Skip to main content

Failure Localization Via a Central Controller

  • Chapter
  • First Online:
Internet Optical Infrastructure
  • 532 Accesses

Abstract

To achieve fast Unambiguous Failure Localization, an essential problem for the network operators is to determine how to efficiently probe the network elements such that the number of probes is the minimum. By launching a set of m-trails, the transmitter of each m-trail constantly probes the health of the links along the m-trail, and the monitor at the receiver issues an alarm once detecting any irregularity. A failure may interrupt multiple m-trails which incurs a set of alarms. The m-trails should be allocated such that the network controller can uniquely and precisely localize the failure state according to the issued alarms. The chapter is on the m-trail allocation problem by introducing algorithms and approaches in presence of single and multiple link failures, respectively. With single-link failures, an essentially optimal construction for m-trail allocation is provided for lattice topologies. For general topologies, a suite of heuristics are presented, including Random Code Swapping (RCA–RCS) for single-link failures, Adjacent Link Failure Localization and Link Code Construction for adjacent link failures, and Greedy Code Swapping (CGT-GCS) for dense-shared risk link group failures based on combinatorial group testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There does not exist a set of at most 2k − 1 edges whose removal disconnects the graph.

  2. 2.

    Based on a similar approach, an upper bound (\(6 + \lceil \log _{2}(\vert E\vert + 1)\rceil \)) for the m-trail formation problem is proved in Sect. 3.2.2.3.

  3. 3.

    Note that such disjoint spanning trees can be found in \(O(\vert V \vert \vert E\vert \log \frac{\vert E\vert } {\vert V \vert })\) time [15].

  4. 4.

    \(x\ldots x\) denotes a code fragment with x in every bit position.

  5. 5.

    In the original terminology, the codes are characteristic vectors of sets.

References

  1. Ahuja S, Ramasubramanian S, Krunz M (2008) SRLG failure localization in all-optical networks using monitoring cycles and paths. In: Proceedings of the IEEE INFOCOM, pp 181–185

    Google Scholar 

  2. Ahuja S, Ramasubramanian S, Krunz M (2009) Single link failure detection in all-optical networks using monitoring cycles and paths. IEEE/ACM Trans Netw 17(4):1080–1093

    Article  Google Scholar 

  3. Ahuja S, Ramasubramanian S, Krunz M (2011) SRLG failure localization in optical networks. IEEE/ACM Trans Netw 19(4):989–999

    Article  Google Scholar 

  4. Alspach B (2008) The wonderful Walecki construction. Bull Inst Combin Appl 52:7–20

    MATH  MathSciNet  Google Scholar 

  5. Assi C, Ye Y, Shami A, Dixit S, Ali M (2002) A hybrid distributed fault-management protocol for combating single-fiber failures in mesh based DWDM optical networks. In: Proceedings of the IEEE GLOBECOM, pp 2676–2680

    Google Scholar 

  6. Babarczi P (2012) Survivable optical network design with unambiguous shared risk link group failure localization. Ph.D. Dissertation, Budapest University of Technology and Economics. http://lendulet.tmit.bme.hu/~babarczi/dissertation/Babarczi_PhD_Dissertation.pdf

  7. Babarczi P, Tapolcai J, Ho PH (2011) Adjacent link failure localization with monitoring trails in all-optical mesh networks. IEEE/ACM Trans Netw 19(3):907–920

    Article  Google Scholar 

  8. Babarczi P, Tapolcai J, Ho PH (2011) SRLG failure localization with monitoring trails in all-optical mesh networks. In: Proceedings of the international workshop on design of reliable communication networks (DRCN), Krakow, pp 188–195

    Google Scholar 

  9. Choi H, Subramaniam S, Choi H (2003) Loopback recovery from neighboring double-link failures in WDM mesh networks. Inf Sci 149(1–3):197–209

    Article  Google Scholar 

  10. Demeester P, Gryseels M, Autenrieth A, Brianza C, Castagna L, Signorelli G et al. (1999) Resilience in multilayer networks. IEEE Commun Mag 37(8):70–76

    Google Scholar 

  11. Diestel R (2000) Graph theory. Springer, New York

    Google Scholar 

  12. Doumith EA, Zahr SA, Gagnaire M (2010) Monitoring-tree: an innovative technique for failure localization in WDM translucent networks. In: Proceedings of the IEEE GLOBECOM, pp 1–6

    Google Scholar 

  13. Du D, Hwang FK (2000) Combinatorial group testing and its applications. World Scientific, Singapore

    MATH  Google Scholar 

  14. Eppstein D, Goodrich M, Hirschberg D (2005) Improved combinatorial group testing for real-world problem sizes. In: Proceedings of the workshop on algorithms and data structures (WADS). Springer, Waterloo, pp 86–98

    Google Scholar 

  15. Gabow HN, Westermann HH (1992) Forests, frames, and games: algorithms for matroid sums and applications. Algorithmica 7(1):465–497

    Article  MATH  MathSciNet  Google Scholar 

  16. Garey M, Johnson D (1979) Computers and intractability. A guide to the theory of NP-completeness. A series of books in the mathematical sciences. WH Freeman, San Francisco

    MATH  Google Scholar 

  17. Haddad A, Doumith E, Gagnaire M (2013) A fast and accurate meta-heuristic for failure localization based on the monitoring trail concept. Telecommun Syst 52(2):813–824

    Google Scholar 

  18. Harvey N, Patrascu M, Wen Y, Yekhanin S, Chan V (2007) Non-adaptive fault diagnosis for all-optical networks via combinatorial group testing on graphs. In: Proceedings of the IEEE INFOCOM, pp 697–705

    Google Scholar 

  19. Hwang FK, Sós VT (1987) Non-adaptive hypergeometric group testing. Studia Sci Math Hungar 22:257–263

    MATH  MathSciNet  Google Scholar 

  20. Li C, Ramaswami R, Center I, Heights Y (1997) Automatic fault detection, isolation, and recovery in transparentall-optical networks. IEEE/OSA J Lightwave Technol 15(10):1784–1793

    Article  Google Scholar 

  21. Lidl R, Niederreiter H (1994) Introduction to finite fields and their applications. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  22. Lucas E (1893) Recreations Mathematiques. Gauthier-Villars, Paris

    MATH  Google Scholar 

  23. Machuca C, Kiese M (2009) Optimal placement of monitoring equipment in transparent optical networks. In: Proceedings of the IEEE DRCN, pp 1–6

    Google Scholar 

  24. Maeda M (1998) Management and control of transparent optical networks. IEEE J Sel Areas Commun 16(7):1008–1023

    Article  Google Scholar 

  25. Markopoulou A, Iannaccone G, Bhattacharyya S, Chuah C, Diot C (2004) Characterization of failures in an IP backbone. In: Proceedings of the IEEE INFOCOM, vol 4. Citeseer, pp 2307–2317

    Google Scholar 

  26. Mas C, Thiran P (2002) An efficient algorithm for locating soft and hard failures in WDM networks. IEEE J Sel Areas Commun 18(10):1900–1911

    Article  Google Scholar 

  27. Mas C, Tomkos I, Tonguz O (2005) Failure location algorithm for transparent optical networks. IEEE J Sel Areas Commun 23(8):1508–1519

    Article  Google Scholar 

  28. Moghaddam E, Tapolcai J, Mazroa D, Hosszu É (2011) Physical impairment of monitoring trails in all optical transparent networks. In: Proceedings of the international congress on ultra modern telecommunications and control systems and workshops (ICUMT). IEEE, Budapest, Hungary, pp 1–7

    Google Scholar 

  29. Nash-Williams C (1961) Edge-disjoint spanning trees of finite graphs. J Lond Math Soc 1(1):445–450

    Article  MathSciNet  Google Scholar 

  30. Rao N (1993) Computational complexity issues in operative diagnosis of graph-based systems. IEEE Trans Comput 42(4):447–457

    Article  Google Scholar 

  31. Schrijver A (2003) Combinatorial optimization: polyhedra and efficiency. Springer, Berlin

    Google Scholar 

  32. Stanic S, Subramaniam S, Choi H, Sahin G, Choi H (2002) On monitoring transparent optical networks. In: Proceedings of the international conference on parallel processing workshops (ICPPW), pp 217–223

    Google Scholar 

  33. Stanic S, Subramaniam S, Sahin G, Choi H, Choi HA (2010) Active monitoring and alarm management for fault localization in transparent all-optical networks. IEEE Trans Netw Serv Manag 7(2):118–131

    Article  Google Scholar 

  34. Suurballe JW (1974) Disjoint paths in a network. Networks 4:125–145

    Article  MATH  MathSciNet  Google Scholar 

  35. Tapolcai J, Babarczi P (2014) Demo web page on (b)m-trail design, http://lendulet.tmit.bme.hu/demo/mtrail

  36. Tapolcai J, Ho PH, Rónyai L, Babarczi P, Wu B (2011) Failure localization for shared risk link groups in all-optical mesh networks using monitoring trails. IEEE/OSA J Lightwave Technol 29(10):1597–1606

    Article  Google Scholar 

  37. Tapolcai J, Wu B, Ho PH, Rónyai L (2011) A novel approach for failure localization in all-optical mesh networks. IEEE/ACM Trans Netw 19(1):275–285

    Article  Google Scholar 

  38. Tapolcai J, Ho PH, Rónyai L, Wu B (2012) Network-wide local unambiguous failure localization (NWL-UFL) via monitoring trails. IEEE/ACM Trans Netw 20(6):1762–1773

    Article  Google Scholar 

  39. Tapolcai J, Ho PH, Babarczi P, Rónyai L (2013) On achieving all-optical failure restoration via monitoring trails. In: Proceedings of the IEEE INFOCOM, pp 380–384

    Google Scholar 

  40. Tapolcai J, Wu B, Ho PH (2009) On monitoring and failure localization in mesh all-optical networks. In: Proceedings of the IEEE INFOCOM, Rio de Janero, pp 1008–1016

    Google Scholar 

  41. Tutte W (1961) On the problem of decomposing a graph into n connected factors. J Lond Math Soc 1(1):221–230

    Article  MathSciNet  Google Scholar 

  42. Wen Y, Chan V, Zheng L (2005) Efficient fault-diagnosis algorithms for all-optical WDM networks with probabilistic link failures. IEEE/OSA J Lightwave Technol 23:3358–3371

    Article  Google Scholar 

  43. Wu B, Ho PH, Yeung K (2008) Monitoring trail: a new paradigm for fast link failure localization in WDM mesh networks. In: Proceedings of the IEEE GLOBECOM

    Google Scholar 

  44. Wu B, Ho PH, Yeung K (2009) Monitoring trail: on fast link failure localization in all-optical WDM mesh networks. IEEE/OSA J Lightwave Technol 27(18):4175–4185

    Article  Google Scholar 

  45. Wu B, Yeung K, Ho PH (2009) Monitoring cycle design for fast link failure localization in all-optical networks. IEEE/OSA J Lightwave Technol 27(10):1392–1401

    Article  Google Scholar 

  46. Wu B, Ho PH, Tapolcai J, Babarczi P (2010) Optimal allocation of monitoring trails for fast SRLG failure localization in all-optical networks. In: Proceedings of the IEEE GLOBECOM

    Google Scholar 

  47. Wu B, Ho PH, Tapolcai J, Jiang X (2010) A novel framework of fast and unambiguous link failure localization via monitoring trails. In: Proceedings of the IEEE INFOCOM WIP, San Diego

    Google Scholar 

  48. Wu B, Ho PH, Yeung K, Tapolcai J, Mouftah H (2011) Optical layer monitoring schemes for fast link failure localization in all-optical networks. IEEE Commun Surv Tutor 13(1):114–125

    Article  Google Scholar 

  49. Wu B, Yeung K, Hu B, Ho PH (2011) M2-CYCLE: an optical layer algorithm for fast link failure detection in all-optical mesh networks. Elsevier Comput Netw 55(3):748–758

    Article  MATH  Google Scholar 

  50. Zeng H, Huang C (2004) Fault detection and path performance monitoring in meshed all-optical networks. In: Proceedings of the IEEE GLOBECOM, vol 3, pp 2014–2018

    Google Scholar 

  51. Zeng H, Vukovic A (2007) The variant cycle-cover problem in fault detection and localization for mesh all-optical networks. Photonic Netw Commun 14(2):111–122

    Article  Google Scholar 

  52. Zeng H, Huang C, Vukovic A (2006) A novel fault detection and localization scheme for mesh all-optical networks based on monitoring-cycles. Photonic Netw Commun 11(3):277–286

    Article  Google Scholar 

  53. Zhao Y, Xu S, Wang X, Wang S (2010) A new heuristic for monitoring trail allocation in all-optical WDM networks. In: Proceedings of the IEEE GLOBECOM, pp 1–5

    Google Scholar 

  54. Zhao Y, Xu S, Wu B, Wang X, Wang S (2012) Monitoring trail allocation in all-optical networks with the random next hop policy. In: Proceedings of the IEEE high performance switching and routing (HPSR), pp 192–197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tapolcai, J., Ho, PH., Babarczi, P., Rónyai, L. (2015). Failure Localization Via a Central Controller. In: Internet Optical Infrastructure. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7738-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7738-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7737-2

  • Online ISBN: 978-1-4614-7738-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics