Advertisement

Basic Objects and Notation

  • Andrew McInerney
Chapter
Part of the Undergraduate Texts in Mathematics book series (UTM)

Abstract

Most of modern mathematics is expressed using the language of sets and functions. This can be a significant hurdle for the student whose mathematical experience, possibly through the entire calculus sequence, has not included any emphasis on sets or set operations. For that reason, we review these basic ideas in this chapter with the goal of both establishing the notation and providing a quick reference that the student can consult when proceeding through the main part of the text.

Keywords

Natural Number Logical Structure Standard Notation Modern Mathematics Formal Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis and Applications, 2nd edn. Springer, New York (1988)MATHCrossRefGoogle Scholar
  2. 2.
    Anton, H., Rorres, C.: Elementary Linear Algebra with Applications, 9th edn. Wiley, New York (2005)Google Scholar
  3. 3.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1989)CrossRefGoogle Scholar
  4. 4.
    Audin, M., Lafontaine, F. (eds.): Holomorphic curves in symplectic geometry. In: Progress in Mathematics, vol. 117. Birkhäuser, Basel (1994)Google Scholar
  5. 5.
    Bachman, D.: A Geometric Approach to Differential Forms. Birkhäuser, Boston (2006)MATHGoogle Scholar
  6. 6.
    Banyaga, A., McInerney, A.: On isomorphic classical diffeomorphism groups. III. Ann. Global Anal. Geom. 13(2), 117–127 (1995)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bates, L., Peschke, G.: A remarkable symplectic structure. J. Differential Geom. 32(2), 533–538 (1990)MathSciNetMATHGoogle Scholar
  8. 8.
    Bennequin, D.: Entrelacements et équations de Pfaff. Third Schnepfenried geometry conference, vol. 1, pp. 87–161 (Schnepfenried, 1982); Astérisque, vol. 107–108. Société mathématique de France, Paris (1983)Google Scholar
  9. 9.
    Blanchard, P., Devaney, R.L., Hall, G.R.: Differential Equations, 3rd edn. Thomson Brooks/Cole, Pacific Grove (2006)Google Scholar
  10. 10.
    Burke, W.L.: Applied Differential Geometry. Cambridge University Press, New York (1985)MATHCrossRefGoogle Scholar
  11. 11.
    do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood Cliffs (1976)Google Scholar
  12. 12.
    do Carmo, M.: Riemannian Geometry. Birkhäuser, Boston (1992)Google Scholar
  13. 13.
    do Carmo, M.: Differential Forms and Applications. Springer, New York (1994)Google Scholar
  14. 14.
    Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry—Methods and Applications, Part I. Springer, New York (1984)MATHCrossRefGoogle Scholar
  15. 15.
    Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)MATHGoogle Scholar
  16. 16.
    Geiges, H.: A brief history of contact geometry and topology. Expo. Math. 19(1), 25–53 (2001)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Geiges, H.: Christiaan Huygens and contact geometry. Nieuw Arch. Wiskd (5). 6(2), 117–123 (2005)Google Scholar
  18. 18.
    Geiges, H.: An Introduction to Contact Topology. Cambridge University Press, New York (2008)MATHCrossRefGoogle Scholar
  19. 19.
    Giaquinta, M., Hildebrandt, S.: Calculus of Variations II. Springer, New York (1996)Google Scholar
  20. 20.
    Gotay, M., Isenberg, J.A.: The symplectification of science. Gaz. Math. 54, 59–79 (1992)MathSciNetMATHGoogle Scholar
  21. 21.
    Gromov, M.: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82(2), 307–347 (1985)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser, Boston (1994)MATHCrossRefGoogle Scholar
  23. 23.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vols. 1 and 2. Wiley, New York (1963, 1969)Google Scholar
  24. 24.
    Kühnel, W.: Differential Geometry: Curves–Surfaces–Manifolds, 2nd edn. American Mathematical Society, Providence (2006)Google Scholar
  25. 25.
    Lanczos, C.: The Variational Principles of Mechanics, 4th edn. Dover, New York (1986)MATHGoogle Scholar
  26. 26.
    Libermann, P., Marle, C.-M.: Symplectic Geometry and Analytical Mechanics. D. Reidel, Boston (1987)MATHCrossRefGoogle Scholar
  27. 27.
    Lie, S.: Geometrie der Berührungstransformationen. B.G. Teubner, Leipzig (1896)MATHGoogle Scholar
  28. 28.
    Lie, S., Engel, F.: Theorie der Transformationsgruppen, vol. 3. B.G. Teubner, Leipzig (1888–1893)Google Scholar
  29. 29.
    Marsden, J., Tromba, A.J.: Vector Calculus, 5th edn. W.H. Freeman and Co., New York (2004)Google Scholar
  30. 30.
    McDuff, D., Salamon, D.: Introduction to Symplectic Topology, 2nd edn. Clarendon Press, Oxford (1998)MATHGoogle Scholar
  31. 31.
    Morgan, F.: Riemannian Geometry, A Beginner’s Guide, 2nd edn. A K Peters, Ltd., Natick (1998)MATHGoogle Scholar
  32. 32.
    O’Neill, B.: Elementary Differential Geometry, 2nd edn. Academic, New York (1997)MATHGoogle Scholar
  33. 33.
    Peterson, P.: Riemannian Geometry, 2nd edn. Springer, New York (2006)Google Scholar
  34. 34.
    Rybicki, T.: Isomorphisms between groups of diffeomorphisms. Proc. Am. Math. Soc. 123(1), 303–310 (1995)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Schwerdtfeger, H.: Geometry of Complex Numbers. Dover, New York (1979)MATHGoogle Scholar
  36. 36.
    Spivak, M.: Calculus on Manifolds. Benjamin/Cummings, Reading (1965)MATHGoogle Scholar
  37. 37.
    Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 5, 2nd edn. Publish or Perish, Berkeley (1979)Google Scholar
  38. 38.
    Struik, D.: Lectures on Classical Differential Geometry, 2nd edn. Dover, New York (1988)MATHGoogle Scholar
  39. 39.
    Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Springer, New York (1983)MATHCrossRefGoogle Scholar
  40. 40.
    Weintraub, S.H.: Differential Forms: A Complement to Vector Calculus. Academic, New York (1997)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andrew McInerney
    • 1
  1. 1.Department of Mathematics and Computer ScienceBronx Community College City University of New YorkBronxUSA

Personalised recommendations