Skip to main content

Packaging of the HIV-1 RNA Genome

  • Chapter
  • First Online:
  • 935 Accesses

Abstract

Encapsidating the viral genome into virions is an essential step in generating infectious viral particles. Most HIV-1 particles contain two copies of full-length viral RNA indicating genome encapsidation is an efficient and regulated process. Interactions between the HIV-1 structural protein Gag and cis-acting elements in the viral RNA mediate the packaging of viral RNA. The HIV-1 genome selects its copackaged RNA partner, or dimerizes, prior to encapsidation. Several aspects of virus biology and host–virus interactions important for the packaging of HIV-1 viral genomes are discussed in this review.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen J, Nikolaitchik O, Singh J, Wright A, Bencsics CE, Coffin JM et al (2009) High efficiency of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion analysis. Proc Natl Acad Sci U S A 106(32):13535–13540

    PubMed  CAS  Google Scholar 

  2. Freed EO, Martin MA (2007) HIVs and their replication. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott, Williams, & Wilkins, Philadelphia, PA, pp 2107–2185

    Google Scholar 

  3. Lever A, Gottlinger H, Haseltine W, Sodroski J (1989) Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J Virol 63(9):4085–4087

    PubMed  CAS  Google Scholar 

  4. Olsen HS, Nelbock P, Cochrane AW, Rosen CA (1990) Secondary structure is the major determinant for interaction of HIV rev protein with RNA. Science 247(4944):845–848

    PubMed  CAS  Google Scholar 

  5. Abbink TE, Berkhout B (2003) A novel long distance base-pairing interaction in human immunodeficiency virus type 1 RNA occludes the Gag start codon. J Biol Chem 278(13):11601–11611

    PubMed  CAS  Google Scholar 

  6. Berkhout B (1996) Structure and function of the human immunodeficiency virus leader RNA. Prog Nucleic Acid Res Mol Biol 54:1–34

    PubMed  CAS  Google Scholar 

  7. Berkhout B, van Wamel JL (2000) The leader of the HIV-1 RNA genome forms a compactly folded tertiary structure. RNA 6(2):282–295

    PubMed  CAS  Google Scholar 

  8. Paillart JC, Dettenhofer M, Yu XF, Ehresmann C, Ehresmann B, Marquet R (2004) First snapshots of the HIV-1 RNA structure in infected cells and in virions. J Biol Chem 279(46):48397–48403

    PubMed  CAS  Google Scholar 

  9. Lu K, Heng X, Garyu L, Monti S, Garcia EL, Kharytonchyk S et al (2011) NMR detection of structures in the HIV-1 5′-leader RNA that regulate genome packaging. Science 334(6053):242–245

    PubMed  CAS  Google Scholar 

  10. Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr, Swanstrom R et al (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460(7256):711–716

    PubMed  CAS  Google Scholar 

  11. Wilkinson KA, Gorelick RJ, Vasa SM, Guex N, Rein A, Mathews DH et al (2008) High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol 6(4):e96

    PubMed  Google Scholar 

  12. Clever J, Sassetti C, Parslow TG (1995) RNA secondary structure and binding sites for gag gene products in the 5′ packaging signal of human immunodeficiency virus type 1. J Virol 69(4):2101–2109

    PubMed  CAS  Google Scholar 

  13. Clever JL, Miranda D Jr, Parslow TG (2002) RNA structure and packaging signals in the 5′ leader region of the human immunodeficiency virus type 1 genome. J Virol 76(23):12381–12387

    PubMed  CAS  Google Scholar 

  14. McBride MS, Panganiban AT (1996) The human immunodeficiency virus type 1 encapsidation site is a multipartite RNA element composed of functional hairpin structures. J Virol 70(5):2963–2973

    PubMed  CAS  Google Scholar 

  15. Sakuragi J, Iwamoto A, Shioda T (2002) Dissociation of genome dimerization from packaging functions and virion maturation of human immunodeficiency virus type 1. J Virol 76(3):959–967

    PubMed  CAS  Google Scholar 

  16. Clavel F, Orenstein JM (1990) A mutant of human immunodeficiency virus with reduced RNA packaging and abnormal particle morphology. J Virol 64(10):5230–5234

    PubMed  CAS  Google Scholar 

  17. Hayashi T, Shioda T, Iwakura Y, Shibuta H (1992) RNA packaging signal of human immunodeficiency virus type 1. Virology 188(2):590–599

    PubMed  CAS  Google Scholar 

  18. Baudin F, Marquet R, Isel C, Darlix JL, Ehresmann B, Ehresmann C (1993) Functional sites in the 5′ region of human immunodeficiency virus type 1 RNA form defined structural domains. J Mol Biol 229(2):382–397

    PubMed  CAS  Google Scholar 

  19. Clever JL, Parslow TG (1997) Mutant human immunodeficiency virus type 1 genomes with defects in RNA dimerization or encapsidation. J Virol 71(5):3407–3414

    PubMed  CAS  Google Scholar 

  20. Parolin C, Dorfman T, Palu G, Gottlinger H, Sodroski J (1994) Analysis in human immunodeficiency virus type 1 vectors of cis-acting sequences that affect gene transfer into human lymphocytes. J Virol 68(6):3888–3895

    PubMed  CAS  Google Scholar 

  21. Luban J, Goff SP (1994) Mutational analysis of cis-acting packaging signals in human immunodeficiency virus type 1 RNA. J Virol 68(6):3784–3793

    PubMed  CAS  Google Scholar 

  22. Laham-Karam N, Bacharach E (2007) Transduction of human immunodeficiency virus type 1 vectors lacking encapsidation and dimerization signals. J Virol 81(19):10687–10698

    PubMed  CAS  Google Scholar 

  23. Duesberg PH (1968) Physical properties of Rous Sarcoma Virus RNA. Proc Natl Acad Sci U S A 60(4):1511–1518

    PubMed  CAS  Google Scholar 

  24. Kung HJ, Hu S, Bender W, Bailey JM, Davidson N, Nicolson MO et al (1976) RD-114, baboon, and woolly monkey viral RNA’s compared in size and structure. Cell 7(4):609–620

    PubMed  CAS  Google Scholar 

  25. Hu WS, Temin HM (1990) Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc Natl Acad Sci U S A 87(4):1556–1560

    PubMed  CAS  Google Scholar 

  26. Temin HM (1991) Sex and recombination in retroviruses. Trends Genet 7(3):71–74

    PubMed  CAS  Google Scholar 

  27. Hwang CK, Svarovskaia ES, Pathak VK (2001) Dynamic copy choice: steady state between murine leukemia virus polymerase and polymerase-dependent RNase H activity determines frequency of in vivo template switching. Proc Natl Acad Sci U S A 98(21):12209–12214

    PubMed  CAS  Google Scholar 

  28. Coffin JM (1979) Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol 42(1):1–26

    PubMed  CAS  Google Scholar 

  29. Ikawa Y, Ross J, Leder P (1974) An association between globin messenger RNA and 60S RNA derived from Friend leukemia virus. Proc Natl Acad Sci U S A 71(4):1154–1158

    PubMed  CAS  Google Scholar 

  30. Gallis B, Linial M, Eisenman R (1979) An avian oncovirus mutant deficient in genomic RNA: characterization of the packaged RNA as cellular messenger RNA. Virology 94(1):146–161

    PubMed  CAS  Google Scholar 

  31. Aronoff R, Linial M (1991) Specificity of retroviral RNA packaging. J Virol 65(1):71–80

    PubMed  CAS  Google Scholar 

  32. Adkins B, Hunter T (1981) Identification of a packaged cellular mRNA in virions of rous sarcoma virus. J Virol 39(2):471–480

    PubMed  CAS  Google Scholar 

  33. Muriaux D, Mirro J, Harvin D, Rein A (2001) RNA is a structural element in retrovirus particles. Proc Natl Acad Sci U S A 98(9):5246–5251

    PubMed  CAS  Google Scholar 

  34. Rulli SJ Jr, Hibbert CS, Mirro J, Pederson T, Biswal S, Rein A (2007) Selective and nonselective packaging of cellular RNAs in retrovirus particles. J Virol 81(12):6623–6631

    PubMed  CAS  Google Scholar 

  35. Barat C, Lullien V, Schatz O, Keith G, Nugeyre MT, Gruninger-Leitch F et al (1989) HIV-1 reverse transcriptase specifically interacts with the anticodon domain of its cognate primer tRNA. EMBO J 8(11):3279–3285

    PubMed  CAS  Google Scholar 

  36. Sallafranque-Andreola ML, Robert D, Barr PJ, Fournier M, Litvak S, Sarih-Cottin L et al (1989) Human immunodeficiency virus reverse transcriptase expressed in transformed yeast cells. Biochemical properties and interactions with bovine tRNALys. Eur J Biochem 184(2):367–374

    PubMed  CAS  Google Scholar 

  37. Onafuwa-Nuga AA, Telesnitsky A, King SR (2006) 7SL RNA, but not the 54-kd signal recognition particle protein, is an abundant component of both infectious HIV-1 and minimal virus-like particles. RNA 12(4):542–546

    PubMed  CAS  Google Scholar 

  38. Didierlaurent L, Racine PJ, Houzet L, Chamontin C, Berkhout B, Mougel M (2011) Role of HIV-1 RNA and protein determinants for the selective packaging of spliced and unspliced viral RNA and host U6 and 7SL RNA in virus particles. Nucleic Acids Res 39(20):8915–8927

    PubMed  CAS  Google Scholar 

  39. Keene SE, King SR, Telesnitsky A (2010) 7SL RNA is retained in HIV-1 minimal virus-like particles as an S-domain fragment. J Virol 84(18):9070–9077

    PubMed  CAS  Google Scholar 

  40. Kaplan AH, Manchester M, Swanstrom R (1994) The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency. J Virol 68(10):6782–6786

    PubMed  CAS  Google Scholar 

  41. Alfadhli A, McNett H, Tsagli S, Bachinger HP, Peyton DH, Barklis E (2011) HIV-1 matrix protein binding to RNA. J Mol Biol 410(4):653–666

    PubMed  CAS  Google Scholar 

  42. Chukkapalli V, Oh SJ, Ono A (2010) Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain. Proc Natl Acad Sci U S A 107(4):1600–1605

    PubMed  CAS  Google Scholar 

  43. Jones CP, Datta SA, Rein A, Rouzina I, Musier-Forsyth K (2011) Matrix domain modulates HIV-1 Gag’s nucleic acid chaperone activity via inositol phosphate binding. J Virol 85(4):1594–1603

    PubMed  CAS  Google Scholar 

  44. Rein A (2010) Nucleic acid chaperone activity of retroviral Gag proteins. RNA Biol 7(6):700–705

    PubMed  CAS  Google Scholar 

  45. Purohit P, Dupont S, Stevenson M, Green MR (2001) Sequence-specific interaction between HIV-1 matrix protein and viral genomic RNA revealed by in vitro genetic selection. RNA 7(4):576–584

    PubMed  CAS  Google Scholar 

  46. Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (2005) Virus Taxonomy, Eighth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press.

    Google Scholar 

  47. Aldovini A, Young RA (1990) Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol 64(5):1920–1926

    PubMed  CAS  Google Scholar 

  48. Gorelick RJ, Chabot DJ, Rein A, Henderson LE, Arthur LO (1993) The two zinc fingers in the human immunodeficiency virus type 1 nucleocapsid protein are not functionally equivalent. J Virol 67(7):4027–4036

    PubMed  CAS  Google Scholar 

  49. Gorelick RJ, Nigida SM Jr, Bess JW Jr, Arthur LO, Henderson LE, Rein A (1990) Noninfectious human immunodeficiency virus type 1 mutants deficient in genomic RNA. J Virol 64(7):3207–3211

    PubMed  CAS  Google Scholar 

  50. Meric C, Gouilloud E, Spahr PF (1988) Mutations in Rous sarcoma virus nucleocapsid protein p12 (NC): deletions of Cys-His boxes. J Virol 62(9):3328–3333

    PubMed  CAS  Google Scholar 

  51. Meric C, Goff SP (1989) Characterization of Moloney murine leukemia virus mutants with single-amino-acid substitutions in the Cys-His box of the nucleocapsid protein. J Virol 63(4):1558–1568

    PubMed  CAS  Google Scholar 

  52. Poon DT, Wu J, Aldovini A (1996) Charged amino acid residues of human immunodeficiency virus type 1 nucleocapsid p7 protein involved in RNA packaging and infectivity. J Virol 70(10):6607–6616

    PubMed  CAS  Google Scholar 

  53. Kafaie J, Song R, Abrahamyan L, Mouland AJ, Laughrea M (2008) Mapping of nucleocapsid residues important for HIV-1 genomic RNA dimerization and packaging. Virology 375(2):592–610

    PubMed  CAS  Google Scholar 

  54. Mark-Danieli M, Laham N, Kenan-Eichler M, Castiel A, Melamed D, Landau M et al (2005) Single point mutations in the zinc finger motifs of the human immunodeficiency virus type 1 nucleocapsid alter RNA binding specificities of the gag protein and enhance packaging and infectivity. J Virol 79(12):7756–7767

    PubMed  CAS  Google Scholar 

  55. Accola MA, Strack B, Gottlinger HG (2000) Efficient particle production by minimal Gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain. J Virol 74(12):5395–5402

    PubMed  CAS  Google Scholar 

  56. Crist RM, Datta SA, Stephen AG, Soheilian F, Mirro J, Fisher RJ et al (2009) Assembly properties of human immunodeficiency virus type 1 Gag-leucine zipper chimeras: implications for retrovirus assembly. J Virol 83(5):2216–2225

    PubMed  CAS  Google Scholar 

  57. Zhang Y, Qian H, Love Z, Barklis E (1998) Analysis of the assembly function of the human immunodeficiency virus type 1 gag protein nucleocapsid domain. J Virol 72(3):1782–1789

    PubMed  CAS  Google Scholar 

  58. Zhang Y, Barklis E (1997) Effects of nucleocapsid mutations on human immunodeficiency virus assembly and RNA encapsidation. J Virol 71(9):6765–6776

    PubMed  CAS  Google Scholar 

  59. Johnson MC, Scobie HM, Ma YM, Vogt VM (2002) Nucleic acid-independent retrovirus assembly can be driven by dimerization. J Virol 76(22):11177–11185

    PubMed  CAS  Google Scholar 

  60. Certo JL, Shook BF, Yin PD, Snider JT, Hu WS (1998) Nonreciprocal pseudotyping: murine leukemia virus proteins cannot efficiently package spleen necrosis virus-based vector RNA. J Virol 72(7):5408–5413

    PubMed  CAS  Google Scholar 

  61. Kaye JF, Lever AM (1998) Nonreciprocal packaging of human immunodeficiency virus type 1 and type 2 RNA: a possible role for the p2 domain of Gag in RNA encapsidation. J Virol 72(7):5877–5885

    PubMed  CAS  Google Scholar 

  62. Al Shamsi IR, Al Dhaheri NS, Phillip PS, Mustafa F, Rizvi TA (2011) Reciprocal cross-packaging of primate lentiviral (HIV-1 and SIV) RNAs by heterologous non-lentiviral MPMV proteins. Virus Res 155(1):352–357

    PubMed  CAS  Google Scholar 

  63. Al Dhaheri NS, Phillip PS, Ghazawi A, Ali J, Beebi E, Jaballah SA et al (2009) Cross-packaging of genetically distinct mouse and primate retroviral RNAs. Retrovirology 6:66

    PubMed  Google Scholar 

  64. Browning MT, Schmidt RD, Lew KA, Rizvi TA (2001) Primate and feline lentivirus vector RNA packaging and propagation by heterologous lentivirus virions. J Virol 75(11):5129–5140

    PubMed  CAS  Google Scholar 

  65. Parveen Z, Mukhtar M, Goodrich A, Acheampong E, Dornburg R, Pomerantz RJ (2004) Cross-packaging of human immunodeficiency virus type 1 vector RNA by spleen necrosis virus proteins: construction of a new generation of spleen necrosis virus-derived retroviral vectors. J Virol 78(12):6480–6488

    PubMed  CAS  Google Scholar 

  66. Strappe PM, Hampton DW, Brown D, Cachon-Gonzalez B, Caldwell M, Fawcett JW et al (2005) Identification of unique reciprocal and non reciprocal cross packaging relationships between HIV-1, HIV-2 and SIV reveals an efficient SIV/HIV-2 lentiviral vector system with highly favourable features for in vivo testing and clinical usage. Retrovirology 2:55

    PubMed  Google Scholar 

  67. Berkowitz RD, Ohagen A, Hoglund S, Goff SP (1995) Retroviral nucleocapsid domains mediate the specific recognition of genomic viral RNAs by chimeric Gag polyproteins during RNA packaging in vivo. J Virol 69(10):6445–6456

    PubMed  CAS  Google Scholar 

  68. Zhang Y, Barklis E (1995) Nucleocapsid protein effects on the specificity of retrovirus RNA encapsidation. J Virol 69(9):5716–5722

    PubMed  CAS  Google Scholar 

  69. Certo JL, Kabdulov TO, Paulson ML, Anderson JA, Hu WS (1999) The nucleocapsid domain is responsible for the ability of spleen necrosis virus (SNV) Gag polyprotein to package both SNV and murine leukemia virus RNA. J Virol 73(11):9170–9177

    PubMed  CAS  Google Scholar 

  70. Dupraz P, Spahr PF (1992) Specificity of Rous sarcoma virus nucleocapsid protein in genomic RNA packaging. J Virol 66(8):4662–4670

    PubMed  CAS  Google Scholar 

  71. Poon DT, Li G, Aldovini A (1998) Nucleocapsid and matrix protein contributions to selective human immunodeficiency virus type 1 genomic RNA packaging. J Virol 72(3):1983–1993

    PubMed  CAS  Google Scholar 

  72. Russell RS, Roldan A, Detorio M, Hu J, Wainberg MA, Liang C (2003) Effects of a single amino acid substitution within the p2 region of human immunodeficiency virus type 1 on packaging of spliced viral RNA. J Virol 77(24):12986–12995

    PubMed  CAS  Google Scholar 

  73. Russell RS, Hu J, Beriault V, Mouland AJ, Laughrea M, Kleiman L et al (2003) Sequences downstream of the 5′ splice donor site are required for both packaging and dimerization of human immunodeficiency virus type 1 RNA. J Virol 77(1):84–96

    PubMed  CAS  Google Scholar 

  74. Rong L, Russell RS, Hu J, Laughrea M, Wainberg MA, Liang C (2003) Deletion of stem-loop 3 is compensated by second-site mutations within the Gag protein of human immunodeficiency virus type 1. Virology 314(1):221–228

    PubMed  CAS  Google Scholar 

  75. Ristic N, Chin MP (2010) Mutations in matrix and SP1 repair the packaging specificity of a Human Immunodeficiency Virus Type 1 mutant by reducing the association of Gag with spliced viral RNA. Retrovirology 7:73

    PubMed  Google Scholar 

  76. Liang C, Rong L, Laughrea M, Kleiman L, Wainberg MA (1998) Compensatory point mutations in the human immunodeficiency virus type 1 Gag region that are distal from deletion mutations in the dimerization initiation site can restore viral replication. J Virol 72(8):6629–6636

    PubMed  CAS  Google Scholar 

  77. Parent LJ, Gudleski N (2011) Beyond plasma membrane targeting: role of the MA domain of Gag in retroviral genome encapsidation. J Mol Biol 410(4):553–564

    PubMed  CAS  Google Scholar 

  78. Gudleski N, Flanagan JM, Ryan EP, Bewley MC, Parent LJ (2010) Directionality of nucleocytoplasmic transport of the retroviral gag protein depends on sequential binding of karyopherins and viral RNA. Proc Natl Acad Sci U S A 107(20):9358–9363

    PubMed  CAS  Google Scholar 

  79. Garbitt-Hirst R, Kenney SP, Parent LJ (2009) Genetic evidence for a connection between Rous sarcoma virus gag nuclear trafficking and genomic RNA packaging. J Virol 83(13):6790–6797

    PubMed  CAS  Google Scholar 

  80. Scheifele LZ, Garbitt RA, Rhoads JD, Parent LJ (2002) Nuclear entry and CRM1-dependent nuclear export of the Rous sarcoma virus Gag polyprotein. Proc Natl Acad Sci U S A 99(6):3944–3949

    PubMed  CAS  Google Scholar 

  81. Garbitt RA, Albert JA, Kessler MD, Parent LJ (2001) Trans-acting inhibition of genomic RNA dimerization by Rous sarcoma virus matrix mutants. J Virol 75(1):260–268

    PubMed  CAS  Google Scholar 

  82. Parent LJ, Cairns TM, Albert JA, Wilson CB, Wills JW, Craven RC (2000) RNA dimerization defect in a Rous sarcoma virus matrix mutant. J Virol 74(1):164–172

    PubMed  CAS  Google Scholar 

  83. Baluyot MF, Grosse SA, Lyddon TD, Janaka SK, Johnson MC (2012) CRM1-Dependent Trafficking of Retroviral Gag Proteins Revisited. J Virol 86(8):4696–4700

    PubMed  CAS  Google Scholar 

  84. Kemler I, Saenz D, Poeschla E (2012) Feline immunodeficiency virus Gag is a nuclear shuttling protein. J Virol 86(16):8402–8411

    PubMed  CAS  Google Scholar 

  85. Dupont S, Sharova N, DeHoratius C, Virbasius CM, Zhu X, Bukrinskaya AG et al (1999) A novel nuclear export activity in HIV-1 matrix protein required for viral replication. Nature 402(6762):681–685

    PubMed  CAS  Google Scholar 

  86. Bukrinsky MI, Haggerty S, Dempsey MP, Sharova N, Adzhubel A, Spitz L et al (1993) A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365(6447):666–669

    PubMed  CAS  Google Scholar 

  87. Grewe B, Hoffmann B, Ohs I, Blissenbach M, Brandt S, Tippler B et al (2012) Cytoplasmic utilization of human immunodeficiency virus type 1 genomic RNA is not dependent on a nuclear interaction with gag. J Virol 86(6):2990–3002

    PubMed  CAS  Google Scholar 

  88. Levin JG, Rosenak MJ (1976) Synthesis of murine leukemia virus proteins associated with virions assembled in actinomycin D-treated cells: evidence for persistence of viral messenger RNA. Proc Natl Acad Sci U S A 73(4):1154–1158

    PubMed  CAS  Google Scholar 

  89. Levin JG, Grimley PM, Ramseur JM, Berezesky IK (1974) Deficiency of 60 to 70S RNA in murine leukemia virus particles assembled in cells treated with actinomycin D. J Virol 14(1):152–161

    PubMed  CAS  Google Scholar 

  90. Dorman N, Lever A (2000) Comparison of viral genomic RNA sorting mechanisms in human immunodeficiency virus type 1 (HIV-1), HIV-2, and Moloney murine leukemia virus. J Virol 74(23):11413–11417

    PubMed  CAS  Google Scholar 

  91. Butsch M, Boris-Lawrie K (2002) Destiny of unspliced retroviral RNA: ribosome and/or virion? J Virol 76(7):3089–3094

    PubMed  CAS  Google Scholar 

  92. Poon DT, Chertova EN, Ott DE (2002) Human immunodeficiency virus type 1 preferentially encapsidates genomic RNAs that encode Pr55(Gag): functional linkage between translation and RNA packaging. Virology 293(2):368–378

    PubMed  CAS  Google Scholar 

  93. Liang C, Hu J, Russell RS, Wainberg MA (2002) Translation of Pr55(gag) augments packaging of human immunodeficiency virus type 1 RNA in a cis-acting manner. AIDS Res Hum Retroviruses 18(15):1117–1126

    PubMed  CAS  Google Scholar 

  94. Nikolaitchik O, Rhodes TD, Ott D, Hu WS (2006) Effects of mutations in the human immunodeficiency virus type 1 Gag gene on RNA packaging and recombination. J Virol 80(10):4691–4697

    PubMed  CAS  Google Scholar 

  95. Kaye JF, Lever AM (1999) Human immunodeficiency virus types 1 and 2 differ in the predominant mechanism used for selection of genomic RNA for encapsidation. J Virol 73(4):3023–3031

    PubMed  CAS  Google Scholar 

  96. Ni N, Nikolaitchik OA, Dilley KA, Chen J, Galli A, Fu W et al (2011) Mechanisms of human immunodeficiency virus type 2 RNA packaging: efficient trans packaging and selection of RNA copackaging partners. J Virol 85(15):7603–7612

    PubMed  CAS  Google Scholar 

  97. Clever JL, Wong ML, Parslow TG (1996) Requirements for kissing-loop-mediated dimerization of human immunodeficiency virus RNA. J Virol 70(9):5902–5908

    PubMed  CAS  Google Scholar 

  98. Mujeeb A, Clever JL, Billeci TM, James TL, Parslow TG (1998) Structure of the dimer initiation complex of HIV-1 genomic RNA. Nat Struct Biol 5(6):432–436

    PubMed  CAS  Google Scholar 

  99. McBride MS, Panganiban AT (1997) Position dependence of functional hairpins important for human immunodeficiency virus type 1 RNA encapsidation in vivo. J Virol 71(3):2050–2058

    PubMed  CAS  Google Scholar 

  100. McBride MS, Schwartz MD, Panganiban AT (1997) Efficient encapsidation of human immunodeficiency virus type 1 vectors and further characterization of cis elements required for encapsidation. J Virol 71(6):4544–4554

    PubMed  CAS  Google Scholar 

  101. Li X, Liang C, Quan Y, Chandok R, Laughrea M, Parniak MA et al (1997) Identification of sequences downstream of the primer binding site that are important for efficient replication of human immunodeficiency virus type 1. J Virol 71(8):6003–6010

    PubMed  CAS  Google Scholar 

  102. Heng X, Kharytonchyk S, Garcia EL, Lu K, Divakaruni SS, LaCotti C et al (2012) Identification of a minimal region of the HIV-1 5′-leader required for RNA dimerization, NC binding, and packaging. J Mol Biol 417(3):224–239

    PubMed  CAS  Google Scholar 

  103. Das AT, Klaver B, Klasens BI, van Wamel JL, Berkhout B (1997) A conserved hairpin motif in the R-U5 region of the human immunodeficiency virus type 1 RNA genome is essential for replication. J Virol 71(3):2346–2356

    PubMed  CAS  Google Scholar 

  104. Helga-Maria C, Hammarskjold ML, Rekosh D (1999) An intact TAR element and cytoplasmic localization are necessary for efficient packaging of human immunodeficiency virus type 1 genomic RNA. J Virol 73(5):4127–4135

    PubMed  CAS  Google Scholar 

  105. Clever JL, Eckstein DA, Parslow TG (1999) Genetic dissociation of the encapsidation and reverse transcription functions in the 5′ R region of human immunodeficiency virus type 1. J Virol 73(1):101–109

    PubMed  CAS  Google Scholar 

  106. Pallesen J (2011) Structure of the HIV-1 5′ untranslated region dimer alone and in complex with gold nanocolloids: support of a TAR-TAR-containing 5′ dimer linkage site (DLS) and a 3′ DIS-DIS-containing DLS. Biochemistry 50(28):6170–6177

    PubMed  CAS  Google Scholar 

  107. Das AT, Harwig A, Vrolijk MM, Berkhout B (2007) The TAR hairpin of human immunodeficiency virus type 1 can be deleted when not required for Tat-mediated activation of transcription. J Virol 81(14):7742–7748

    PubMed  CAS  Google Scholar 

  108. Malim MH, Hauber J, Le SY, Maizel JV, Cullen BR (1989) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338(6212):254–257

    PubMed  CAS  Google Scholar 

  109. Malim MH, Tiley LS, McCarn DF, Rusche JR, Hauber J, Cullen BR (1990) HIV-1 structural gene expression requires binding of the Rev trans-activator to its RNA target sequence. Cell 60(4):675–683

    PubMed  CAS  Google Scholar 

  110. Kjems J, Brown M, Chang DD, Sharp PA (1991) Structural analysis of the interaction between the human immunodeficiency virus Rev protein and the Rev response element. Proc Natl Acad Sci U S A 88(3):683–687

    PubMed  CAS  Google Scholar 

  111. Charpentier B, Stutz F, Rosbash M (1997) A dynamic in vivo view of the HIV-I Rev-RRE interaction. J Mol Biol 266(5):950–962

    PubMed  CAS  Google Scholar 

  112. Lesnik EA, Sampath R, Ecker DJ (2002) Rev response elements (RRE) in lentiviruses: an RNAMotif algorithm-based strategy for RRE prediction. Med Res Rev 22(6):617–636

    PubMed  CAS  Google Scholar 

  113. Mann DA, Mikaelian I, Zemmel RW, Green SM, Lowe AD, Kimura T et al (1994) A molecular rheostat. Co-operative rev binding to stem I of the rev-response element modulates human immunodeficiency virus type-1 late gene expression. J Mol Biol 241(2):193–207

    PubMed  CAS  Google Scholar 

  114. Neville M, Stutz F, Lee L, Davis LI, Rosbash M (1997) The importin-beta family member Crm1p bridges the interaction between Rev and the nuclear pore complex during nuclear export. Curr Biol 7(10):767–775

    PubMed  CAS  Google Scholar 

  115. Cochrane AW, Chen CH, Rosen CA (1990) Specific interaction of the human immunodeficiency virus Rev protein with a structured region in the env mRNA. Proc Natl Acad Sci U S A 87(3):1198–1202

    PubMed  CAS  Google Scholar 

  116. Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90(6):1051–1060

    PubMed  CAS  Google Scholar 

  117. Daugherty MD, Liu B, Frankel AD (2010) Structural basis for cooperative RNA binding and export complex assembly by HIV Rev. Nat Struct Mol Biol 17(11):1337–1342

    PubMed  CAS  Google Scholar 

  118. Daugherty MD, Booth DS, Jayaraman B, Cheng Y, Frankel AD (2010) HIV Rev response element (RRE) directs assembly of the Rev homooligomer into discrete asymmetric complexes. Proc Natl Acad Sci U S A 107(28):12481–12486

    PubMed  CAS  Google Scholar 

  119. McLaren M, Marsh K, Cochrane A (2008) Modulating HIV-1 RNA processing and utilization. Front Biosci 13:5693–5707

    PubMed  CAS  Google Scholar 

  120. Brandt S, Blissenbach M, Grewe B, Konietzny R, Grunwald T, Uberla K (2007) Rev proteins of human and simian immunodeficiency virus enhance RNA encapsidation. PLoS Pathog 3(4):e54

    PubMed  Google Scholar 

  121. Bray M, Prasad S, Dubay JW, Hunter E, Jeang KT, Rekosh D et al (1994) A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent. Proc Natl Acad Sci U S A 91(4):1256–1260

    PubMed  CAS  Google Scholar 

  122. Moore MD, Nikolaitchik OA, Chen J, Hammarskjold ML, Rekosh D, Hu WS (2009) Probing the HIV-1 genomic RNA trafficking pathway and dimerization by genetic recombination and single virion analyses. PLoS Pathog 5(10):e1000627

    PubMed  Google Scholar 

  123. Braun IC, Rohrbach E, Schmitt C, Izaurralde E (1999) TAP binds to the constitutive transport element (CTE) through a novel RNA-binding motif that is sufficient to promote CTE-dependent RNA export from the nucleus. EMBO J 18(7):1953–1965

    PubMed  CAS  Google Scholar 

  124. Gruter P, Tabernero C, von Kobbe C, Schmitt C, Saavedra C, Bachi A et al (1998) TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell 1(5):649–659

    PubMed  CAS  Google Scholar 

  125. Kang Y, Cullen BR (1999) The human Tap protein is a nuclear mRNA export factor that contains novel RNA-binding and nucleocytoplasmic transport sequences. Genes Dev 13(9):1126–1139

    PubMed  CAS  Google Scholar 

  126. Wiegand HL, Coburn GA, Zeng Y, Kang Y, Bogerd HP, Cullen BR (2002) Formation of Tap/NXT1 heterodimers activates Tap-dependent nuclear mRNA export by enhancing recruitment to nuclear pore complexes. Mol Cell Biol 22(1):245–256

    PubMed  CAS  Google Scholar 

  127. Blissenbach M, Grewe B, Hoffmann B, Brandt S, Uberla K (2010) Nuclear RNA export and packaging functions of HIV-1 Rev revisited. J Virol 84(13):6598–6604

    PubMed  CAS  Google Scholar 

  128. Fu W, Gorelick RJ, Rein A (1994) Characterization of human immunodeficiency virus type 1 dimeric RNA from wild-type and protease-defective virions. J Virol 68(8):5013–5018

    PubMed  CAS  Google Scholar 

  129. Fu W, Rein A (1993) Maturation of dimeric viral RNA of Moloney murine leukemia virus. J Virol 67(9):5443–5449

    PubMed  CAS  Google Scholar 

  130. Moore MD, Fu W, Nikolaitchik O, Chen J, Ptak RG, Hu WS (2007) Dimer initiation signal of human immunodeficiency virus type 1: its role in partner selection during RNA copackaging and its effects on recombination. J Virol 81(8):4002–4011

    PubMed  CAS  Google Scholar 

  131. Muriaux D, Fosse P, Paoletti J (1996) A kissing complex together with a stable dimer is involved in the HIV-1Lai RNA dimerization process in vitro. Biochemistry 35(15):5075–5082

    PubMed  CAS  Google Scholar 

  132. Paillart JC, Berthoux L, Ottmann M, Darlix JL, Marquet R, Ehresmann B et al (1996) A dual role of the putative RNA dimerization initiation site of human immunodeficiency virus type 1 in genomic RNA packaging and proviral DNA synthesis. J Virol 70(12):8348–8354

    PubMed  CAS  Google Scholar 

  133. Skripkin E, Paillart JC, Marquet R, Ehresmann B, Ehresmann C (1994) Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proc Natl Acad Sci U S A 91(11):4945–4949

    PubMed  CAS  Google Scholar 

  134. Berkhout B, van Wamel JL (1996) Role of the DIS hairpin in replication of human immunodeficiency virus type 1. J Virol 70(10):6723–6732

    PubMed  CAS  Google Scholar 

  135. Laughrea M, Jette L (1996) Kissing-loop model of HIV-1 genome dimerization: HIV-1 RNAs can assume alternative dimeric forms, and all sequences upstream or downstream of hairpin 248–271 are dispensable for dimer formation. Biochemistry 35(5):1589–1598

    PubMed  CAS  Google Scholar 

  136. St Louis DC, Gotte D, Sanders-Buell E, Ritchey DW, Salminen MO, Carr JK et al (1998) Infectious molecular clones with the nonhomologous dimer initiation sequences found in different subtypes of human immunodeficiency virus type 1 can recombine and initiate a spreading infection in vitro. J Virol 72(5):3991–3998

    PubMed  CAS  Google Scholar 

  137. Hussein IT, Ni N, Galli A, Chen J, Moore MD, Hu WS (2010) Delineation of the preferences and requirements of the human immunodeficiency virus type 1 dimerization initiation signal by using an in vivo cell-based selection approach. J Virol 84(13):6866–6875

    PubMed  CAS  Google Scholar 

  138. Sakuragi J, Sakuragi S, Ohishi M, Shioda T (2010) Direct correlation between genome dimerization and recombination efficiency of HIV-1. Microbes Infect 12(12–13):1002–1011

    PubMed  CAS  Google Scholar 

  139. Chin MP, Rhodes TD, Chen J, Fu W, Hu WS (2005) Identification of a major restriction in HIV-1 intersubtype recombination. Proc Natl Acad Sci U S A 102(25):9002–9007

    PubMed  CAS  Google Scholar 

  140. Chin MP, Lee SK, Chen J, Nikolaitchik OA, Powell DA, Fivash MJ Jr et al (2008) Long-range recombination gradient between HIV-1 subtypes B and C variants caused by sequence differences in the dimerization initiation signal region. J Mol Biol 377(5):1324–1333

    PubMed  CAS  Google Scholar 

  141. Chin MP, Chen J, Nikolaitchik OA, Hu WS (2007) Molecular determinants of HIV-1 intersubtype recombination potential. Virology 363(2):437–446

    PubMed  CAS  Google Scholar 

  142. Nikolaitchik OA, Galli A, Moore MD, Pathak VK, Hu WS (2011) Multiple barriers to recombination between divergent HIV-1 variants revealed by a dual-marker recombination assay. J Mol Biol 407(4):521–531

    PubMed  CAS  Google Scholar 

  143. Sakuragi J, Ueda S, Iwamoto A, Shioda T (2003) Possible role of dimerization in human immunodeficiency virus type 1 genome RNA packaging. J Virol 77(7):4060–4069

    PubMed  CAS  Google Scholar 

  144. Hoglund S, Ohagen A, Goncalves J, Panganiban AT, Gabuzda D (1997) Ultrastructure of HIV-1 genomic RNA. Virology 233(2):271–279

    PubMed  CAS  Google Scholar 

  145. D’Souza V, Summers MF (2004) Structural basis for packaging the dimeric genome of Moloney murine leukaemia virus. Nature 431(7008):586–590

    PubMed  Google Scholar 

  146. Gherghe C, Lombo T, Leonard CW, Datta SA, Bess JW Jr, Gorelick RJ et al (2010) Definition of a high-affinity Gag recognition structure mediating packaging of a retroviral RNA genome. Proc Natl Acad Sci U S A 107(45):19248–19253

    PubMed  CAS  Google Scholar 

  147. Miyazaki Y, Garcia EL, King SR, Iyalla K, Loeliger K, Starck P et al (2010) An RNA structural switch regulates diploid genome packaging by Moloney murine leukemia virus. J Mol Biol 396(1):141–152

    PubMed  CAS  Google Scholar 

  148. Gherghe C, Leonard CW, Gorelick RJ, Weeks KM (2010) Secondary structure of the mature ex virio Moloney murine leukemia virus genomic RNA dimerization domain. J Virol 84(2):898–906

    PubMed  CAS  Google Scholar 

  149. Badorrek CS, Weeks KM (2006) Architecture of a gamma retroviral genomic RNA dimer. Biochemistry 45(42):12664–12672

    PubMed  CAS  Google Scholar 

  150. D’Souza V, Dey A, Habib D, Summers MF (2004) NMR structure of the 101-nucleotide core encapsidation signal of the Moloney murine leukemia virus. J Mol Biol 337(2):427–442

    PubMed  Google Scholar 

  151. Ooms M, Huthoff H, Russell R, Liang C, Berkhout B (2004) A riboswitch regulates RNA dimerization and packaging in human immunodeficiency virus type 1 virions. J Virol 78(19):10814–10819

    PubMed  CAS  Google Scholar 

  152. Abbink TE, Ooms M, Haasnoot PC, Berkhout B (2005) The HIV-1 leader RNA conformational switch regulates RNA dimerization but does not regulate mRNA translation. Biochemistry 44(25):9058–9066

    PubMed  CAS  Google Scholar 

  153. Poole E, Strappe P, Mok HP, Hicks R, Lever AM (2005) HIV-1 Gag-RNA interaction occurs at a perinuclear/centrosomal site; analysis by confocal microscopy and FRET. Traffic 6(9):741–755

    PubMed  CAS  Google Scholar 

  154. Kemler I, Meehan A, Poeschla EM (2010) Live-cell coimaging of the genomic RNAs and Gag proteins of two lentiviruses. J Virol 84(13):6352–6366

    PubMed  CAS  Google Scholar 

  155. Jouvenet N, Neil SJ, Bess C, Johnson MC, Virgen CA, Simon SM et al (2006) Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol 4(12):e435

    PubMed  Google Scholar 

  156. Ono A (2010) HIV-1 assembly at the plasma membrane. Vaccine 28(Suppl 2):B55–B59

    PubMed  CAS  Google Scholar 

  157. Jouvenet N, Bieniasz PD, Simon SM (2008) Imaging the biogenesis of individual HIV-1 virions in live cells. Nature 454(7201):236–240

    PubMed  CAS  Google Scholar 

  158. Ivanchenko S, Godinez WJ, Lampe M, Krausslich HG, Eils R, Rohr K et al (2009) Dynamics of HIV-1 assembly and release. PLoS Pathog 5(11):e1000652

    PubMed  Google Scholar 

  159. Jouvenet N, Simon SM, Bieniasz PD (2009) Imaging the interaction of HIV-1 genomes and Gag during assembly of individual viral particles. Proc Natl Acad Sci U S A 106(45):19114–19119

    PubMed  CAS  Google Scholar 

  160. Kutluay SB, Bieniasz PD (2010) Analysis of the initiating events in HIV-1 particle assembly and genome packaging. PLoS Pathog 6(11):e1001200

    PubMed  Google Scholar 

  161. Molle D, Segura-Morales C, Camus G, Berlioz-Torrent C, Kjems J, Basyuk E et al (2009) Endosomal trafficking of HIV-1 gag and genomic RNAs regulates viral egress. J Biol Chem 284(29):19727–19743

    PubMed  CAS  Google Scholar 

  162. Lehmann M, Milev MP, Abrahamyan L, Yao XJ, Pante N, Mouland AJ (2009) Intracellular transport of human immunodeficiency virus type 1 genomic RNA and viral production are dependent on dynein motor function and late endosome positioning. J Biol Chem 284(21):14572–14585

    PubMed  CAS  Google Scholar 

  163. Ono A (2009) HIV-1 assembly at the plasma membrane: Gag trafficking and localization. Future Virol 4(3):241–257

    PubMed  CAS  Google Scholar 

  164. Beriault V, Clement JF, Levesque K, Lebel C, Yong X, Chabot B et al (2004) A late role for the association of hnRNP A2 with the HIV-1 hnRNP A2 response elements in genomic RNA, Gag, and Vpr localization. J Biol Chem 279(42):44141–44153

    PubMed  CAS  Google Scholar 

  165. Mouland AJ, Xu H, Cui H, Krueger W, Munro TP, Prasol M et al (2001) RNA trafficking signals in human immunodeficiency virus type 1. Mol Cell Biol 21(6):2133–2143

    PubMed  CAS  Google Scholar 

  166. Levesque K, Halvorsen M, Abrahamyan L, Chatel-Chaix L, Poupon V, Gordon H et al (2006) Trafficking of HIV-1 RNA is mediated by heterogeneous nuclear ribonucleoprotein A2 expression and impacts on viral assembly. Traffic 7(9):1177–1193

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Shau Hu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, J., Nikolaitchik, O.A., Dilley, K.A., Hu, WS. (2013). Packaging of the HIV-1 RNA Genome. In: Freed, E. (eds) Advances in HIV-1 Assembly and Release. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7729-7_3

Download citation

Publish with us

Policies and ethics