Multi-carrier Mobile Network. Proc. 2nd International Conference on Mobile Technology, Applications and Systems.

    Google Scholar 

  70. Viswanathan H (1999) Capacity of Markov channels with receiver CSI and delayed feedback. IEEE Trans. Inf. Theory. 45: 761–771

    Article  MathSciNet  MATH  Google Scholar 

  71. Webb W T, Steele R (1995) Variable rate QAM for mobile radio. IEEE Trans. Commun. 43: 2223–2230

    Article  Google Scholar 

  72. Wicker S (1995) Error Control Systems for Digital Communication and Storage. Englewood Cliffs: Prentice Hall

    MATH  Google Scholar 

  73. Wolfowitz J (1964) Coding Theorems of Information Theory. 2nd Ed. New York: Springer-Verlag

    Book  MATH  Google Scholar 

  74. Zehavi E (1992) 8-PSK trellis codes for a Rayleigh channel. IEEE Trans. Commun. 40: 873–884

    Article  MATH  Google Scholar 

  75. 3GPP TSG-RAN-1 (2004) OFDM Exponential Effective SIR Mapping Validation, EESM Simulation Results (R1-040089)

    Google Scholar 

  76. 3GPP TSG-RAN-1 (2004) System-Level Performance Evaluation for OFDM WCDMA in UTRAN (R1-040090)

    Google Scholar 

  77. 3GPP2, WG3 (2003) Effective-SNR Mapping for Modeling Frame Error Rates in Multiple-state Channels (C30-20030429-010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Özbek, B., Le Ruyet, D. (2014). Feedback in SISO Single User Wireless Communication. In: Feedback Strategies for Wireless Communication. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7741-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7741-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7740-2

  • Online ISBN: 978-1-4614-7741-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics