Skip to main content

Cell-to-Cell Transmission of HIV

  • Chapter
  • First Online:
  • 966 Accesses

Abstract

HIV assembly has been intensively studied as the assembly and release of cell-free virus. However, it is becoming increasingly clear that HIV can also bypass cell-free spread by direct transmission from cell to cell across zones of tight contact designated virological synapses. Here, we introduce the concept of the virological synapse, compare it with that of immunological synapses, and discuss current virological synapse models to explain HIV spread in different lymphocytes. We will discuss how cell–cell contact modifies the classical life cycle of cell-free HIV in the donor as well as in the target cell. Finally, because HIV cell-to-cell transmission can be more resistant than cell-free virus to restriction factors, neutralizing antibodies, and anti-retroviral therapies, it may also affect the pathogenesis of HIV/AIDS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APC:

Antigen-presenting cell

DC:

Dendritic cell

Env:

Viral envelope glycoprotein

Gag:

General antigen polyprotein precursor

HIV:

Human immunodeficiency virus 1

HTLV-1:

Human lymphotropic virus 1

ICAM-1:

Intercellular Adhesion Molecule 1

IS:

Immunological synapse

LFA-1:

Lymphocyte function-associated antigen 1

MHC:

Major histocompatibility complex

MLV:

Murine leukemia virus

MOI:

Multiplicity of infection

Nef:

Negative factor

Pol:

Polymerase

SMAC:

Supramolecular activation cluster

TCR:

T cell receptor

TRIM5-α:

Tripartite motif 5-alpha

Vpu:

Viral protein u

VS:

Virological synapse

References

  1. Bieniasz PD (2009) The cell biology of HIV-1 virion genesis. Cell Host Microbe 5(6):550–558

    PubMed  CAS  Google Scholar 

  2. Marsh M, Helenius A (2006) Virus entry: open sesame. Cell 124(4):729–740

    PubMed  CAS  Google Scholar 

  3. Young JA (2001) Virus entry and uncoating. In: Knipe DM (ed) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 87–103

    Google Scholar 

  4. Phillips DM (1994) The role of cell-to-cell transmission in HIV infection. AIDS 8(6):719–731

    PubMed  CAS  Google Scholar 

  5. Mothes W et al (2010) Virus cell-to-cell transmission. J Virol 84(17):8360–8368

    PubMed  CAS  Google Scholar 

  6. Sattentau Q (2008) Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol 6(11):815–826

    PubMed  CAS  Google Scholar 

  7. Doceul V et al (2010) Repulsion of superinfecting virions: a mechanism for rapid virus spread. Science 327(5967):873–876

    PubMed  CAS  Google Scholar 

  8. Dimitrov DS et al (1993) Quantitation of human immunodeficiency virus type 1 infection kinetics. J Virol 67(4):2182–2190

    PubMed  CAS  Google Scholar 

  9. Weng J et al (2009) Formation of syncytia is repressed by tetraspanins in human immunodeficiency virus type 1-producing cells. J Virol 83(15):7467–7474

    PubMed  CAS  Google Scholar 

  10. Gordon-Alonso M et al (2006) Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion. J Immunol 177(8):5129–5137

    PubMed  CAS  Google Scholar 

  11. Sato H et al (1992) Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles. Virology 186(2):712–724

    PubMed  CAS  Google Scholar 

  12. Moore JP, Ho DD (1995) HIV-1 neutralization: the consequences of viral adaptation to growth on transformed T cells. AIDS 9(Suppl A):S117–S136

    PubMed  Google Scholar 

  13. Monel B et al (2012) HIV cell-to-cell transmission requires the production of infectious virus particles and does not proceed through env-mediated fusion pores. J Virol 86(7):3924–3933

    PubMed  CAS  Google Scholar 

  14. McDonald D et al (2002) Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 159(3):441–452

    PubMed  CAS  Google Scholar 

  15. Johnson DC, Huber MT (2002) Directed egress of animal viruses promotes cell-to-cell spread. J Virol 76(1):1–8

    PubMed  CAS  Google Scholar 

  16. Feldmann J, Schwartz O (2010) HIV-1 virological synapse: live imaging of transmission. Viruses 2(8):1666–1680

    PubMed  CAS  Google Scholar 

  17. Pearce-Pratt R, Malamud D, Phillips DM (1994) Role of the cytoskeleton in cell-to-cell transmission of human immunodeficiency virus. J Virol 68(5):2898–2905

    PubMed  CAS  Google Scholar 

  18. Carr JM et al (1999) Rapid and efficient cell-to-cell transmission of human immunodeficiency virus infection from monocyte-derived macrophages to peripheral blood lymphocytes. Virology 265(2):319–329

    PubMed  CAS  Google Scholar 

  19. Cameron PU et al (1992) Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257(5068):383–387

    PubMed  CAS  Google Scholar 

  20. McDonald D et al (2003) Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300(5623):1295–1297

    PubMed  CAS  Google Scholar 

  21. Jolly C et al (2004) HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med 199(2):283–293

    PubMed  CAS  Google Scholar 

  22. Igakura T et al (2003) Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299(5613):1713–1716

    PubMed  CAS  Google Scholar 

  23. Alfsen A et al (2005) HIV-1-infected blood mononuclear cells form an integrin- and agrin-dependent viral synapse to induce efficient HIV-1 transcytosis across epithelial cell monolayer. Mol Biol Cell 16(9):4267–4279

    PubMed  CAS  Google Scholar 

  24. Rudnicka D et al (2009) Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses. J Virol 83(12):6234–6246

    PubMed  CAS  Google Scholar 

  25. Chen P et al (2007) Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological Synapses. J Virol 81(22):12582–12595

    PubMed  CAS  Google Scholar 

  26. Sherer NM et al (2007) Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 9(3):310–315

    PubMed  CAS  Google Scholar 

  27. Jin J et al (2009) Assembly of the murine leukemia virus is directed towards sites of cell-cell contact. PLoS Biol 7(7):e1000163

    PubMed  Google Scholar 

  28. Sowinski S et al (2008) Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 10(2):211–219

    PubMed  CAS  Google Scholar 

  29. Groot F, Welsch S, Sattentau QJ (2008) Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses. Blood 111(9):4660–4663

    PubMed  CAS  Google Scholar 

  30. Martin N et al (2010) Virological synapse-mediated spread of human immunodeficiency virus type 1 between T cells is sensitive to entry inhibition. J Virol 84(7):3516–3527

    PubMed  CAS  Google Scholar 

  31. Sherer NM, Jin J, Mothes W (2010) Directional spread of surface associated retroviruses regulated by differential virus-cell interactions. J Virol 87(7):3248–3258

    Google Scholar 

  32. Aggarwal A et al (2012) Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog 8(6):e1002762

    PubMed  CAS  Google Scholar 

  33. Hubner W et al (2009) Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 323(5922):1743–1747

    PubMed  Google Scholar 

  34. Dale BM et al (2011) Cell-to-cell transfer of HIV-1 via virological synapses leads to endosomal virion maturation that activates viral membrane fusion. Cell Host Microbe 10(6):551–562

    PubMed  CAS  Google Scholar 

  35. Dustin ML (2011) Visualization of cell-cell interaction contacts: synapses and kinapses. Self Nonself 2(2):85–97

    PubMed  Google Scholar 

  36. Huppa JB, Davis MM (2003) T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol 3(12):973–983

    PubMed  CAS  Google Scholar 

  37. Griffiths GM, Tsun A, Stinchcombe JC (2010) The immunological synapse: a focal point for endocytosis and exocytosis. J Cell Biol 189(3):399–406

    PubMed  CAS  Google Scholar 

  38. Norcross MA (1984) A synaptic basis for T-lymphocyte activation. Ann Immunol 135D(2):113–134

    CAS  Google Scholar 

  39. Paul WE et al (1987) Regulation of B-lymphocyte activation, proliferation, and differentiation. Ann N Y Acad Sci 505:82–89

    PubMed  CAS  Google Scholar 

  40. Campi G, Varma R, Dustin ML (2005) Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J Exp Med 202(8):1031–1036

    PubMed  CAS  Google Scholar 

  41. Yokosuka T et al (2005) Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 6(12):1253–1262

    PubMed  CAS  Google Scholar 

  42. Dustin ML et al (1998) A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 94(5):667–677

    PubMed  CAS  Google Scholar 

  43. Monks CR et al (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395(6697):82–86

    PubMed  CAS  Google Scholar 

  44. Calderwood DA et al (2002) The phosphotyrosine binding-like domain of talin activates integrins. J Biol Chem 277(24):21749–21758

    PubMed  CAS  Google Scholar 

  45. Smith A et al (2005) A talin-dependent LFA-1 focal zone is formed by rapidly migrating T lymphocytes. J Cell Biol 170(1):141–151

    PubMed  CAS  Google Scholar 

  46. Kaizuka Y et al (2007) Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc Natl Acad Sci U S A 104(51):20296–20301

    PubMed  CAS  Google Scholar 

  47. Dustin ML et al (2006) T cell-dendritic cell immunological synapses. Curr Opin Immunol 18(4):512–516

    PubMed  CAS  Google Scholar 

  48. Stinchcombe JC et al (2006) Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443(7110):462–465

    PubMed  CAS  Google Scholar 

  49. Ueda H et al (2011) CD4+ T-cell synapses involve multiple distinct stages. Proc Natl Acad Sci U S A 108(41):17099–17104

    PubMed  CAS  Google Scholar 

  50. Huse M, Quann EJ, Davis MM (2008) Shouts, whispers and the kiss of death: directional secretion in T cells. Nat Immunol 9(10):1105–1111

    PubMed  CAS  Google Scholar 

  51. Das V et al (2004) Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes. Immunity 20(5):577–588

    PubMed  CAS  Google Scholar 

  52. Dustin ML, Depoil D (2011) New insights into the T cell synapse from single molecule techniques. Nat Rev Immunol 11(10):672–684

    PubMed  CAS  Google Scholar 

  53. Davis MM et al (2007) T cells as a self-referential, sensory organ. Annu Rev Immunol 25:681–695

    PubMed  CAS  Google Scholar 

  54. Stoll S et al (2002) Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296(5574):1873–1876

    PubMed  Google Scholar 

  55. Gunzer M et al (2000) Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 13(3):323–332

    PubMed  CAS  Google Scholar 

  56. Miller MJ et al (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296(5574):1869–1873

    PubMed  CAS  Google Scholar 

  57. Mempel TR, Henrickson SE, Von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427(6970):154–159

    PubMed  CAS  Google Scholar 

  58. Vasiliver-Shamis G et al (2009) Human immunodeficiency virus type 1 envelope gp120-induced partial T-cell receptor signaling creates an F-actin-depleted zone in the virological synapse. J Virol 83(21):11341–11355

    PubMed  CAS  Google Scholar 

  59. Vasiliver-Shamis G et al (2008) Human immunodeficiency virus type 1 envelope gp120 induces a stop signal and virological synapse formation in noninfected CD4+ T cells. J Virol 82(19):9445–9457

    PubMed  CAS  Google Scholar 

  60. Murooka TT et al (2012) HIV-infected T cells are migratory vehicles for viral dissemination. Nature 490(7419):283–287

    PubMed  CAS  Google Scholar 

  61. Sewald X et al (2012) In vivo imaging of virological synapses. Nat Commun 3:1320. doi:10.1038/ncomms2338

    PubMed  Google Scholar 

  62. Jolly C, Mitar I, Sattentau QJ (2007) Adhesion molecule interactions facilitate human immunodeficiency virus type 1-induced virological synapse formation between T cells. J Virol 81(24):13916–13921

    PubMed  CAS  Google Scholar 

  63. Jolly C, Sattentau QJ (2005) Human immunodeficiency virus type 1 virological synapse formation in T cells requires lipid raft integrity. J Virol 79(18):12088–12094

    PubMed  CAS  Google Scholar 

  64. Krementsov DN et al (2009) Tetraspanins regulate cell-to-cell transmission of HIV-1. Retrovirology 6:64

    PubMed  Google Scholar 

  65. Jolly C, Sattentau QJ (2007) Human immunodeficiency virus type 1 assembly, budding, and cell-cell spread in T cells take place in tetraspanin-enriched plasma membrane domains. J Virol 81(15):7873–7884

    PubMed  CAS  Google Scholar 

  66. Jimenez-Baranda S et al (2007) Filamin-A regulates actin-dependent clustering of HIV receptors. Nat Cell Biol 9(7):838–846

    PubMed  CAS  Google Scholar 

  67. Barrero-Villar M et al (2009) Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes. J Cell Sci 122(pt 1):103–113

    PubMed  CAS  Google Scholar 

  68. Pais-Correia AM et al (2010) Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat Med 16(1):83–89

    PubMed  CAS  Google Scholar 

  69. Nejmeddine M et al (2009) HTLV-1-Tax and ICAM-1 act on T-cell signal pathways to polarize the microtubule-organizing center at the virological synapse. Blood 114(5):1016–1025

    PubMed  CAS  Google Scholar 

  70. Jolly C et al (2011) The regulated secretory pathway in CD4(+) T cells contributes to human immunodeficiency virus type-1 cell-to-cell spread at the virological synapse. PLoS Pathog 7(9):e1002226

    PubMed  CAS  Google Scholar 

  71. Sanchez-Madrid F, Serrador JM (2009) Bringing up the rear: defining the roles of the uropod. Nat Rev Mol Cell Biol 10(5):353–359

    PubMed  CAS  Google Scholar 

  72. Llewellyn GN et al (2010) Nucleocapsid promotes localization of HIV-1 gag to uropods that participate in virological synapses between T cells. PLoS Pathog 6(10):e1001167

    PubMed  Google Scholar 

  73. Gousset K et al (2008) Real-time visualization of HIV-1 GAG trafficking in infected macrophages. PLoS Pathog 4(3):e1000015

    PubMed  Google Scholar 

  74. Yu HJ, Reuter MA, McDonald D (2008) HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog 4(8):e1000134

    PubMed  Google Scholar 

  75. Felts RL et al (2010) 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc Natl Acad Sci U S A 107(30):13336–13341

    PubMed  CAS  Google Scholar 

  76. Laguette N et al (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474(7353):654–657

    PubMed  CAS  Google Scholar 

  77. Goujon C et al (2007) SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 4:2

    PubMed  Google Scholar 

  78. Goujon C et al (2006) With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIV(MAC). Gene Ther 13(12):991–994

    PubMed  CAS  Google Scholar 

  79. McDonald D (2010) Dendritic cells and HIV-1 trans-infection. Viruses 2(8):1704–1717

    PubMed  CAS  Google Scholar 

  80. Geijtenbeek TB et al (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100(5):587–597

    PubMed  CAS  Google Scholar 

  81. Puryear WB et al (2012) HIV-1 incorporation of host-cell-derived glycosphingolipid GM3 allows for capture by mature dendritic cells. Proc Natl Acad Sci U S A 109(19):7475–7480

    PubMed  CAS  Google Scholar 

  82. Izquierdo-Useros N et al (2012) Sialyllactose in viral membrane gangliosides is a novel molecular recognition pattern for mature dendritic cell capture of HIV-1. PLoS Biol 10(4):e1001315

    PubMed  CAS  Google Scholar 

  83. Cavrois M et al (2007) In vitro derived dendritic cells trans-infect CD4 T cells primarily with surface-bound HIV-1 virions. PLoS Pathog 3(1):e4

    PubMed  Google Scholar 

  84. Nikolic DS et al (2011) HIV-1 activates Cdc42 and induces membrane extensions in immature dendritic cells to facilitate cell-to-cell virus propagation. Blood 118(18):4841–4852

    PubMed  CAS  Google Scholar 

  85. Lehmann MJ et al (2005) Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J Cell Biol 170(2):317–325

    PubMed  CAS  Google Scholar 

  86. Freed EO, Martin MA (1994) HIV-1 infection of non-dividing cells. Nature 369(6476):107–108

    PubMed  CAS  Google Scholar 

  87. Sharova N et al (2005) Macrophages archive HIV-1 virions for dissemination in trans. EMBO J 24(13):2481–2489

    PubMed  CAS  Google Scholar 

  88. Bennett AE et al (2009) Ion-abrasion scanning electron microscopy reveals surface-connected tubular conduits in HIV-infected macrophages. PLoS Pathog 5(9):e1000591

    PubMed  Google Scholar 

  89. Deneka M et al (2007) In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol 177(2):329–341

    PubMed  CAS  Google Scholar 

  90. Pelchen-Matthews A, Kramer B, Marsh M (2003) Infectious HIV-1 assembles in late endosomes in primary macrophages. J Cell Biol 162(3):443–455

    PubMed  CAS  Google Scholar 

  91. Pelchen-Matthews A et al (2012) Beta2 integrin adhesion complexes maintain the integrity of HIV-1 assembly compartments in primary macrophages. Traffic 13(2):273–291

    PubMed  CAS  Google Scholar 

  92. Welsch S et al (2007) HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog 3(3):e36

    PubMed  Google Scholar 

  93. Sol-Foulon N et al (2007) ZAP-70 kinase regulates HIV cell-to-cell spread and virological synapse formation. EMBO J 26(2):516–526

    PubMed  CAS  Google Scholar 

  94. Fackler OT, Alcover A, Schwartz O (2007) Modulation of the immunological synapse: a key to HIV-1 pathogenesis? Nat Rev Immunol 7(4):310–317

    PubMed  CAS  Google Scholar 

  95. Lilley BN, Ploegh HL (2005) Viral modulation of antigen presentation: manipulation of cellular targets in the ER and beyond. Immunol Rev 207:126–144

    PubMed  CAS  Google Scholar 

  96. Wildum S et al (2006) Contribution of Vpu, Env, and Nef to CD4 down-modulation and resistance of human immunodeficiency virus type 1-infected T cells to superinfection. J Virol 80(16):8047–8059

    PubMed  CAS  Google Scholar 

  97. Geleziunas R, Bour S, Wainberg MA (1994) Cell surface down-modulation of CD4 after infection by HIV-1. FASEB J 8(9):593–600

    PubMed  CAS  Google Scholar 

  98. Willey RL et al (1992) Human immunodeficiency virus type 1 Vpu protein induces rapid degradation of CD4. J Virol 66(12):7193–7200

    PubMed  CAS  Google Scholar 

  99. Willey RL et al (1992) Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gp160-CD4 complexes. J Virol 66(1):226–234

    PubMed  CAS  Google Scholar 

  100. Aiken C et al (1994) Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell 76(5):853–864

    PubMed  CAS  Google Scholar 

  101. Schwartz O et al (1996) Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 2(3):338–342

    PubMed  CAS  Google Scholar 

  102. Collins KL et al (1998) HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391(6665):397–401

    PubMed  CAS  Google Scholar 

  103. Stolp B et al (2009) HIV-1 Nef interferes with host cell motility by deregulation of Cofilin. Cell Host Microbe 6(2):174–186

    PubMed  CAS  Google Scholar 

  104. Nobile C et al (2010) HIV-1 Nef inhibits ruffles, induces filopodia, and modulates migration of infected lymphocytes. J Virol 84(5):2282–2293

    PubMed  CAS  Google Scholar 

  105. Jin J, Li F, Mothes W (2011) Viral determinants of polarized assembly for the murine leukemia virus. J Virol 85(15):7672–7682

    PubMed  CAS  Google Scholar 

  106. Jin J, Sherer N, Mothes W (2010) Surface transmission or polarized egress? Lessons learned from HTLV cell-to-cell transmission. Viruses 2(2):601–605

    PubMed  Google Scholar 

  107. Gomez-Mouton C, Manes S (2007) Establishment and maintenance of cell polarity during leukocyte chemotaxis. Cell Adh Migr 1(2):69–76

    PubMed  Google Scholar 

  108. Yamada S, Nelson WJ (2007) Synapses: sites of cell recognition, adhesion, and functional specification. Annu Rev Biochem 76:267–294

    PubMed  CAS  Google Scholar 

  109. Lucas TM et al (2010) Two distinct mechanisms regulate recruitment of murine leukemia virus envelope protein to retroviral assembly sites. Virology 405(2):548–555

    PubMed  CAS  Google Scholar 

  110. Emerson V et al (2010) Role of the C-terminal domain of the HIV-1 glycoprotein in cell-to-cell viral transmission between T lymphocytes. Retrovirology 7:43

    PubMed  Google Scholar 

  111. Deschambeault J et al (1999) Polarized human immunodeficiency virus budding in lymphocytes involves a tyrosine-based signal and favors cell-to-cell viral transmission. J Virol 73(6):5010–5017

    PubMed  CAS  Google Scholar 

  112. Vardhana S et al (2010) Essential role of ubiquitin and TSG101 protein in formation and function of the central supramolecular activation cluster. Immunity 32(4):531–540

    PubMed  CAS  Google Scholar 

  113. O’Doherty U, Swiggard WJ, Malim MH (2000) Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol 74(21):10074–10080

    PubMed  Google Scholar 

  114. Platt EJ et al (2010) Rapid dissociation of HIV-1 from cultured cells severely limits infectivity assays, causes the inactivation ascribed to entry inhibitors, and masks the inherently high level of infectivity of virions. J Virol 84(6):3106–3110

    PubMed  CAS  Google Scholar 

  115. Doms RW, Moore JP (2000) HIV-1 membrane fusion: targets of opportunity. J Cell Biol 151(2):F9–F14

    PubMed  CAS  Google Scholar 

  116. Yoder A et al (2008) HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell 134(5):782–792

    PubMed  CAS  Google Scholar 

  117. Cameron PU et al (2010) Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proc Natl Acad Sci U S A 107(39):16934–16939

    PubMed  CAS  Google Scholar 

  118. Zhong P et al (2013) Cell-to-cell transmission can overcome multiple donor and target cell barriers imposed on cell-free HIV. PLoS One 8(1):e53138

    PubMed  CAS  Google Scholar 

  119. Abela IA et al (2012) Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies. PLoS Pathog 8(4):e1002634

    PubMed  CAS  Google Scholar 

  120. Iyengar S, Hildreth JE, Schwartz DH (1998) Actin-dependent receptor colocalization required for human immunodeficiency virus entry into host cells. J Virol 72(6):5251–5255

    PubMed  CAS  Google Scholar 

  121. Jolly C, Mitar I, Sattentau QJ (2007) Requirement for an intact T-cell actin and tubulin cytoskeleton for efficient assembly and spread of human immunodeficiency virus type 1. J Virol 81(11):5547–5560

    PubMed  CAS  Google Scholar 

  122. Burckhardt CJ, Greber UF (2009) Virus movements on the plasma membrane support infection and transmission between cells. PLoS Pathog 5(11):e1000621

    PubMed  Google Scholar 

  123. Miyauchi K et al (2009) HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 137(3):433–444

    PubMed  CAS  Google Scholar 

  124. de la Vega M et al (2011) Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion. Retrovirology 8:99

    PubMed  Google Scholar 

  125. Del Portillo A et al (2011) Multiploid inheritance of HIV-1 during cell-to-cell infection. J Virol 85(14):7169–7176

    PubMed  Google Scholar 

  126. Sigal A et al (2011) Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477(7362):95–98

    PubMed  CAS  Google Scholar 

  127. Stremlau M et al (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427(6977):848–853

    PubMed  CAS  Google Scholar 

  128. Stremlau M et al (2006) Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci U S A 103(14):5514–5519

    PubMed  CAS  Google Scholar 

  129. Ganser-Pornillos BK et al (2011) Hexagonal assembly of a restricting TRIM5alpha protein. Proc Natl Acad Sci U S A 108(2):534–539

    PubMed  CAS  Google Scholar 

  130. Sebastian S, Luban J (2005) TRIM5alpha selectively binds a restriction-sensitive retroviral capsid. Retrovirology 2:40

    PubMed  Google Scholar 

  131. Sayah DM et al (2004) Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430(6999):569–573

    PubMed  CAS  Google Scholar 

  132. Richardson MW et al (2008) Mode of transmission affects the sensitivity of human immunodeficiency virus type 1 to restriction by rhesus TRIM5alpha. J Virol 82(22):11117–11128

    PubMed  CAS  Google Scholar 

  133. Jolly C, Booth NJ, Neil SJ (2010) Cell-cell spread of human immunodeficiency virus type 1 overcomes tetherin/BST-2-mediated restriction in T cells. J Virol 84(23):12185–12199

    PubMed  CAS  Google Scholar 

  134. Casartelli N et al (2010) Tetherin restricts productive HIV-1 cell-to-cell transmission. PLoS Pathog 6(6):e1000955

    PubMed  Google Scholar 

  135. Kuhl BD et al (2010) Tetherin restricts direct cell-to-cell infection of HIV-1. Retrovirology 7:115

    PubMed  CAS  Google Scholar 

  136. Neil SJ, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451(7177):425–430

    PubMed  CAS  Google Scholar 

  137. Neil SJ et al (2006) HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane. PLoS Pathog 2(5):e39

    PubMed  Google Scholar 

  138. Perez-Caballero D et al (2009) Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell 139(3):499–511

    PubMed  CAS  Google Scholar 

  139. Van Damme N et al (2008) The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3(4):245–252

    PubMed  Google Scholar 

  140. Gummuluru S, Kinsey CM, Emerman M (2000) An in vitro rapid-turnover assay for human immunodeficiency virus type 1 replication selects for cell-to-cell spread of virus. J Virol 74(23):10882–10891

    PubMed  CAS  Google Scholar 

  141. Massanella M et al (2009) Antigp41 antibodies fail to block early events of virological synapses but inhibit HIV spread between T cells. AIDS 23(2):183–188

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walther Mothes Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agosto, L.M., Zhong, P., Mothes, W. (2013). Cell-to-Cell Transmission of HIV. In: Freed, E. (eds) Advances in HIV-1 Assembly and Release. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7729-7_7

Download citation

Publish with us

Policies and ethics